Аэродинамический коэффициент ветровой нагрузки – Схемы ветровых нагрузок и аэродинамические коэффициенты с нагрузки и воздействия- строительные нормы и правила- СНиП 2-01-07-85 (утв- постановлением Госстроя СССР от 08-07-88 132) (2020). Актуально в 2019 году

Схемы ветровых нагрузок и аэродинамические коэффициенты с

14

Сооружения и их элементы с круговой цилиндрической поверхностью (резервуары, градирни, башни, дымовые трубы), провода и тросы, а также круглые трубчатые и сплошные элементы сквозных сооружений

где - определяется по табл.1 схемы 13;

- определяется по графику:

Для проводов и тросов (в том числе и покрытых гололедом)

1. следует определять по формуле к схеме 12а, принимая,- диаметр сооружения.

Значения принимаются: для деревянных конструкций=0,005 м; для кирпичной кладки=0,01 м; для бетонных и железобетонных конструкций=0,005 м; для стальных конструкций=0,001 м; для проводов и тросов диаметром

; для ребристых поверхностей с ребрами высотой.

2. Для волнистых покрытий

=0,04.

3. Для проводов и тросов 20 мм, свободных от гололеда, значениедопускается снижать на 10%

Схемы ветровых нагрузок и аэродинамические коэффициенты с

I

II

III

IV

10

20

30

10

20

30

10

20

30

10

20

30

+0,5

+1,1

+2,1

0

+1,5

+2

+1,4

+1,8

+2,2

+1,3

+1,4

+1,6

–1,3

0

+0,9

–1,1

+0,5

+0,8

+0,4

+0,5

+0,6

+0,2

+0,3

+0,4

–1,1

0

+0,6

–1,5

0

+0,4

0

–0,4

0

0

0

+0,4

1. Коэффициенты се1, се2, се3, се4 следует относить к сумме давлений на верхнюю и нижнюю поверхности навесов.

Для отрицательных значений се1, се2, се3, се4 направление давления на схемах следует изменять на противоположное

2. Для навесов с волнистыми покрытиями

ct = 0,04

Ветровая нагрузка | Все о ремонте и строительстве

При боковом давлении ветра воздушный поток сталкивается со стеной и крышей здания (рис. 8). У стены дома происходит завихрение потока, часть его уходит вниз к фундаменту, другая по касательной к стене ударяет в карнизный свес крыши. Ветровой поток, атакующий скат крыши, огибает по касательной конек кровли, захватывает спокойные молекулы воздуха с подветренной стороны и устремляется прочь. Таким образом, на крыше возникают сразу три силы, способные сорвать ее и опрокинуть — две касательные с наветренной стороны и подъемная сила, образующаяся от разности давлений воздуха, с подветренной стороны. Еще одна сила, возникающая от давления ветра, действует перпендикулярно склону (нормаль) и старается вдавить скат крыши внутрь и сломать его. В зависимости от крутизны скатов нормальные и касательные силы изменяют свое значение. Чем больше угол наклона ската кровли, тем большее значение принимают нормальные силы и меньшее касательные, и наоборот, на пологих крышах большее значения принимают касательные, увеличивая подъемную силу с подветренной и уменьшая нормальную с наветренной стороны.

рис. 8. Ветровые нагрузки, возникающие от давления воздушных масс

Нормативное значение средней составляющей ветровой нагрузки Wн в зависимости от высоты z над поверхностью земли следует определять по формуле:

Wн = W0×kz×c

Расчетное значение ветровой нагрузки Wр (для расчета по первому предельному состоянию) находится формулой:

Wр = γf ×W0×kz×c,

где γf — коэффициент надежности γf = 1,4; W0 — нормативное значение ветрового давления, определяется по картам приложения к СП 20.13330.2016 «Нагрузки и воздействия» или по рис. 9 и таблице 2; kz — коэффициент, учитывающий изменение ветрового давления для высоты z, определяется по таблице 3; c — аэродинамический коэффициент (переводит вертикальную нагрузку в горизонтальную), учитывающий изменение направления давления нормальных сил в зависимости от того с какой стороны находится скат по отношению к ветру, с подветренной или наветренной стороны (рис 10).

таблица 2

Ветровые районы
Ia
IIIIIIIVVVIVII
Нор­ма­тив­ное дав­ле­ние ве­тра на 1 м² ве­рти­ка­аль­ной по­верх­но­сти
W0, кПа (кг/м²)0,17 (17)0,23 (23)0,30 (31)0,38 (39)0,48 (49)0,60 (61)0,73 (74)0,85 (87)
Рас­чет­ное дав­ле­ние ве­тра на 1 м² ве­рти­ка­аль­ной по­верх­но­сти
1,4×W0, кПа (кг/м²)0,24 (24)0,32 (33)0,42 (43)0,53 (54)0,67 (68)0,84 (86)1,02 (104)1,19 (121)
рис. 9. Районирование территории Российской Федерации по расчетному значению давления ветра

таблица 3

Ко­эф­фи­ци­ент k(z) для ти­пов мест­но­сти
Вы­со­та z, мАБВ
не более 50,750,50,4
101,00,650,4
201,250,850,55
Ти­пы мест­но­сти:
А – от­кры­тые по­бе­ре­жья мо­рей, озер и во­до­хра­ни­лищ, пу­сты­ни, сте­пи, ле­со­сте­пи, тунд­ра;
Б – го­род­ские тер­ри­то­рии, лес­ные мас­си­вы и дру­гие мест­но­сти, рав­но­мер­но по­кры­тые пре­пят­стви­я­ми вы­со­той бо­лее 10 м;
В – го­род­ские рай­о­ны с плот­ной за­строй­кой зда­ни­я­ми вы­со­той бо­лее 25 м

Со­ору­же­ние счи­та­ет­ся рас­по­ло­жен­ным в мест­нос­ти дан­но­го ти­па, если эта мест­ность со­хра­ня­ет­ся с на­вет­рен­ной сто­ро­ны со­ору­же­ния на рас­сто­я­нии 30h — при вы­со­те со­ору­же­ния h < 60 м и на рас­сто­я­нии 2 км — при h > 60 м.

 

рис. 10. Значения аэродинамических коэффициентов ветровой нагрузки

Знак «плюс» у аэродинамических коэффициентов определяет направление давления ветра на соответствующую поверхность (активное давление), знак «минус» — от поверхности (отсос). Промежуточные значения нагрузок следует находить линейной интерполяцией. При затруднении в использовании таблиц 3 и 4 изображенных на рисунке 10, нужно выбирать наибольшие значения коэффициентов для соответствующих углов наклона скатов крыш.

Крутые крыши ветер старается опрокинуть, а пологие — сорвать и унести. Для того чтобы этого не произошло нижний конец стропильных ног крепят проволочной скруткой к ершу, забитому в стену (рис. 11). Ерш — это металлический штырь с насечкой против выдергивания, который изготавливают кузнечным способом. Поскольку достоверно неизвестно с какой стороны будет дуть сильный ветер, стропила прикручивают по всему периметру здания через одно, начиная с крайних, — в районах с умеренными ветрами и каждое — в районах с сильными ветрами. В некоторых случаях этот узел может быть упрощен: ерш не устанавливается, а проволока с выпущенными концами закладывается в кладку стен в период их возведения. Такое решение допустимо, если оба конца проволоки выпускается внутрь чердака и не портят внешний вид фасада здания. Обычно для крепления стропил используется стальная предварительно отожженная (мягкая) проволока диаметром от 4 до 8 мм.

рис. 11. Пример решения карнизного узла наслонных стропил скатной крыши

Общая устойчивость стропильной системы обеспечивается раскосами, подкосами и диагональными связями (рис. 12). Устройство обрешетки также способствует общей устойчивости стропильной системы.

рис. 12. Пример обеспечения пространственной жесткости стропильной системы

 

Аэродинамические коэффициенты

Д.1 Аэродинамические коэффициенты

Д.1.1 Отдельностоящие плоские сплошные конструкции

Отдельностоящие плоские сплошные конструкции на земле (стенызаборы и т.д.)

Для различных участков конструкций (рисунок Д.1) коэффициент сх определяется по таблице Д.1;

ze = h.

Рисунок Д.1

Таблица Д.1

Участки плоских сплошных конструкций на земле (см. рисунок Д.1)

А

В

С

D

2,1

1,8

1,4

1,2

Рекламные щиты

Для рекламных щитов, поднятых над землей на высоту не менее d/4 (рисунок Д.2): сх = 2,5kl, где kl - определено в Д.1.15.

1

Рисунок Д.2

Равнодействующую нагрузку, направленную по нормали к плоскости щита, следует прикладывать на высоте его геометрического центра с эксцентриситетом в горизонтальном направлении е = ± 0,25b.

ze = zg + d/2.

Д.1.2 Прямоугольные в плане здания с двускатными покрытиями

Вертикальные стены прямоугольных в плане зданий

Таблица Д.2

Боковые стены

Наветренная стена

Подветренная стена

Участки

А

В

С

D

Е

-1,0

-0,8

-0,5

0,8

-0,5

Для наветренных, подветренных и различных участков боковых стен (рисунок Д.3) аэродинамические коэффициенты се приведены в таблице Д.2.

Для боковых стен с выступающими лоджиями аэродинамический коэффициент трения сf = 0,1.

1

Рисунок Д.3

Двускатные покрытия

Для различных участков покрытия (рисунок Д.4) коэффициент се определяется по таблицам Д.3, а и Д.3, б в зависимости от направления средней скорости ветра.

Для углов 15° £ b £ 30° при a = 0° необходимо рассмотреть два варианта распределения расчетной ветровой нагрузки.

Для протяженных гладких покрытий при a = 90° (рисунок Д.4, б) аэродинамические коэффициенты трения сf = 0,02.

1

Рисунок Д.4

Таблица Д.3а

  1. a

Уклон b

F

G

Н

I

J

15°

-0,9

-0,8

-0,3

-0,4

-1,0

0,2

0,2

0,2

30°

-0,5

-0,5

-0,2

-0,4

-0,5

0,7

0,7

0,4

45°

0,7

0,7

0,6

-0,2

-0,3

60°

0,7

0,7

0,7

-0,2

-0,3

75°

0,8

0,8

0,8

-0,2

-0,3

Таблица Д.3б

  1. a

Уклон b

F

С

Н

I

-1,8

-1,3

-0,7

-0,5

15°

-1,3

-1,3

-0,6

-0,5

30°

-1,1

-1,4

-0,8

-0,5

45°

-1,1

-1,4

-0,9

-0,5

60°

-1,1

-1,2

-0,8

-0,5

75°

-1,1

-1,2

-0,8

-0,5

Д.1.3 Прямоугольные в плане здания со сводчатыми и близкими к ним по очертанию покрытиями

1

Рисунок Д.5

Примечание - При 0,2 £ f/d £ 0,3 и hl/l ³ 0,5 необходимо учитывать два значения коэффициента се1.

Распределение аэродинамических коэффициентов по поверхности покрытия приведено на рисунке Д.5.

Аэродинамические коэффициенты для стен принимаются в соответствии с таблицей Д.2.

При определении эквивалентной высоты (11.1.5) и коэффициента v в соответствии с 11.1.1h = h1 + 0,7f.

Д.1.4 Круглые в плане здания с купольными покрытиями

Значения коэффициентов се в точках А и Са также в сечении ВВ приведены на рисунке Д.6. Для промежуточных сечений коэффициенты се определяются линейной интерполяцией.

При определении эквивалентной высоты (11.1.5) и коэффициента v в соответствии с 11.1.1h = h1 + 0,7f.

1

Рисунок Д.6

Д.1.5 Здания с продольными фонарями

1

Рисунок Д.7

Для участков А и В (рисунок Д.7) коэффициенты се следует определять в соответствии с таблицами Д.3а и Д.3б.

Для фонарей участка С при l £ 2 сх = 0,2; при 2 £ l £ 8 для каждого фонаря сх = 0,1l; при l > 8 сх = 0,8, здесь l = a/hf.

Для остальных участков покрытия се = -0,5.

Для вертикальных поверхностей и стен зданий коэффициенты се следует определять в соответствии с таблицей Д.2.

При определении эквивалентной высоты zе (11.1.5) и коэффициента v (11.1.1h = h1.

Д.1.6 Здания с зенитными фонарями

1

Рисунок Д.8

Для наветренного фонаря коэффициент се следует определять в соответствии с таблицами Д.3а и Д.3б.

Для остальных фонарей коэффициенты сх определяются так же, как и для участка С (раздел Д.1.5).

Для остальной части покрытия се = -0,5.

Для вертикальных поверхностей и стен зданий коэффициенты се следует определять в соответствии с таблицей Д.2.

При определении эквивалентной высоты ze (11.1.5) и коэффициента v (11.1.1h = h1.

Д.1.7 Здания с шедовыми покрытиями

1

Рисунок Д.9

Для участка А коэффициент се следует определять в соответствии с таблицами Д.3, а и Д.3б.

Для остальной части покрытия се = -0,5.

Для вертикальных поверхностей и стен зданий коэффициенты се следует определять в соответствии с таблицей Д.2.

При определении эквивалентной высоты ze (11.1.5) и коэффициента v (11.1.1h = h1.

Д.1.8 Здания с уступами

1

Рисунок Д.10

Для участка С коэффициент се = 0,8.

Для участка А коэффициент се следует принимать в соответствии с таблицей Д.2.

Для участка В коэффициент се следует определять линейной интерполяцией.

Для остальных вертикальных поверхностей коэффициент се необходимо определять в соответствии с таблицей Д.2.

Для покрытия зданий коэффициенты се определяются в соответствии с таблицами Д.3а и Д.3б.

Д.1.9 Здания, постоянно открытые с одной стороны

1

Рисунок Д.11

При проницаемости ограждения m £ 5 % сi1 = ci2 = ± 0,2. Для каждой стены здания знак «плюс» или «минус» следует выбирать из условия реализации наиболее неблагоприятного варианта нагружения.

При m ≥ 30 % сi1 = -0,5; ci2 = 0,8.

Коэффициент се на внешней поверхности следует принимать в соответствии с таблицей Д.2.

Примечание - Проницаемость ограждения m следует определять как отношение суммарной площади имеющихся в нем проемов к полной площади ограждения.

Д.1.10 Навесы

Аэродинамические коэффициенты се для четырех типов навесов (рисунок Д.12) без сплошностенчатых вертикальных ограждающих конструкций определяются по таблице Д.4.

1

Рисунок Д.12

Таблица Д.4

Тип схемы

a, град

Значения коэффициентов

ce1

ce2

ce3

ce4

I

10

0,5

-1,3

-1,1

0

20

1,1

0

0

-0,4

30

2,1

0,9

0,6

0

II

10

0

-1,1

-1,5

0

20

1,5

0,5

0

0

30

2

0,8

0,4

0,4

III

10

1,4

0,4

-

-

20

1,8

0,5

-

-

30

2,2

0,6

-

-

IV

10

1,3

0,2

-

-

20

1,4

0,3

-

-

30

1,6

0,4

-

-

Примечания

1 Коэффициенты се1се2се3се4 соответствуют суммарному давлению на верхнюю и нижнюю поверхности навесов.

2 Для отрицательных значений се1се2се3се4 направление давления на схемах следует изменять на противоположное.

3 Для навесов с волнистыми покрытиями аэродинамический коэффициент трения cf = 0,04.

Д.1.11 Сфера

1

Рисунок Д.13

Аэродинамические коэффициенты лобового сопротивления сх сферы при zg > d/2 (рисунок Д.13) приведены на рисунке Д.14 в зависимости от числа Рейнольдса Re и относительной шероховатости d = D/d, где D, м, - шероховатость поверхности (см. Д.1.15). При zg < d/2 коэффициент сх следует увеличить в 1,6 раза.

Коэффициент подъемной силы сферы сz принимается равным:

при zg > d/2 - cz = 0;

при zg < d/2 - сz = 0,6.

Опечатка

Эквивалентная высота (11.1.5ze = zg + d/2.

При определении коэффициента v в соответствии с 11.1.11 следует принимать

b = h = 0,7d.

Число Рейнольдса Re определяется по формуле

1

где d, м, - диаметр сферы;

w0, Па, - определяется в соответствии с 11.1.4;

ze, м, - эквивалентная высота;

k(ze) - определяется в соответствии с 11.1.6;

  1. gf

1

Рисунок Д.14

Д.1.12 Сооружения и конструктивные элементы с круговой цилиндрической поверхностью

Аэродинамический коэффициент се1 внешнего давления определяется по формуле

ce1 = kl1cb,

где kl1 = 1 при сb > 0; для сb < 0 - kl1 = kl, определено в Д.1.15.

Распределение коэффициентов сb по поверхности цилиндра при d = D/d < 5×10-4 (см. Д.1.16) приведено на рисунке Д.16 для различных чисел Рейнольдса Re. Значение указанных на этом рисунке углов bmin и bb, а также соответствующее им значение коэффициентов сmin и сb приведены в таблице Д.5.

Значения аэродинамических коэффициентов давления се2 и сi (рисунок Д.14) приведены в таблице Д.6. Коэффициент сi следует учитывать для опущенного покрытия («плавающая кровля»), а также при отсутствии покрытия.

Аэродинамические коэффициенты лобового сопротивления определяются по формуле

cX = klcx¥,

где kl - определено в Д.1 в зависимости от относительного удлинения сооружения (см. Д.1.15). Значения коэффициентов cx¥ приведены на рисунке Д.17 в зависимости от числа Рейнольдса Re и относительной шероховатости D = d/d (см. Д.1.16).

1

Рисунок Д.15

1

Рисунок Д.16

Таблица Д.5

Re

bmin

cmin

bb

cb

5×105

85

-2,2

135

-0,4

2×106

80

-1,9

120

-0,7

107

75

-1,5

105

-0,8

Таблица Д.6

h/d

1/6

1/4

1/2

1

2

³ 5

ce2ci

-0,5

-0,55

-0,7

-0,8

-0,9

-1,05

1

Рисунок Д.17

Для проводов и тросов (в том числе покрытых гололедом) сх = 1,2.

Аэродинамические коэффициенты наклонных элементов (рисунок Д.18) определяются по формуле

схb = cхsin2bsin2q.

где сх - определяется в соответствии с данными рисунка Д.17;

ось х параллельна скорости ветра V;

ось z направлена вертикально вверх;

  1. bXYи осью х;
  2. qz.

1

Рисунок Д.18

При определении коэффициента v в соответствии с 11.1.1:

b = 0,7dh = h1 + 0,7f.

Число Рейнольдса Re определяется по формуле, приведенной в Д.1.11, где zе = 0,8h для вертикально расположенных сооружений;

ze равно расстоянию от поверхности земли до оси горизонтально расположенного сооружения.

Д.1.13 Призматические сооружения

Опечатка

Аэродинамические коэффициенты лобового сопротивления призматических сооружений определяются по формуле

cX = klcX¥,

где kl определено в Д.1.15 в зависимости от относительного удлинения сооружения lе.

Значения коэффициента cX¥ для прямоугольных сечений приведены на рисунке Д.19, а для n-угольных сечений и конструктивных элементов (профилей) - в таблице Д.7.

Таблица Д.7

Эскизы сечений и направлений ветра

b, град.

п (число сторон)

cx¥ при Re > 4×105

Правильный многоугольник

1

Произвольный

5

1,8

6 - 8

1,5

10

1,2

12

1,0

1

Рисунок Д.19

Д.1.14 Решетчатые конструкции

Аэродинамические коэффициенты решетчатых конструкций отнесены к площади граней пространственных ферм или площади контура плоских ферм.

Направление оси х для плоских ферм совпадает с направлением ветра и перпендикулярно плоскости конструкции; для пространственных ферм расчетные направления ветра показаны в таблице Д.8.

Аэродинамические коэффициенты сх отдельностоящих плоских решетчатых конструкций определяются по формуле

1

где cxi - аэродинамический коэффициент i-го элемента конструкций, определяемый в соответствии с указаниями Д.1.13 для профилей и Д.1.12, в для трубчатых элементов; при этом kl = 1;

Ai - площадь проекции i-го элемента конструкции;

Аk - площадь, ограниченная контуром конструкции.

1

Рисунок Д.20

Ряд плоских параллельно расположенных решетчатых конструкций

1

Рисунок Д.21

About Author


alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *