Проектирование фундаментов вблизи существующих зданий: Рекомендации «Рекомендации по проектированию и устройству оснований и фундаментов при возведении зданий вблизи существующих в условиях плотной застройки в г. Москве» – Сотников = Проектирование и возведение фундаментов вблизи существующих сооружений (1986)

1. Основные задачи проектирования фундаментов, возводимых вблизи существующих зданий

ГЛАВА 4. ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ФУНДАМЕНТОВ, ВОЗВОДИМЫХ ВБЛИЗИ СУЩЕСТВУЮЩИХ ЗДАНИЙ

Проектирование фундаментов вблизи существующих зданий на современном уровне должно включать такие конструктивные решения, реализация которых позволит выполнить строительство экономично, в сжатые сроки, с полной гарантией сохранности строительных конструкций существующих зданий от технологических и силовых воздействий со стороны вновь возводимых. Это достигается при совместном учете технического состояния существующего здания, типа проектируемого здания, деформируемости основания, технологии производства работ при устройстве фундаментов [31].

Сотников С.Н., Собенин А.А. Вопросы проектирования фундаментов в примыканиях к существующим зданиям//Механика грунтов, основания и фундаменты: Сб. науч. тр. / ЛИСИ

Поэтому при выборе участка застройки и компоновке генерального плана следует учитывать состояние конструкций существующего здания, материалы инженерных и инженерно-геологических изысканий, выполненных до возведения существующих зданий и при подготовке исходных данных для нового строительства, принимая во внимание степень уплотненности грунтов оснований существующими и снесенными постройками. Если грунты основания относятся к сильно или среднесжимаемым (модуль деформации

E ≤ 20 МПа), то в экономическом обосновании проекта необходимо учесть удорожание строительства, связанное с осуществлением мероприятий, направленных на обеспечение целостности конструкций существующих зданий при возведении новых на смежных участках.

Требования, предъявляемые к технологии работ по устройству оснований и фундаментов, должны выполняться в полной мере, независимо от сжимаемости грунтов.

Для предотвращения возможности возникновения неблагоприятных явлений, рассмотренных ранее в гл. 1 и 2, рекомендуется использовать систему архитектурно-планировочных, конструктивных, организационных и технологических мероприятий с тем, чтобы обеспечить комплексное решение задач, возникающих при проектировании зданий, располагаемых в непосредственной близости от существующих построек, а также при строительстве зданий в несколько очередей, на всех стадиях разработки проекта и его реализации. При этом важным отправным моментом является определение средней осадки основания проектируемого здания (табл. 4.1).

При разработке проектов зданий следует всемерно облегчать их конструкции в зоне примыкания к существующим постройкам, ограничивать их высоту и размер по ширине, устраивать в зоне примыкания большие проемы высотой в 2—3 этажа, применять эффективные (облегченные) конструкционные материалы. Одной из наиболее эффективных мер является устройство разрыва в плане между фундаментами нового и существующего здания. Необходимый разрыв L должен определяться расчетом осадки методом попыток, в каждой из которых вычисляются дополнительные осадки оснований существующих зданий от загружения смежных площадей новыми постройками.

При проектировании новых зданий следует стремиться к минимальному заглублению в грунт фундаментов подвальных помещений, особенно в местах примыкания их к уже существующим.

4.3. Проектирование фундаментов мелкого заложения вблизи существующих зданий ч.1

Как было указано выше, разработка проектов фундаментов зданий, располагаемых в непосредственной близости от существующих сооружений, включает в себя расчет оснований как проектируемого здания, так и существующих построек.

Расчет естественного основания нового здания должен производиться по несущей способности и по деформациям в соответствии со СНиП 2.02.01-83.

По несущей способности производится расчет и тех фундаментов существующих зданий, возле которых располагаются котлованы для устройства фундаментов проектируемых зданий. Расчет несущей способности оснований проектируемых зданий должен выполняться (в запас) без учета одностороннего загружения соседних площадей.

В расчет оснований по деформациям входит также расчет неравномерности дополнительных осадок существующих зданий при загрузке соседних участков возводимым сооружением (см. рис. 1.10).

Если грунты площадки строительства ранее не были загружены внешней нагрузкой, то новое здание в местах примыкания к существующим будет давать меньшие осадки, чем на свободной территории (см. рис. 1.10). Это может привести к опасному перекосу нового здания вблизи примыкания его к существующим, а также к относительно большему общему прогибу нового здания, что следует учитывать при проектировании (рис. 4.2).

Рис. 4.2. К определению дополнительного перекоса нового здания, возведенного вблизи уже существующего

а — схема примыкания,

б — эпюра осадок по расчету; 1 — ранее построенное здание; 2 — новое здание; 3 — условная линия распределения напряжений от ранее построенного здания; 4 — нижняя граница сжимаемой толщи; 5 — осадка нового здания без учета уплотнения грунта у примыкания; 6 — то же, с учетом уплотнения грунта

Увеличение перекоса нового здания в местах примыкания к существующему может быть оценено по следующей методике:

а) определяется осадка s1 фундамента стены, примыкающей к существующему зданию, без учета жесткости здания по деформационным характеристикам площадки строительства, установленным при изысканиях;

б) определяется осадка s2 того же фундамента, но по деформационным характеристикам грунта в уплотненном состоянии с учетом нагрузки, передаваемой существующим зданием;

в) вычисляется дополнительный перекос здания в месте его примыкания к существующему по формуле

jad = (s1 – s2)/ln,

(4.5)

где ln — длина участка в пределах которого развивается перекос; ln — принимается равной 0,25

Нс (здесь Нс — мощность сжимаемой толщи).

Значение перекоса js суммируется со значением перекоса, полученным при расчете неравномерности осадок фундаментов проектируемого здания как свободно стоящего с учетом взаимного влияния всех его фундаментов.

Не рекомендуется производить планировку территории подсыпкой более 0,5 м в пределах площади, загрузка которой вызовет дополнительное уплотнение грунтов под существующими зданиями. При необходимости выполнения подсыпки, толщина которой превышает 0,5 м, следует учитывать, что это мероприятие может вызвать дополнительную неравномерную осадку как существующих, так и проектируемых зданий и сооружений, особенно если эта подсыпка проектируется только на части территории (см. рис. 1.11, б). Подсыпку необходимо принимать как распределенную нагрузку наравне с нагрузками от проектируемых построек со всеми вытекающими отсюда последствиями.

Мероприятия, направленные на ликвидацию влияния неравномерной дополнительной осадки оснований, следует разрабатывать с учетом осадки, которая должна быть определена расчетом.

Расположение сооружений в плане, заглубление фундаментов и подземной части, выбор типа фундамента принимаются с учетом следующих основных требований.

Если давление на грунт от проектируемого здания не меньше давления от существующих соседних зданий, рекомендуется новое здание относить от существующих фундаментов на расстояние L ≥ Hс. При L ≥ 0,5Hс влияние нового здания, как правило, незначительно и может быть учтено расчетом.

При необходимости устройства фундаментов на расстоянии L < 0,5Hc минимальное безопасное расстояние будет зависеть от инженерно-геологических условий, конструкции фундамента, способа разработки грунта, требований технологии устройства фундаментов, порядка монтажа здания и ряда других факторов. Наибольшая неравномерность осадок территории, примыкающей к новой постройке (а следовательно, и неравномерность дополнительных осадок существующих зданий), проявляется на удалении до 0,2Hс от новых фундаментов (рис. 4.3) (зона Г — практически в пределах ближайших 2—6 м). У жилых бескаркасных зданий именно на этом участке развиваются наиболее значительные повреждения конструкций, прежде всего продольных стен. На удалении (0,2÷0,5)

Hс (зона В) обычно возникают перекосы конструкций с образованием в стенах наклонных трещин; на удалении от 0,5Нс до Нс (зона Б) происходит общий крен здания.

Рис. 4.3. Схема силового воздействия строящегося здания (I) на уже существующее (II), расположенное в пределах воронки оседания

А—Г — зоны повреждения конструкций здания

При оценке Нс можно пользоваться методикой, изложенной в работах Б.И. Далматова, или методом суммирования по СНиП 2.02.01-83 (в последнем случае Hc = z). Величину Нс следует определять для центра проектируемого здания (сооружения) с учетом загружения всех фундаментов.

В зависимости от ожидаемых конечной осадки нового и дополнительных осадок существующего здания, чувствительности конструкций последнего к развитию неравномерных осадок и архитектурных особенностей объекта определяется минимально допустимый разрыв между краями новых и существующих фундаментов. Примыкание сооружений вплотную, необходимое по архитектурным или иным соображениям, может осуществляться только с устройством осадочного шва в наземной части и разрыва между новыми и старыми фундаментами. Современные методы производства работ по разработке грунта и устройству фундаментов позволяют при соответствующем выборе варианта новых фундаментов (например, стена в грунте) и соблюдении определенных требований обеспечить примыкание новых фундаментов почти вплотную к существующим.

Нежелательна сложная в плане форма примыкания, а также примыкание нового здания к продольной стене существующего. Предпочтительно расположение новых ленточных фундаментов перпендикулярно линии примыкания.

Особенности устройства фундаментов вблизи существующих зданий

Можно выделить следующие причины, обусловливающие проявление дополнительных деформаций существующих зданий при возведении около них фундаментов:

выпор грунта в сторону вновь устраиваемого фундамента;

суффозия грунта из-под подошвы фундамента при открыто водоотливе;

динамическое воздействие на грунт при забивке шпунта, свай;

разработка мерзлого и промораживание талого грунта;

отклонение шпунта под воздействием существующего фундамента в сторону вновь устраиваемого котлована;

уплотнение грунта под влиянием нового фундамента.

Последние две причины обусловлены деформациями грунтов основания, образованием воронки оседания (оседания поверхности грунта вокруг площади загружения). Размеры воронки (по глубине и в плане) возрастают с увеличением передаваемой нагрузки на основание, уменьшением расстояния между строящимися зданиями и ростом сжимаемости грунтов основания. Все, что попадает в воронку оседания (фундаменты существующих зданий, коммуникации и др.), претерпевает значительные осадки, сопровождающиеся, как правило, деформациями конструкций.

В качестве защитного мероприятия против указанного развития деформаций можно рекомендовать отнесение возводимого здания на несколько метров от существующего. Однако эту меру нельзя признать исчерпывающей: во-первых, не всегда представляется возможным это сделать из число конструктивных соображений и, а во-вторых, воронка оседания распространяется в плане на довольно значительное расстояние. Приближенно принимается, что распространение воронки оседания в стороны от фундамента равно величине активной зоны основания по методу угловых точек с использованием модели слоя конечной толщины.

Для полного исключения влияния загружения основания применяют шпунтовое ограждение, заглубляемое ниже сжимаемой зоны с врезкой в плотные грунты. Шпунтовая стенка должна иметь шпоры размером (0,25+0,5)h (h - мощность активной зоны грунта основания).

Изложенное относится к мерам по предотвращению уплотнения грунта вокруг возводимых и существующих зданий. Что касается причин развития дополнительных осадок вблизи существующих сооружений, то все они связаны с производством строительно-монтажных работ и, как правило, могут быть исключены.

Перспективным является применение струйной технологии для выправления крена зданий и сооружений, который образуется из-за неравномерной осадки основания. Для выправления крена рядом с существующим сооружением со стороны, противоположной крену, устраивают вертикальную скважину. Из нее с помощью струйного монитора под фундаментами размывается горизонтальная полость. Под действием расположенного сооружения происходит уплотнение полости, в результате чего сооружение выравнивается. Путем последовательного размыва полостей можно регулировать выравнивание по времени, что обеспечивает полную безопасность этого способа и сохранность состояния выправляемого сооружения.

Ремонт и усиление гидроизоляции фундаментов

в процессе эксплуатации зданий и сооружений гидроизоляции фундаментов претерпевает значительные изменения или нарушается и полностью или частично теряет свои гидроизоляции, ее усиление или устройстве новой.

Основными видами повреждений гидроизоляции являются: разрыв изоляционного слоя в местах образования трещин, вызываемых неравномерными осадками основания; повреждение изоляционного слоя на большом протяжении как следствие появление в нем больших неравномерных осадок и усадочных трещин; химическое разрушение изоляционного слоя вследствие его нестойкости к действующим агрессивным средам.

В зависимости от характера разрушений гидроизоляции ее восстанавливают и усиливают по-разному. Работы производят участками длиной по 1 м. Над поврежденным участком в стене пробивают сквозные отверстия высотой 0,3+0,4 м. Удаляют поврежденную гидроизоляцию, расчищают основание и при необходимости выравнивают его цементным раствором. После затвердения раствора и его подсушки укладывают по выровненному основанию гидроизоляционный слой с перекрытием старого слоя на 0,2+0,25 м. При восстановлении гидроизоляции в бетонной стене - закладкой кирпича с плотным заклиниванием вверху между новой и старой кладкой цементный раствор.

Усиление или устройство новой наружной вертикальной гидроизоляции выполняется следующим образом. По периметру здания вдоль стен подвала разрабатывают траншею, закрепляя ее откосы. Стену тщательно очищают от грунта и выравнивают цементным раствором 1:2. После схватывания раствора и просушки поверхность покрывают слоем горячего битума, на который сразу же наклеивают слой рубероида или другого материала в соответствии с проектом. Затем еще раз промазывают горячим битумом и наклеивают второй слой. При необходимости изоляцию усиливают прижимной кирпичной стенкой и выполняют глиняный замок. При высоком уровне подземных вод работы по устройству гидроизоляции выполняют после осуществления водопонижения.

Методы защиты фундаментов и подвальных стен от агрессивного воздействия подземных вод в основном такие же, как и при защите от увлажнения, но материалы для гидроизоляции подбираются с учетом их устойчивости к агрессивной среде.

В некоторых случаях опорная часть фундамента защищается кислотоупорным кирпичом, а боковые поверхности - кислотоупорным кирпичом или диабазовыми плитками. Все чаще для защиты фундаментов применяется полимербетон.

Защита железобетонных фундаментов от электрокоррозии обычно выполняется путем окрасочной изоляции битумными мастиками. Более эффективную защиту от электрокоррозии фундаментов создают полиэтиленовые покрытия и этиленовая эмаль на основе эпоксидных смол. Для предотвращения попадания блуждающих токов из грунта на арматуру фундамента следует производить оклейку поверхностей двумя-тремя слоями изоляционных материалов (гидроизол, изол, бризол, релин и другое). Технология наклейки материалов так же, что и при обычной антикоррозийной защите.

ВСН 401-01-1-77 Временная инструкция по устройству фундаментов около существующих зданий

На главную | База 1 | База 2 | База 3
Поиск по реквизитамПоиск по номеру документаПоиск по названию документаПоиск по тексту документа
Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭПУГПУЭПЦСНПЭУРР ГазпромР НОПРИЗР НОСТРОЙР НОСТРОЙ/НОПР РСКР СМНР-НП СРО ССКРазъяснениеРаспоряжениеРАФРБРГРДРД БГЕИРД БТРД ГМРД НИИКраностроенияРД РОСЭКРД РСКРД РТМРД СМАРД СМНРД ЭОРД-АПКРДИРДМРДМУРДПРДСРДТПРегламентРекомендацииРекомендацияРешениеРешение коллегииРКРМРМГРМДРМКРНДРНиПРПРРТОП ТЭРС ГАРСНРСТ РСФСРРСТ РСФСР ЭД1РТРТМРТПРУРуководствоРУЭСТОП ГАРЭГА РФРЭСНрСАСанитарные нормыСанитарные правилаСанПиНСборникСборник НТД к СНиПСборники ПВРСборники РСН МОСборники РСН ПНРСборники РСН ССРСборники ценСБЦПСДАСДАЭСДОССерияСЗКСНСН-РФСНиПСНиРСНККСНОРСНПСОСоглашениеСПСП АССП АЭССправочникСправочное пособие к ВСНСправочное пособие к СНиПСправочное пособие к СПСправочное пособие к ТЕРСправочное пособие к ТЕРрСРПССНССЦСТ ССФЖТСТ СЭВСТ ЦКБАСТ-НП СРОСТАСТКСТМСТНСТН ЦЭСТОСТО 030 НОСТРОЙСТО АСЧМСТО БДПСТО ВНИИСТСТО ГазпромСТО Газпром РДСТО ГГИСТО ГУ ГГИСТО ДД ХМАОСТО ДОКТОР БЕТОНСТО МАДИСТО МВИСТО МИСТО НААГСТО НАКССТО НКССТО НОПСТО НОСТРОЙСТО НОСТРОЙ/НОПСТО РЖДСТО РосГеоСТО РОСТЕХЭКСПЕРТИЗАСТО САСТО СМКСТО ФЦССТО ЦКТИСТО-ГК "Трансстрой"СТО-НСОПБСТПСТП ВНИИГСТП НИИЭССтП РМПСУПСССУРСУСНСЦНПРТВТЕТелеграммаТелетайпограммаТематическая подборкаТЕРТЕР Алтайский крайТЕР Белгородская областьТЕР Калининградской областиТЕР Карачаево-Черкесская РеспубликаТЕР Краснодарского краяТЕР Мурманская областьТЕР Новосибирской областиТЕР Орловской областиТЕР Республика ДагестанТЕР Республика КарелияТЕР Ростовской областиТЕР Самарской областиТЕР Смоленской обл.ТЕР Ямало-Ненецкий автономный округТЕР Ярославской областиТЕРмТЕРм Алтайский крайТЕРм Белгородская областьТЕРм Воронежской областиТЕРм Калининградской областиТЕРм Карачаево-Черкесская РеспубликаТЕРм Мурманская областьТЕРм Республика ДагестанТЕРм Республика КарелияТЕРм Ямало-Ненецкий автономный округТЕРмрТЕРмр Алтайский крайТЕРмр Белгородская областьТЕРмр Карачаево-Черкесская РеспубликаТЕРмр Краснодарского краяТЕРмр Республика ДагестанТЕРмр Республика КарелияТЕРмр Ямало-Ненецкий автономный округТЕРпТЕРп Алтайский крайТЕРп Белгородская областьТЕРп Калининградской областиТЕРп Карачаево-Черкесская РеспубликаТЕРп Краснодарского краяТЕРп Республика КарелияТЕРп Ямало-Ненецкий автономный округТЕРп Ярославской областиТЕРрТЕРр Алтайский крайТЕРр Белгородская областьТЕРр Калининградской областиТЕРр Карачаево-Черкесская РеспубликаТЕРр Краснодарского краяТЕРр Новосибирской областиТЕРр Омской областиТЕРр Орловской областиТЕРр Республика ДагестанТЕРр Республика КарелияТЕРр Ростовской областиТЕРр Рязанской областиТЕРр Самарской областиТЕРр Смоленской областиТЕРр Удмуртской РеспубликиТЕРр Ульяновской областиТЕРр Ямало-Ненецкий автономный округТЕРррТЕРрр Ямало-Ненецкий автономный округТЕРс Ямало-Ненецкий автономный округТЕРтр Ямало-Ненецкий автономный округТехнический каталогТехнический регламентТехнический регламент Таможенного союзаТехнический циркулярТехнологическая инструкцияТехнологическая картаТехнологические картыТехнологический регламентТИТИ РТИ РОТиповая инструкцияТиповая технологическая инструкцияТиповое положениеТиповой проектТиповые конструкцииТиповые материалы для проектированияТиповые проектные решенияТКТКБЯТМД Санкт-ПетербургТНПБТОИТОИ-РДТПТПРТРТР АВОКТР ЕАЭСТР ТСТРДТСНТСН МУТСН ПМСТСН РКТСН ЭКТСН ЭОТСНэ и ТЕРэТССЦТССЦ Алтайский крайТССЦ Белгородская областьТССЦ Воронежской областиТССЦ Карачаево-Черкесская РеспубликаТССЦ Ямало-Ненецкий автономный округТССЦпгТССЦпг Белгородская областьТСЦТСЦ Белгородская областьТСЦ Краснодарского краяТСЦ Орловской областиТСЦ Республика ДагестанТСЦ Республика КарелияТСЦ Ростовской областиТСЦ Ульяновской областиТСЦмТСЦО Ямало-Ненецкий автономный округТСЦп Калининградской областиТСЦПГ Ямало-Ненецкий автономный округТСЦэ Калининградской областиТСЭМТСЭМ Алтайский крайТСЭМ Белгородская областьТСЭМ Карачаево-Черкесская РеспубликаТСЭМ Ямало-Ненецкий автономный округТТТТКТТПТУТУ-газТУКТЭСНиЕР Воронежской областиТЭСНиЕРм Воронежской областиТЭСНиЕРрТЭСНиТЕРэУУ-СТУказУказаниеУказанияУКНУНУОУРврУРкрУРррУРСНУСНУТП БГЕИФАПФедеральный законФедеральный стандарт оценкиФЕРФЕРмФЕРмрФЕРпФЕРрФормаФорма ИГАСНФРФСНФССЦФССЦпгФСЭМФТС ЖТЦВЦенникЦИРВЦиркулярЦПИШифрЭксплуатационный циркулярЭРД
Показать все найденныеПоказать действующиеПоказать частично действующиеПоказать не действующиеПоказать проектыПоказать документы с неизвестным статусом
Упорядочить по номеру документаУпорядочить по дате введения

Проектирование фундаментов вблизи существующих зданий — Студопедия.Нет

Специфика проектов фундаментов, расположенных возле существующих зданий и сооружений, состоит в том, что они должны обеспечить нормальную работу конструкций нового здания и не приводить к развитию деформаций основания соседних. Разработка таких проектов, их реализация в производстве достаточно сложны и ответственны.

При разработке проектов фундаментов нового сооружения должна учитываться возможная осадка соседних зданий:

где s — дополнительная осадка, определяемая расчетом, например, методом угловых точек; saJsu— предельно допустимая величина дополнительной осадки.

К моменту возведения пристроев, здания старой постройки получили «собственную осадку», которая развивалась десятки лет. Средняя осадка домов Санкт-Петербурга, к примеру, достигает 20…30 см и больших величин, т. е. превышает допустимые, что приводит к развитию прогиба здания. Если такое здание получает дополнительную осадку уплотнения saJs, то это приводит к развитию выгиба, перекоса, конфигурация коробки существующего здания изменяется, а в кладке стен возникают трещины. Возможны сдвиги перекрытий, развитие других дефектов и даже обрушения конструкций. Вид деформации здания от дополнительной осадки существенно отличается от вида деформации, вызванной собственной осадкой. В этом случае использование при проектировании средней осадки, прогиба и др. — неправомерно. Изучение этого вопроса привело к необходимости введения критерия, характеризующего влияние suds, — допустимой дополнительной осадки, а именно:

— максимальной величины дополнительной осадки, которую, очевидно, получают участки стен старого здания, наиболее приближенные к новому;

— дополнительного перекоса нового здания на участке примыкания.

Допустимые величины перечисленных характеристик дополнительной осадки могут быть определены «совместным расчетом» старого здания с основанием, получающим дополнительную осадку (для этой цели можно использовать численные методы расчета). В относительно простых случаях рекомендуется использовать условия:

Значения предельно допустимых величин дополнительных осадок зданий различного типа, получивших разную степень износа до начала постройки соседнего (проектируемого) здания, могут быть определены по табл. 13.1, разработанной в СПбГАСУ на основе обобщения результатов натурных наблюдений за большим числом зданий, около которых были построены новые дома.

Обоснование проектного решения фундаментов нового здания, пристраиваемого к существующим, является важнейшим этапом разработки проекта. При этом особое значение имеет достоверность исходной информации (об инженерно-геологических условиях площадки, наземных конструкциях и габаритах здания, нагрузках по обрезу фундаментов и др.) и дополнительной — о местоположении соседних зданий и существующих коммуникаций, типах фундаментов этих зданий, сведениях о техническом состоянии фундаментов и других конструкций. Обычно на таких площадках предварительно выполняются обследования конструкций зданий, окружающих площадку, с фиксацией имеющихся старых дефектов.

 

Рис. 3. Схемы к определению перекоса и крена здания в результате развития дополнительной осадки уплотнения: а — перекос здания; б — крен узкого здания; в — наибольшая дополнительная осадка точки, наиболее приближенной к линии примыкания; г — форма осадочной воронки: I — существующее здание; 2 — возводимое здание; 3 — эпюра осадки здания 2; 4 — эпюра дополнительной осадки здания 2; 5 — изолинии осадки

Значения предельно допустимых величин дополнительных осадок сооружений и зданий различных типов и степени износа конструкций зданий

Таблица 1. Оценка технического состояния конструкций кирпичных, крупноблочных и крупнопанельных домов по результатам обследований с учетом развития повреждений и физического износа

Кат. Тех.сост. Повреждения несущих стен, панелей, столбов, колонн, фундаментов Повреждения ограждающих констр. Повреждения перекрытий, лестниц Степень физ .износа, %
I Отсутствие трещин или отдельные трещины в межоконных поясах, в перемычках кирпичных стен с раскрытием до 5 мм, фундаменты без видимых дефектов Отсутствие трещин или трещины с раскрытием до 0,5 мм В несущих элементах отсутствие повреждений До 20
II Трещины в межоконных поясах, перемычках, простенках с раскрытием до 0,5 мм, выщелачивание кладки фундаментов, поражение древесины гнилью Трещины с раскрытием до 3 мм Трещины в спряжениях несущих элементов, признаки сдвигов в заделке 20…40
III Сквозные трещины более 3 мм в простенках и перемычках, разрушение. вывалы кладки, разрушение раствора, камней кладки фундаментов, сгнившая древесина лежней, свай Трещины в несущих элементах, сдвиги элементов в заделке Трещины с раскрытием более 3 мм, перекосы проемов Более 40

При разработке проектов уплотнения застройки рекомендуется придерживаться определенной логический схемы. Рассматриваются варианты фундаментов, выбирается оптимальный, обеспечивающий выполнение условий. Производится проверка условия и в зависимости от того, выполняется оно или нет, анализируют ряд вариантов, обеспечивающих сохранность соседних домов и сооружений.

Вариант 1 — фундаменты на естественном основании под проектируемое здание. Производится расчет дополнительных осадок фундаментов соседнего здания в нескольких точках. Рекомендуется эти точки назначить на продольных примыкающих стенах на следующих расстояниях от линии примыкания: 0; 1; 2; 4; 8; 16; 24 м. По этим данным устанавливают определенные расчетом величины smlmax, (.и/, — sm/2) / L.

Если условие удовлетворено (что бывает редко, как правило, лишь тогда, когда проектируемое здание ниже, то есть легче соседнего), выполняют обычный проект фундаментов нового здания. Если условие не удовлетворено, ищут иное, более надежное, решение, используя под новое здание другие варианты фундаментов, применение которых может уменьшить влияние нового здания на существующее до приемлемых величин.

Вариант 2 — консольное примыкание;

Вариант 3 — разъединительные конструкции;

Вариант 4 — свайные фундаменты под новое здание;

Вариант 5 — усиление фундаментов соседних домов.

В итоге проектно-технологическое решение фундаментов здания определяется экономическими соображениями, технологическими возможностями подрядчика, допустимой продолжительностью строительства и другими факторами

 

Проектирование фундаментов вблизи существующих зданий

Проектирование фундаментов вблизи существующих зданий – это довольно сложный и ответственный процесс. При разработке проекта важно учесть все нюансы, чтобы новое здание выполняло все положенные функции, и было достаточно крепким и безопасным. Но также необходимо брать во внимание и основание строения, расположенного возле него – строительство и эксплуатация нового дома не должны оказывать негативного воздействия на существующее здание.

Учесть все тонкости может только профессионал. Заказать услуги такого специалиста по проектированию фундаментов можно через сайт YouDo. Для этого достаточно оформить заявку, которая расположена на этой странице. В ней следует не просто подробно описать услугу, но и предложить выгодную цену, чтобы максимально быстро найти опытного исполнителя.

Особенности создания проектов вблизи существующих строений

Профессионально выполнить проектирование необходимо по нескольким причинам:

  • Без него достаточно сложно ввести строение в эксплуатацию
  • Проект является основанием для получения разрешения на строительство вблизи существующего здания, особенно, если речь идет о многоэтажной застройке
  • Расчет необходим и для того чтобы снять вопросы, которые могут возникнуть в связи с возникновением деформаций уже существующих и только строящихся сооружений

Грамотно проведенное проектирование фундамента возле другого здания даст возможность значительно снизить деформации и уменьшить опасность преждевременного износа. Соответственно, эксплуатировать такие дома намного безопаснее.

При расчете проекта фундамента необходимо учитывать:

  • Вибрации, которые поступают от строения, которое находится вблизи
  • Особенности местности – рельеф, тип грунта и так далее
  • Глубину залегания грунтовых вод
  • Нагрузки на основание

Если учесть все описанные нюансы, можно получить максимально крепкое здание в результате строительства по разработанному проекту.

Что нужно знать, чтобы выполнить задание

Для разработки проектов фундаментов вблизи существующих зданий исполнителю могут потребоваться следующие данные:

  • Строительные нормы, которые регулируют процесс закладки фундамента
  • Пожелания заказчика – они, в частности, определят конфигурацию будущего здания
  • Исходные данные – предполагаемые материалы, нагрузки

В большинстве случаев исполнитель должен выехать на объект, чтобы провести все необходимые расчеты.

Цена работы: сколько стоит сделать проект

Заказать услуги по проектированию фундаментов можно через сайт YouDo. Основная особенность сервиса – возможность определить цену работы по своему усмотрению. Как мы уже говорили, строительство фундамента возле существующих зданий – это довольно сложная задача. Именно поэтому сделать работу недорого вряд ли получится. Однако на Юду можно вести переговоры о стоимости. Соответственно, она должна удовлетворить как заказчика, так и исполнителя.

Проектирование фундаментов вблизи существующих зданий — КиберПедия

Специфика проектов фундаментов, расположенных возле существующих зданий и сооружений, состоит в том, что они должны обеспечить нормальную работу конструкций нового здания и не приводить к развитию деформаций основания соседних. Разработка таких проектов, их реализация в производстве достаточно сложны и ответственны.

При разработке проектов фундаментов нового сооружения должна учитываться возможная осадка соседних зданий:

где s — дополнительная осадка, определяемая расчетом, например, методом угловых точек; saJsu— предельно допустимая величина дополнительной осадки.

К моменту возведения пристроев, здания старой постройки получили «собственную осадку», которая развивалась десятки лет. Средняя осадка домов Санкт-Петербурга, к примеру, достигает 20…30 см и больших величин, т. е. превышает допустимые, что приводит к развитию прогиба здания. Если такое здание получает дополнительную осадку уплотнения saJs, то это приводит к развитию выгиба, перекоса, конфигурация коробки существующего здания изменяется, а в кладке стен возникают трещины. Возможны сдвиги перекрытий, развитие других дефектов и даже обрушения конструкций. Вид деформации здания от дополнительной осадки существенно отличается от вида деформации, вызванной собственной осадкой. В этом случае использование при проектировании средней осадки, прогиба и др. — неправомерно. Изучение этого вопроса привело к необходимости введения критерия, характеризующего влияние suds, — допустимой дополнительной осадки, а именно:

— максимальной величины дополнительной осадки, которую, очевидно, получают участки стен старого здания, наиболее приближенные к новому;

— дополнительного перекоса нового здания на участке примыкания.

Допустимые величины перечисленных характеристик дополнительной осадки могут быть определены «совместным расчетом» старого здания с основанием, получающим дополнительную осадку (для этой цели можно использовать численные методы расчета). В относительно простых случаях рекомендуется использовать условия:

Значения предельно допустимых величин дополнительных осадок зданий различного типа, получивших разную степень износа до начала постройки соседнего (проектируемого) здания, могут быть определены по табл. 13.1, разработанной в СПбГАСУ на основе обобщения результатов натурных наблюдений за большим числом зданий, около которых были построены новые дома.

Обоснование проектного решения фундаментов нового здания, пристраиваемого к существующим, является важнейшим этапом разработки проекта. При этом особое значение имеет достоверность исходной информации (об инженерно-геологических условиях площадки, наземных конструкциях и габаритах здания, нагрузках по обрезу фундаментов и др.) и дополнительной — о местоположении соседних зданий и существующих коммуникаций, типах фундаментов этих зданий, сведениях о техническом состоянии фундаментов и других конструкций. Обычно на таких площадках предварительно выполняются обследования конструкций зданий, окружающих площадку, с фиксацией имеющихся старых дефектов.



Рис. 3. Схемы к определению перекоса и крена здания в результате развития дополнительной осадки уплотнения: а — перекос здания; б — крен узкого здания; в — наибольшая дополнительная осадка точки, наиболее приближенной к линии примыкания; г — форма осадочной воронки: I — существующее здание; 2 — возводимое здание; 3 — эпюра осадки здания 2; 4 — эпюра дополнительной осадки здания 2; 5 — изолинии осадки

Значения предельно допустимых величин дополнительных осадок сооружений и зданий различных типов и степени износа конструкций зданий

Таблица 1. Оценка технического состояния конструкций кирпичных, крупноблочных и крупнопанельных домов по результатам обследований с учетом развития повреждений и физического износа

Категории технического состояния Повреждения несущих стен, панелей, столбов, колонн, фундаментов Повреждения ограждающих конструкций Повреждения перекрытий, лестничных клеток Степень физического износа, %
I Отсутствие трещин или отдельные трещины в межоконных поясах, в перемычках кирпичных стен с раскрытием до 5 мм, фундаменты без видимых дефектов Отсутствие трещин или трещины с раскрытием до 0,5 мм В несущих элементах отсутствие повреждений До 20
II Трещины в межоконных поясах, перемычках, простенках с раскрытием до 0,5 мм, выщелачивание кладки фундаментов, поражение древесины гнилью Трещины с раскрытием до 3 мм Трещины в спряжениях несущих элементов, признаки сдвигов в заделке 20…40
III Сквозные трещины более 3 мм в простенках и перемычках, разрушение. вывалы кладки, разрушение раствора, камней кладки фундаментов, сгнившая древесина лежней, свай Трещины в несущих элементах, сдвиги элементов в заделке Трещины с раскрытием более 3 мм, перекосы проемов Более 40

При разработке проектов уплотнения застройки рекомендуется придерживаться определенной логический схемы. Рассматриваются варианты фундаментов, выбирается оптимальный, обеспечивающий выполнение условий. Производится проверка условия и в зависимости от того, выполняется оно или нет, анализируют ряд вариантов, обеспечивающих сохранность соседних домов и сооружений.



Вариант 1 — фундаменты на естественном основании под проектируемое здание. Производится расчет дополнительных осадок фундаментов соседнего здания в нескольких точках. Рекомендуется эти точки назначить на продольных примыкающих стенах на следующих расстояниях от линии примыкания: 0; 1; 2; 4; 8; 16; 24 м. По этим данным устанавливают определенные расчетом величины smlmax, (.и/, — sm/2) / L.

Если условие удовлетворено (что бывает редко, как правило, лишь тогда, когда проектируемое здание ниже, то есть легче соседнего), выполняют обычный проект фундаментов нового здания. Если условие не удовлетворено, ищут иное, более надежное, решение, используя под новое здание другие варианты фундаментов, применение которых может уменьшить влияние нового здания на существующее до приемлемых величин.

Вариант 2 — консольное примыкание;

Вариант 3 — разъединительные конструкции;

Вариант 4 — свайные фундаменты под новое здание;

Вариант 5 — усиление фундаментов соседних домов.

В итоге проектно-технологическое решение фундаментов здания определяется экономическими соображениями, технологическими возможностями подрядчика, допустимой продолжительностью строительства и другими факторами.

About Author


admin

Отправить ответ

avatar
  Подписаться  
Уведомление о