Что такое расходомер в системе отопления: Принцип работы коллектора с расходомерами для теплого пола – Что такое расходомер в системе отопления — Про стройку и не только

Содержание

Расходомер теплоносителя в автономной системе отопления — StopTest.ru

В данной статье я буду рассматривать все процессы применительно к автономной системе отопления частного дома с автоматическим газовым котлом и приведу пример конструкции расходомера на базе бытового недорогого счетчика воды.

Расход теплоносителя (в моем случае воды) в системе отопления является одним из главных параметров, который влияет на поддержание заданного микроклимата в помещении при любых погодных условиях и наряду с другими параметрами определяет качество функционирования системы отопления в целом.  Расход теплоносителя показывает какой его объем  прошел через систему отопления за определенное время.  Так как система отопления может быть разветвленной — например на первом и втором этажах дома может быть два независимых контура отопления — то расход теплоносителя мы будем рассматривать применительно к отопительному котлу.  Необходимый номинальный расход теплоносителя рассчитывается  на этапе проектирования системы отопления и в процессе ее эксплуатации должен оставаться неизменным. О методах расчета необходимого расхода теплоносителя я расскажу в отдельной статье, в которой будет приведен пример расчета простой системы отопления небольшого частного дома.

Возможно некоторым читателям более понятным будет термин скорость циркуляции теплоносителя или скорость потока теплоносителя в трубах, но скорость циркуляции в отличии от расхода зависит от сечения трубы и на разных участках системы отопления будет разной. Поэтому удобнее пользоваться таким понятием как расход.

Причины по которым расход теплоносителя может уменьшаться:

  • отложение накипи внутри теплообменника котла или засорение труб системы отопления, в результате чего увеличивается сопротивление потоку теплоносителя, а значит уменьшается его скорость и, как следствие, объем, прошедший через котел за определенное время, то есть расход;
  • засорение фильтров в системе отопления;
  • уменьшение производительности циркуляционного насоса из-за всевозможных неисправностей.

Признаки уменьшения расхода теплоносителя в действующей системе отопления:

  • котел начал часто включаться и выключаться;
  • теплоотдача в системе отопления уменьшилась, батареи прогреваются не полностью даже при установке максимальной температуры отопления на котле, как следствие  температура в помещении может быть занижена;

Но указанные признаки могут иметь и другие причины, поэтому было бы неплохо контролировать уровень расхода теплоносителя в своей системе отопления. В таком случае необходим расходомер.

Расходомер на базе бытового счетчика воды.

В моей системе отопления в качестве теплоносителя используется вода. Для контроля расхода теплоносителя я использовал обычный бытовой счетчик воды, который установил на входе теплоносителя в котел (на обратке).  При этом счетчик выступал в качестве индикатора, по которому было видно есть ли циркуляция в системе и примерно оценить ее скорость по вращению счетного механизма счетчика. Чтобы узнать расход необходимо было отсчитать по секундомеру определенное время и зафиксировать показания счетчика в начале и конце отрезка этого времени. Конечно это не удобно. Тогда я и задался целью встроить в счетчик дисплей и микроконтроллер, который бы сам считал расход. Таким образом и родилось описываемое ниже устройство.

Счетчик воды со снятым счетным механизмом

Принцип работы счетчика воды очень прост. В нижней герметичной части счетчика расположена крыльчатка, которая вращается за счет потока воды, протекающей через счетчик. На крыльчатке установлены магниты. Счетный механизм крепится сверху на герметичную часть и тоже имеет на одной из шестеренок магнит. Таким образом с помощью магнитного сцепления осуществляется передача вращения крыльчатки на счетный механизм.

Если расположить датчик Холла в месте  расположения вращающихся магнитов (в основании счетного механизма) мы получим электрические импульсы, которые уже можно  подсчитать микроконтроллером  и вывести на дисплей.  Вот и вся идея. Дальше, как говорится, дело техники.

Датчик Холла, закрепленный в основании счетного механизма счетчика

В качестве дисплея был выбран светодиодный семисегментный двухразрядный индикатор.  Расход теплоносителя было решено измерять в литрах в минуту. Объясню почему именно такая размерность. Я не буду вдаваться в теорию, но ориентировочно расход в литрах в минуту должен быть примерно равен мощности в кВт, отдаваемой котлом на нагрев воды. Например, если ваш котел отдает мощность 10 кВт, то расход теплоносителя должен составлять 10 литров в минуту, при этом разница температур на входе и выходе котла составит 15°С. Таким образом двух разрядов индикатора вполне хватит, что бы отображать расход воды от 1 л/мин и выше. Но, следует отметить, что если необходимо измерять расход теплоносителя больше 20 л/мин, то необходимо использовать счетчики с большим диаметром условного прохода, Ду-20 и выше. В моем опытном устройстве используется счетчик Ду-15.

В качестве устройства для вывода значений расхода теплоносителя на дисплей и подсчета импульсов с датчика Холла  была выбрана плата Arduino nano V3. Данная плата содержит микроконтроллер со всей необходимой обвязкой и возможностью быстрого программирования, что очень удобно. Производительности данного микроконтроллера и платформы Arduino  для реализации нужного нам алгоритма более чем достаточно. 

Для установки всех электронных компонентов расходомера теплоносителя была разработана печатная плата с размерами, позволяющими закрепить ее в корпусе счетного механизма счетчика. Плата была разведена в программе Sprint Layout 5.0.  Ниже на фото показана плата с установленными компонентами.  Часть компонентов схемы установлено со стороны печатных проводников с обратной стороны платы. Сама плата закреплена на основании счетного механизма. Рядом  для сравнения показан счетный механизм счетчика воды без корпуса.

На следующем фото показана обратная сторона платы и проводные соединения с датчиком Холла, который установлен на основании счетного механизма рядом с пластиковой шестеренкой. Как раз внизу данной шестеренки закреплен магнит, который и воздействует на датчик Холла.

Ну и дальше на фото сам расходомер теплоносителя в работе.

 

Ниже представлена принципиальная электрическая схема  расходомера теплоносителя. Модуль А1 это плата Arduino nano. 

Выше по тексту я упоминал датчик Холла. На схеме он обозначен как HS1. На самом деле это не «чистый» датчик Холла, а целая микросхема, которая имеет в своем составе датчик Холла, усилитель сигнала датчика, триггер  Шмидта, выходной каскад с открытым коллектором и другие вспомогательные элементы. Благодаря всей этой схеме мы имеем на выходе микросхемы сигнал с двумя устойчивыми состояниями — 0 или 1.  Микроконтроллер на плате Arduino nano запрограммирован таким образом, что считает переходы из низкого состояния сигнала в высокое (из нуля в единицу).  

Для отображения чисел на двухразрядном семисегментном индикаторе используется режим динамической индикации. Для этого все сегменты двух индикаторов соединены параллельно, а выбор разряда осуществляется путем подачи на соответствующий вывод (D1 или D2) индикатора логической единицы (индикатор с общим анодом). Разряды засвечиваются поочередно с частотой, превышающей инерционность зрения человека. В результате мы видим цифры на обеих разрядах индикатора без мерцания.

Диод VD1 защищает устройство от переполюсовки питания. Я установил диод Шоттки для уменьшения потерь напряжения, но это не принципиально.  Конденсаторы C1 и C2 улучшают устойчивость работы встроенного стабилизатора напряжения на плате Arduino nano и уменьшают наводки по питанию. Резисторы R1-R7 ограничивают статический ток сегментов индикатора на уровне примерно 5 мА. Так как у нас используется динамическая индикация, то средний ток сегмента будет меньше 5 мА. Данный индикатор очень яркий и хорошо светится даже при токах менее 5 мА.

Схема электрическая принципиальная расходомера теплоносителя автономной системы отопления

 

Для реализации нужного нам алгоритма работы расходомера был написан скетч в среде Arduino IDE.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

/* Arduino NANO V3, Atmega 328P,  robotdyn.com

Измеритель расхода теплоносителя в автономной системе отопления, 10.12.2017

***************************************************************************/

#include <MsTimer2.h>   //библиотека для управления аппаратным прерыванием от Таймера 2 микроконтроллера//

#include <Led4Digits.h> //библиотека для управления семисегментными индикаторами http://mypractic.ru/

 

Led4Digits disp(1, 6,7,255,255, 4,11,10,8,9,3,5,255); //конфигурируем подключение индикатора

                                                      

volatile int pulses = 0;  //определяем переменную для подсчета импульсов с датчика Холла

int count = 0;            //определяем переменную для подсчета аппаратных прерываний

 

void setup() {

  pinMode(LED_BUILTIN, OUTPUT);          //конфигурируем вывод LED_BUILTIN как выход

  attachInterrupt(0, flowmeter, RISING); //внешнее прерывание на выводе 2 по нарастанию фронта

  MsTimer2::set(10, timerInterrupt);     //задаем аппаратное прерывание каждые 10 мс  

  MsTimer2::start();                     //запускаем аппаратные прерывания

}

void loop() {

}

void flowmeter() {

  pulses++;                      //считаем кол-во импульсов с датчика Холла

}

void  timerInterrupt() {         //функция выполняется при возникновении аппаратного прерывания

  digitalWrite(LED_BUILTIN,0);   //гасим встроенный светодиод

  disp.regen();                  //регенерация индикатора (переключение разрядов)

  count++;                       //подсчитываем кол-во аппаратных прерываний

  if (count>=100) {              //проверяем когда закончится период в одну секунду

    disp.print(pulses, 2, 1);    //каждую секунду отображаем значение расхода

    pulses = 0;                  //после отображения сбрасываем кол-во подсчитанных импульсов

    count=0;                     //сбрасываем счетчик кол-ва аппаратных прерываний

    digitalWrite(LED_BUILTIN,1); //зажигаем встроенный светодиод

  }

}

Сам скетч подробно закомментирован,  я остановлюсь лишь на основных моментах программы.

Для подсчета импульсов с датчика Холла используется режим внешнего прерывания по входу D2 платы Arduino. Программа считает фронты нарастания импульсов, поступающих с датчика Холла. Опытным путем было установлено, что при прохождении через счетчик одного литра воды крыльчатка счетчика делает 30 оборотов. За один оборот крыльчатки с датчика Холла поступает 2 импульса напряжения (на крыльчатке расположено два магнита), то-есть на программном счетчике Arduino мы получим 2 за один оборот.  Далее изменение логического состояния на выходе датчика Холла с 0 на 1 будем называть импульсом.  Если умножить 2 на 30 мы получим количество импульсов при прохождении через счетчик одного литра воды (теплоносителя).  То есть 60 импульсов будут соответствовать 1 литру воды. Таким образом расход теплоносителя через счетчик будет определяться следующей формулой:

G=(Ni/60)*60,

где G — расход теплоносителя в литрах в минуту;   Ni — количество импульсов за одну секунду.

Можно сказать, что нам крупно повезло — расход теплоносителя численно равен количеству импульсов датчика Холла за одну секунду. Это очень упрощает программный код. Переменная pulses, в которой хранится количество импульсов датчика Холла за одну секунду, выводится на дисплей без всяких пересчетов и всегда имеет целочисленное значение.

Для вывода значений расхода на семисегментный индикатор используется готовая библиотека Led4Digits, которую я взял здесь. В этом же источнике можно узнать более подробно как работать с данной библиотекой.  Для отображения числа на двух разрядах индикатора используется режим динамической индикации. Программно это реализовано через аппаратное прерывание с помощью библиотеки  

MsTimer2.  Обработчик прерывания вызывается каждые 10 мс и переключает разряды дисплея. В этом же обработчике каждую секунду происходит  обновление и вывод значения расхода теплоносителя на дисплей.

Расходомер запитан от внешнего нестабилизированного источника  напряжением 9 вольт (от старого мобильного телефона). Максимальный потребляемый  расходомером ток составляет не более 50 мА.

Файлы для скачивания:

Поделиться ссылкой:

как работает коллектор с расходомерами, фото и видео

Содержание:

Создание системы обогрева дома – это сложная задача, при решении которой возникает множество проблем. Одна из таких проблем может возникнуть в том случае, если вы подключаете к разводящим коллекторам на этажах несколько обогревательных колец.

коллектор с расходомерами для теплого пола

В идеале каждое кольцо должно быть одинаковым по своей длине, чтобы расход теплоносителя в обогревательных контурах, подключённых к одной коллекторной группе, был одинаков. Добиться этого бывает проблематично, поэтому в данной статье мы подробно поговорим о данной проблеме, а также приведём несколько способов её решения.

Возникновение проблемы

Прежде всего, стоит разобрать конкретный пример возникновения такой проблемы и её следствия:

  1. Вы монтируете контуры тёплого пола в ванной, гостиной и кухне;
  2. Они подключаются к одному коллектору;
  3. Площадь ванны, кухни и гостиной явно различается, поэтому и длина контура тёплого пола будет различаться в каждой комнате, соответственно расход теплоносителя (воды) будет разным.

Стоит сказать о том, к чему это приведёт. Короткие обогревательные кольца имеют меньшее гидравлическое сопротивление, поэтому вода в них циркулирует значительно быстрее, чем в длинных контурах, от чего возникает разница температур в комнатах при одинаковой температуре подаваемого из коллектора теплоносителя.

расходомер теплого пола как работает

Примером решения проблемы, на котором мы разберём принцип исправления, послужит простой настенный радиатор. Если подключить к одному коллектору разные по количеству секций и длине труб радиаторы, то возникнет вышеописанная проблема (прочитайте: "Схема коллектора теплого пола – как всё должно работать").

Проблема с радиаторами легко решаема, ведь в инструкции сказано, что, установив на каждую батарею терморегулятор, вы сможете управлять количественным расходом. Обычно терморегулятор – это обычный вентиль. Подобно проблема решается и с системой тёплого пола.

Решение проблемы с контурами теплого пола

Подключая контуры напольного обогрева к одной коллекторной группе, вы можете сбалансировать их двумя способами:

  1. Первый способ предполагает собой создание ровных колец, однако укладывать их можно несколько штук в одну комнату, например, в ванную вы можете положить одно отопительное кольцо, в гостиную три, а в кухню два. Таким образом, нагрев всех колец будет одинаковым.
  2. Если вы не хотите создавать несколько колец в одной комнате, то для вас также есть решение. Отопительные контуры могут быть разной длины, однако их стоит подключать через специальное устройство – расходомер для теплого пола. Расходомер или ротаметр – это совокупность балансировочных кранов, ограничивающих количество выпускаемого в систему теплоносителя. Пример ротаметра вы можете увидеть на фото.

Оптимальная конструкция коллекторной группы

Оптимальной конструкцией считается такая коллекторная группа, в которой подающий коллектор оснащается ротаметром, а на обратный коллектор ставиться терморегулятор. Такая система позволит направлять в каждый контур необходимое количество теплоносителя, а обратный коллектор такой системы будет открывать и закрывать контуры по мере охлаждения воды.

Также стоит заметить, что систему можно усовершенствовать автоматическим воздухоотводчиком, который устанавливается на подающий коллектор, в свою очередь, его стоит подключить к байпасу с перепускным клапаном.

Работать это будет следующим образом:

  1. Воздухоотводчики будут удалять воздух из системы, который мешает её нормальной работе;
  2. Если на улице потеплеет, терморегуляторы перекроют контуры, а перепускной клапан снизит повысившееся давление внутри системы.

коллектор для теплого водяного пола с расходомерами

Говоря о том, как работает расходомер тёплого пола, стоит сделать поправку: ротаметры бывают трёх видов:

  • Измеряющий ротаметр ставиться вместе с вентилем, который регулируется самостоятельно, в зависимости от измеренных показаний;
  • Регулирующий ротаметр управляет количеством поступающего теплоносителя;
  • Третий вид совмещает в себе два предыдущий, однако также он отличается повышенной ценой.

Балансировка отопительного контура

Чтобы правильно сбалансировать количество подаваемого теплоносителя в контуры, следуйте инструкции:

  1. Высчитайте общее количество теплоносителя в литрах, которое проходит через коллектор с расходомерами для теплого пола за 1 минуту. Полученный результат возьмите за 100%.
  2. Далее определите в процентах расход каждого отопительного кольца и переведите их в литры/мин.
  3. Далее отрегулируйте краном на ротаметре подаваемое количество теплоносителя.
  4. Этими действиями вы выполните предположительную балансировку отопительного контура, поэтому чтобы выставить фактические значения, следите за показателями ротаметра, исходя из которых можно сделать подсчёт расходов подключённых к коллектору контуров.

Качественный расходомер

В магазине вы можете столкнуться широким выбором различных ротаметров, поэтому, чтобы выбрать качественный экземпляр, вы можете подбирать его по нижеперечисленным характеристикам:

  1. Расходомер должен обладать качественным корпусом без сколов и выступов. Материал корпуса – латунь, однако сверху его покрывают никелем.
  2. Внутренняя пружина ротаметра должна быть выполнена из нержавеющей стали.
  3. Поликарбонат – пример идеального материала для прозрачной колбы расходомера, ведь этот материал выдерживает высокие температуры, а также некоторые физические воздействия.
  4. Определить в магазине это невозможно, поэтому придётся довериться производителю и обратить внимание на показатели: прибор должен выдерживать температуру до 110°C, а также давление в 10 бар.
  5. Максимальная пропускная способность ротаметра не должна быть ниже 2-4 кубических метров в час. Измерительная шкала должна соответствовать данным показаниям.
  6. Гарантия на данные изделия даётся большая, зачастую от 5 лет.


Заключение

Коллектор для теплого водяного пола с расходомерами позволяет контролировать расход теплоносителя, что обеспечивает комфортную температуру пола в любом помещении, подключённом к данному контуру. Такой способ организации системы тёплого пола дополнительно экономит средства, ведь вы затрачиваете меньше энергии на нагрев воды.

Как работает счетчик отопления: принцип работы, снятие показаний

Как работает счетчик отопления

Тепловой счетчик – устройство по учету потребленного теплоносителя, в настоящее время очень выгоден, так как позволяет экономить средства благодаря оплате только за потребленное тепло, исключая переплату.

Важным моментом является правильный выбор вида прибора в зависимости от места установки и конструктивных особенностей теплосети, а также заключение договора с обслуживающей организацией, которая будет контролировать техническое состояние устройства.

Существует множество моделей тепловых счетчиков, отличающихся устройством и размерами, но принцип того, как работает счетчик отопления, остался такой же, как и на простейшем приборе, который измеряет температуру и расход воды на входе и выходе трубопровода объекта теплоснабжения. Различия проявляются только в инженерных подходах к решению данного вопроса.

Принцип работы

Работа теплосчетчика построена на принципе вычисления количества теплоты с применением данных, взятых от датчика расхода теплоносителя и пары датчиков температуры. Происходит замер количества воды, прошедшего через отопительную систему, а также разница температур на входе и выходе.

Количество теплоты вычисляют произведением расхода воды, прошедшей по отопительной системе, и разницей температур поступившего и вышедшего теплоносителя, что выражается формулой

Q = G * (t1-t2), гКал/ч, в которой:

  • G – массовый расход воды, т/ч;
  • T1,2 – температурные показатели воды на входе и выходе из системы, оС.

Все данные с датчиков поступают на вычислитель, который после их обработки определяет значение потребления тепла и записывает результат в архив. Значение потребленного тепла отображается на дисплее прибора и может быть снято с любой момент.

Что влияет на точность теплосчетчика

прибор с низкой погрешностью Techem compact V

                     Techem compact V

Теплосчетчик, как и любой точный прибор, при измерении потребленного тепла имеет определенную суммарную погрешность, которая складывается их погрешностей термодатчиков, расходомера и вычислителя. В квартирном учете используют приборы, имеющие допустимую погрешность 6-10%. Реальный показатель погрешности может превышать базовый, зависящий от технических характеристик комплектующих элементов.

Увеличение показателя обуславливают следующие факторы:

  1. Амплитуда входящей и выходящей температуры теплоносителя, которая меньше 30оС.
  2. Нарушения при монтаже относительно требований изготовителя (при установке нелицензионной организацией, производитель снимает с него гарантийные обязательства).
  3. Не надлежащее качество труб, жесткая вода, используемая в теплоносителе, и наличие в нем механических примесей.
  4. При расходе теплоносителя ниже минимального значения, обозначенного в технических характеристиках устройства.

В чем измеряется потребленное тепло

Расчет тарифа потребленного тепла принято производить в гигакалориях. Единица измерения относится к внесистемным, и традиционно используется со времен существования СССР. Приборы, произведенные в Европе, вычисляют потребленное тепло в ГигаДжоулях (система СИ), или общепринятой международной внесистемной единице кВт*ч (kWh).

Особых трудностей в том, как рассчитать плату за отопление, различия систем измерения у сотрудников теплоснабжающих организаций не вызывают, так как одни единицы легко переводятся в другие при помощи определенного коэффициента.

Виды тепловых счетчиков

Все доступные к приобретению счетчики отопления делятся на следующие виды:

  • Тахометрический или механический

Производит измерение количества прошедшего через сечение трубы теплоносителя при помощи вращающейся детали. Активная часть аппарата может быть винтовая, турбинная или в виде крыльчатки.
Приборы доступны по стоимости и просты в использовании. Слабая сторона подобных устройств – чувствительность к загрязнениям и оседанию внутри механизма грязи, ржавчины, и к гидроударам. Для этого в конструкции предусмотрен специальный магнито-сетчатый фильтр. Также приборы не способны хранить собранные за сутки данные.Ультразвуковой счетчик отопления для квартиры

  • Ультразвуковой

Чаще применяется в качестве общего счетчика многоквартирного дома. Имеет разновидности:

  1. частотный,
  2. временной,
  3. доплеровский,
  4. корреляционный.
    Работает по принципу генерации ультразвука, проходящего через воду.

Сигнал генерируется передатчиком и улавливается приемником после прохождения через толщу воды. Гарантирует высокую точность измерения только при достаточной чистоте теплоносителя.

  • Электромагнитный

Отличается высокой точностью показаний и стоимостью. Работа устройства основана на принципе прохождения через поток теплоносителя магнитного поля, которое реагирует на его состояние. Аппарат нуждается в периодическом обслуживании и очистке. Состоит из первичного преобразователя, электронного блока и термодатчиков.

Работает по принципу измерения количества и скорости вихрей. Не чувствителен к засорениям, но реагирует на появление в системе воздуха. Прибор устанавливают в горизонтальном положении между двумя трубами.

Как правильно передать показания

 

Квартирный измеритель тепла функционально намного проще современного мобильного телефона, но у пользователей периодически возникают непонимания процесса снятия и отправки показаний дисплея.

Для предотвращения подобных ситуаций, перед началом процедуры снятия и передачи показаний, рекомендуется внимательно изучить его паспорт, в котором даны ответы на большинство вопросов, связанных с характеристиками и обслуживанием устройства.

В зависимости от конструктивных особенностей прибора, съем данных производят следующими способами:как рассчитать плату за отопление

  1. С жидкокристаллического дисплея путем визуальной фиксации показаний с различных разделов меню, которые переключаются кнопкой.
  2. ОРТО передатчик, который включают в базовую комплектацию европейских приборов. Способ позволяет вывести на ПК и распечатать расширенную информацию о работе прибора.
  3. M-Bus модуль входит в поставку отдельных счетчиков с целью подключения устройства к сети централизованного сбора данных теплоснабжающими организациями. Так, группу приборов объединяют в слаботочную сеть кабелем «витая пара» и подсоединяют к концентратору, который их периодически опрашивает. После формируется отчет и доставляется в теплоснабжающую организацию, либо выводится на дисплей компьютера.
  4. Радиомодуль, входящий в поставку некоторых счетчиков, передает данные беспроводным способом, на расстояние, достигающее нескольких сотен метров. При попадании приемника в радиус действия сигнала, показания фиксируются и доставляются в теплоснабжающую организацию. Так, приемник иногда закрепляют на мусоровоз, который при следовании по маршруту ведет сбор данных с близлежащих счетчиков.

Архивирование показаний

Все электронные тепловые счетчики сохраняют в архиве данные о накопленных показателях расхода тепловой энергии, времени работы и простоя, температуры теплоносителя в прямом и обратном трубопроводе, общее время наработки и коды ошибок.

Стандартно прибор настраивается на различные режимы архивирования:

  • часовой;
  • суточный;
  • месячный;
  • годовой.

Некоторые из данных, такие как общее время наработки и коды ошибок считываются только при помощи ПК и установленного на нем специального программного обеспечения.

Передача показаний через интернет

Одним из наиболее удобных способов передачи показаний о потребленной тепловой энергии в учреждения по ее учету является передача через интернет. Его удобство и практичность заключается в возможности самостоятельно контролировать оплату и задолженность, а также отслеживать потребление тепла в разные периоды без пребывания в очередях и при затратах незначительного количества времени.

Для этого необходимо наличие персонального компьютера, подключенного к сети и адрес сайта контролирующей организации, а также логин и пароль личного кабинета, после входа в который откроется форма ввода показаний. Для предупреждения возникновения разногласий при возможном сбое или неполадках на сайте, желательно делать «скрины» экрана после ввода информации.

Поломки и ремонт

демонтаж теплосчетчика для поверки

Техническое обслуживание прибора ограничивается его поддержанием в работоспособном состоянии, регулярном осмотре, недопущении причин, вызывающих преждевременный износ и поломку. Согласно п. 80 Правил коммерческого учета теплоносителя все работы по обслуживанию и контролю корректной работы счетчика осуществляет потребитель. Со стороны владельца он в особом уходе не нуждается.

 Литиевый аккумулятор или батарейки, питающие прибор, не пригодны для повторного применения, и при выходе из строя утилизируются.

При обнаружении какой-либо неполадки в работе прибора учета, потребитель должен в течение 24 ч. известить об этом обслуживающую фирму и организацию, осуществляющую теплоснабжение. Вместе с прибывшим уполномоченным сотрудником составляется акт, который после передается в теплоснабжающую организацию с отчетом о потреблении тепла за соответствующий период. При несвоевременном извещении о поломке, потребление тепла рассчитывают стандартным способом.

Обслуживающая фирма предоставит услуги по ремонту или замене счетчика, а на время ремонта может установить подменный прибор. Стоимость работ по монтажу и демонтажу, ремонту и другим услугам регламентирована договором между потребителем и обслуживающей фирмой.

Регистрация ошибок

Стандартно тепловые счетчики оснащаются системой самотестирования, которая способна выявить неточности работы. Вычислитель периодически запрашивает датчики, и при их неисправности фиксирует ошибку, присваивает ей код и записывает в архив. Наиболее часто встречаются следующие регистрируемые ошибки:

  1. Неправильная установка или повреждение датчика температуры или прибора расхода.
  2. Недостаточный заряд элемента питания.
  3. Наличие воздуха в проточной части.
  4. Отсутствие расхода при наличии разницы температур в течение времени более 1 часа.

Снятие и установка счетчика отопления

До того, как установить счетчик на отопление в квартире или многоквартирный дом, приглашаются специалисты специализированных компаний, имеющих разрешительную документацию на проведение данного вида работ. Исходя из конкретной ситуации, они могут взять на себя следующие обязательства:

  1. Разработать проект.
  2. Подать документы в определенные органы с целью получения разрешений.
  3. Установить и зарегистрировать прибор. При отсутствии регистрации, оплата поставленного тепла производится согласно установленных тарифов.
  4. Провести тестовые испытания и сдать прибор в эксплуатацию.

счетчик на отопление ПУЛЬС СТ-15А

Разработанный проект должен включать следующие моменты:

  1. Вид и устройство модели, которая предназначена для работы в конкретной системе отопления.
  2. Необходимые расчеты по тепловой нагрузке и расходу теплоносителя.
  3. Схема системы отопления с местом установки теплового счетчика.
  4. Расчет возможных потерь тепла.
  5. Расчет оплаты за поставку тепловой энергии.

Проверка счетчиков отопления

Как правило, качественный прибор поступает в точку продажи первично протестированным. Процедура осуществляется на заводе-изготовителе, свидетельством чего выступает клеймо с записью, соответствующей записи в документации. Кроме того, в документах указывают межповерочный интервал.

По истечению данного срока владельцу прибора необходимо обратиться в сервисный центр предприятия-изготовителя или в организацию, уполномоченную проверять и устанавливать счетчик. Существуют фирмы, которые после установки прибора занимаются его техобслуживанием.

Периодическое подтверждение метрологического класса, или одним словом поверка, осуществляется специализированной фирмой, имеющей проливные установки, а также разрешение, выданное органами метрологического надзора.

Срок поверки зависит от типа прибора, и в среднем составляет 4 — 5 лет.

С этой целью вызывают метролога, снимают пломбы, специалист обслуживающей организации демонтирует счетчик и отправляет на поверку. После проверки и обратного монтажа прибор опломбируют.

Счетчик на отопление – прибор для учета тепловой энергии, позволяющий экономить средства, оплачивая только фактически потребленную услугу. Несоблюдение указанных ниже условий приведет к невозможности рассчитываться за тепло согласно показаний счетчика.

Для корректной и долговременной работы устройства важно выбрать тип счетчика, который обязательно должен присутствовать в госреестре допустимых к использованию измерительных средств, а также иметь метрологическую аттестацию в соответствующей инстанции.

Устанавливается прибор предприятием, имеющим лицензию на проведение подобных работ.


Мы подобрали для Вас ещё восемь полезных статей, смотрите далее.

Сколько стоит расходомер для системы отопления. Выбор, установка и регулировка расходомеров

Если вы подсоединяете своими руками к разводящим коллекторам на этажах несколько колец напольной обогревательной системы, необходимо стараться, чтоб длины данных контуров были приблизительно одинаковыми. Иными словами – чтоб расходование носителя тепла в обогревательных кольцах, подсоединенных к одной «гребенке» (коллекторной группе), был одинаковым. Возникает вопрос – всегда ли этого можно добиться?

Проблемы, которые могут возникнуть

Приведем конкретный пример.

Сложности при осуществлении монтажа системы

  1. Монтируется , гостиной и на кухне.

Способы решить задачу

  1. Применяя первый из них
  2. Второй способ

Гостиной и на кухне.

  • Он подключается к одному коллектору.
  • Понятно, что площадь напольной поверхности в данных комнатах разная. Следовательно, и длина укладываемых под покрытие трубопроводов, тоже отличается.
  • Значит, и расходование в них теплоносителя тоже будет разным.
  • Обратите внимание! В коротких обогревательных кольцах уровень гидравлического сопротивления трубок меньше. Исходя из этого, вода в них циркулирует быстрее, нежели в длинных аналогах. Следовательно, при одинаковой температуре жидкости на подающем коллекторе в одних комнатах пол будет перегрет, в других же останется холодным.

    Та же самая ситуация может сложиться и при использовании радиаторных отопительных контуров, имеющих разное число секций и различную длину труб, которые подключены к одному этажному коллектору. То есть – какие-то помещения будут перегреты, а в остальных будет холодно.

    Чтобы этого не происходило, инструкция рекомендует расход воды в радиаторной системе определять, установив на каждую батарею терморегулятор. По сути – это вентиль, который регулирует количественно расход. Приблизительно то же можно осуществить и на напольной отопительной системе.

    Способы решить задачу

    Сбалансировать отопительные контуры напольной обогревательной системы, которые подключены к одной и той же коллекторной группе, возможно двумя методами.

    1. Применяя первый из них , нужно все кольца сделать равной длины и грамотно распределить их под покрытием. Например, три контура будут в гостевом помещении, два – на кухне и один в ванной.
    2. Второй способ – смонтировать всего 3 контура, по числу комнат. Однако подключать их надо будет не непосредственно к коллекторам, а через особые устройства – расходомеры для теплого пола, их называют также ротаметрами. По предназначению они являются балансировочными вентилями.

    В приводимом примере термин «расходомер» означает не измерительное приспособление, а специальный кран, при помощи которого можно контролировать и задавать расходование теплоносителя.

    Следует учитывать, что приборы некоторых производителей можно подключать лишь к коллектору для обратки.

    контур теплого пола в ванной , гостиной и на кухне.

  • Он подключается к одному коллектору.
  • Понятно, что площадь напольной поверхности в данных комнатах разная. Следовательно, и длина укладываемых под покрытие трубопроводов, тоже отличается.
  • Значит, и расходование в них теплоносителя тоже будет разным.
  • Обратите внимание! В коротких обогревательных кольцах уровень гидравлического сопротивления трубок меньше. Исходя из этого, вода в них циркулирует быстрее, нежели в длинных аналогах. Следовательно, при одинаковой температуре жидкости на подающем коллекторе в одних комнатах пол будет перегрет, в других же останется холодным.

    Та же самая ситуация может сложиться и при использовании радиаторных отопительных контуров, имеющих разное число секций и различную длину труб, которые подключены к одному этажному коллектору. То есть – какие-то помещения будут перегреты, а в остальных будет холодно.

    Чтобы этого не происходило, инструкция рекомендует расход воды в радиаторной системе определять, установив на каждую батарею терморегулятор. По сути – это вентиль, который регулирует количественно расход. Приблизительно то же можно осуществить и на напольной отопительной системе.

    Способы решить задачу

    Сбалансировать отопительные контуры напольной обогревательной системы, которые подключены к одной и той же коллекторной группе, возможно двумя методами.

    1. Применяя первый из них , нужно все кольца сделать равной длины и грамотно распределить их под покрытием. Например, три контура будут в гостевом помещении, два – на кухне и один в ванной.
    2. Второй способ – смонтировать всего 3 контура, по числу комнат. Однако подключать их надо будет не непосредственно к коллекторам, а через особые устройства – расходомеры для теплого пола, их называют также ротаметрами. По предназначению они являю

    Выбор расходомера для теплоносителя

    Выбор расходомера для теплоносителя

    Наиболее часто расходомер для теплоносителя  используется в составе теплосчётчика для контроля теплопотерь в теплосетях. По мере усиления тренда на энергоэффективность систем и зданий, спрос на такие решения набирает обороты.

    При этом, задача выбора оптимально подходящего расходомера имеет свои особенности, которые необходимо учитывать, чтобы сэкономить деньги и время.

    1 или 2 канала?

    Выбор расходомера для теплоносителя

    Одноканальный учёт теплопотерь возможен при условии, что вы уверены, что ваша система закрытая и в обратном контуре воды вернётся ровно столько же, сколько ушло в прямом. То есть, изменится только температура. В этом случае датчики расхода устанавливаются только на одну трубу (прямой или обратной подачи), а датчики температуры на обе трубы. Такая схема хорошо подходит для технологического учёта и позволяет упростить монтаж и существенно сэкономить деньги.

    Выбор расходомера для теплоносителя

    Если же существует риск потерь теплоносителя внутри системы, то необходимо использовать прибор с двумя каналами учёта расхода воды: как на прямом участке, так и на обратном. Именно такая схема безальтернативно может быть применена для коммерческого учёта расхода тепла. Иных вариантов ваша ресурсоснабжающая организация не пропустит. 

    При этом двухканальный учёт расхода тепла может быть легко организован с помощью двух одноканальных расходомеров. Достаточно их объединить под один тепловычислитель.

    Выбор датчиков

    Классическим вариантом решения являются расходомеры с готовыми расходомерными участками (РУ) и встроенными в них датчиками. РУ крепится на фланцевом или резьбовом соединении. Это старый надёжный метод монтажа, который чаще всего встречается на предприятиях.

    Выбор расходомера для теплоносителя

    Его плюсом является то, что расходомерный участок уже заранее откалиброван на конкретный диаметр трубы и не требует дополнительной настройки. Датчики жёстко закреплены в РУ - их нельзя сдвинуть и таким образом повлиять на показания прибора. Термодатчики обычно врезаются в трубу с помощью специальной гильзы. 

    Минусом такого решения является необходимость резать трубу, сливать воду и производить сварные работы. Более того, такую процедуру необходимо повторять при процедуре периодической поверки, которую необходимо проводить каждые 2 или 4 года (в зависимости от производителя), если вы хотите использовать ваш расходомер для коммерческого учёта.

    Накладные датчики расхода

    Если вы хотите избежать хлопот и дополнительных затрат по монтажу датчиков, то имеет смысл обратить внимание на модели расходомеров с накладными датчиками. Эти датчики устанавливаются прямо на наружную стенку трубы на расстоянии в зависимости от ее диаметра. Монтаж очень простой и может быть осуществлён любым человеком без специальной подготовки. 

    Выбор расходомера для теплоносителя

    Для измерения расхода теплоносителя нужно обязательно выбирать модель с высокотемпературными датчиками. Причём, лучше, чтобы максимальная температура, указанная в свойствах датчиков немного превышала ту, что может быть у теплоносителя в вашей сети. Дело в том, что производители иногда завышают значения максимальной температуры или указывают предельное значение, которое допустимо только для краткосрочных измерений. Для того, чтобы избежать выхода из строя датчиков и дополнительных затрат, обязательно проконсультируйтесь с поставщиком.

    Портативные расходомеры

    Выбор расходомера для теплоносителя

    Для периодических измерений теплопотерь можно использовать переносной одноканальный расходомер в комплекте с пирометром или портативный теплосчётчик с накладными датчиками температуры. Также эти приборы удобно использовать для:

    • Оперативных измерений в процессе пусконаладки тепломеханического оборудования;
    • Энергоаудита;
    • Разрешения спорных ситуаций между поставщиками и потребителями тепла;
    • Проверки работоспособности узлов учёта воды и тепла.

    С их помощью вы уже через несколько минут сможете оценить теплопотребление в требуемом контуре или на абонентском вводе.

    Правовой аспект

    Выбор расходомера для теплоносителя

    Если вы планируете использовать расходомер в составе теплосчётчика, то можете столкнуться с интересным моментом. Дело в том, что некоторые ресурсоснабжающие организации требуют использовать для коммерческого учёта только те расходомеры, которые прописаны в списке совместимых с конкретным тепловычислителем. Однако, в действующей редакции "Правил коммерческого учёта тепловой энергии и теплоносителей" требования к приборам учёта сводятся к двум:

    1. Соответствия требованиям самих "Правил"
    2. Внесение приборов учёта в Федеральный информационный фонд по обеспечению единства измерений

    Таким образом, это требование не имеет под собой никаких законных оснований. Вы в праве использовать в составе теплосчётчика любой сертифицированный в РФ расходомер по вашему желанию. Часто это может позволить вам сэкономить существенные суммы, выбрав более точный, надёжный и доступный расходомер, чем те, что вам пытаются навязать производители тепловычислителей.

    Выводы

    Подбор расходомера для учета теплоносителя не так сложен, как может показаться сначала. Выбирайте накладные датчики расхода, помните о предельной температуре и знайте свои права.


    ДРУГИЕ СТАТЬИ

    Расходомер для коллектора для теплого пола — принцип работы, назначение

    При монтаже системы теплого водяного пола, в которой имеются несколько колец, возникает проблема балансировки контуров. При разной протяженности петель гидродинамическое сопротивление у них будет разное, скорость потока теплоносителя в более короткой петле будет выше, чем в более длинной. На практике это приводит к тому, что при подключении разных по длине контуров от одного подающего коллектора скорость потоков теплоносителя в них и мощность обогрева будут разные. В результате это становится причиной нерационального расхода энергии и низкой эффективности всей системы, отсутствии комфорта.

    Многоконтурный теплый пол

    Балансировка многоконтурной системы выполняется разными способами и с использованием различных функциональных узлов, которые включаются в схему контура. Одним из таких приборов, играющих ключевую роль в балансировке системы, является расходомер для коллектора теплого пола.

    Способы балансировки

    Уравновешивание системы теплого пола с несколькими контурами можно выполнить двумя способами:

    • Смонтировать контуры приблизительно равной длины с одинаковой схемой укладки петель. За минимальную берется длина контура, необходимого для монтажа в самом маленьком помещении. Для подогрева пола других помещений с большей площадью монтируется два или три контура, каждый из которых равен по длине малому.
    • Устанавливать в систему специальные узлы, которые выполняют функцию замера уровня давления и скорости потока теплоносителя в единицу времени.

    Группа балансировки включает такие основные узлы:

    • клапан с расходомером;
    • автоматический стабилизатор расхода теплоносителя с изменяющейся геометрией просвета;
    • парный регулятор дифференциального (на подаче и обратке) давления;
    • клапан с устройством Вентури.
    Основные узлы для балансировки системы

    Важно! Правила монтажа многоконтурных теплых полов рекомендуют проектировать систему так, чтобы протяженность контуров и способы их укладки были максимально идентичными. В противном случае даже использование специальных балансировочных узлов не всегда гарантирует гармоничное функционирование системы.

    Назначение и виды расходомера

    Чтобы добиться одинакового расхода энергии теплоносителя во всех контурах системы, необходимо иметь данные о количестве расхода теплоносителя и возможность их изменять.

    Расходомер для установки на коллектор теплого пола, который вкручивается в каждый задействованный подающий или обратный патрубок, позволяет получить данные о скорости водного потока в каждом отдельном контуре. Функциональность узла с расходомером обеспечивается при помощи вентиля, который изменяет просвет трубы и ограничивает подачу теплоносителя.

    Поплавковый ротаметр

    В разнокалиберных системах теплых полов установка расходомеров с перекрывающим вентилем позволяет уравновесить тепловую мощность контуров с разным гидродинамическим сопротивлением.

    Устройство и виды расходомера

    Номинально расходомер для теплого пола предназначен для измерения расхода теплоносителя, то есть он фиксирует объем теплоносителя, который проходит через точку подключения в единицу времени. Этот измерительный прибор еще называют ротаметром.

    В продаже имеются ротаметры разных моделей. Есть такие, что выполняют одну только функцию измерения. Для такого ротаметра дополнительно устанавливают перекрывной вентиль. Такой узел регулируется вручную. При настройке системы оператор прикрывает или приоткрывает вентиль в зависимости от показаний расходомера. Есть разнообразные модели с вмонтированным вентилем. Некоторые из них позволяют осуществлять автоматическое регулирование потока теплоносителя.

    Поплавковый ротаметр с пластиковым корпусом

    В системах теплых полов обычно используют поплавковые ротаметры. В металлическом или пластиковом корпусе находится прозрачная поликарбонатная колба. Скорость циркуляции теплоносителя определяется поплавком, находящимся внутри колбы. Принцип работы его основан на скорости всплывания поплавка в постоянно поступающей и топящей (обтекающей) его жидкости. Эту схему можно назвать вечно всплывающим поплавком. Пружина пытается вернуть поплавок на место. Чем сильнее поток, тем больше притапливается поплавок.

    Поплавковый ротаметр вкручивается вертикально на подающем коллекторе. Классическая схема комплектации гребенки (коллекторов) – это расходомеры с вентилями на подающем коллекторе и термостаты на обратном.

    Как выбрать качественный расходомер

    В паспорте указаны основные характеристики расходометра, поэтому при выборе прибора необходимо обратить внимание на такие характеристики:

    • Поплавковые ротаметры – самые дешевые, среди них нужно выбирать приборы с латунным корпусом.
    • Материал внутренней пружины. Если он не указан – значит, производитель установил ненадежный пластиковый контейнер.
    • В паспорте должно быть указано, что пружина выполнена из нержавеющей стали.
    • Материал колбы. Как правило, во всех поплавковых ротаметрах колбу делают из поликарбоната. Но бывают и исключения. На колбе должна быть четкая и понятная шкала.
    • Максимальное давление. Расходометр должен выдерживать 10 бар.
    • Максимальная температура. Для систем теплых полов верхний предел рабочей температуры должен быть как минимум 90 градусов. Лучше, если она будет выше 100.
    • Пропускная способность. Выбирать прибор нужно в соответствии с мощностью контура. Основная масса расходометров рассчитана на поток от 2 до 4 кубометров в час.
    • На качественное оборудование всегда предоставляется гарантия минимум на 5 лет.

    Как выполняется балансировка

    В зависимости от модели расходомера, после монтажа и опрессовки системы отопления их выставляют в исходное положение «открыто». Для приборов, не имеющих встроенного вентиля с градуировкой оборотов, дополнительный вентиль устанавливается в позицию «полностью открыто», и балансировка системы выполняется после запуска.

    Стандартная сборка коллекторной группы

    В комбинированных моделях есть возможность преднастройки по количеству полных оборотов вентиля. Каждый оборот уменьшает просвет на фиксированное значение.

    Вначале рассчитывается нужный для каждого контура объем теплоносителя и определяется его доля в процентах относительно общего объема теплоносителя для всей системы. В соответствии с этими показателями, выставляется начальное положение головки вентиля расходомера на каждом контуре.

    Окончательная настройка производится в процессе функционирования. При этом исходят из реальных температурных показателей и ощущениям комфортности.

    Важно! При настройке следует менять параметры плавно, так как уменьшение скорости потока в одном кольце системы приведет к усилению потока в других кольцах.

    Особенности монтажа

    Обычное место расходомера – верхний подающий коллектор. При установке обычного поплавкового ротаметра важно соблюдать вертикальность его положения. Это необходимо для того, чтобы уровень воды в колбе был ровным и показывал точные значения. Поэтому коллекторы должны быть установлены по уровню горизонтально. Обычно коллекторную группу монтируют в закрывающийся короб. Это выглядит аккуратно и обезопасит коллектор от повреждений.

    Коллекторная группа смонтирована в коробе

    Расходомер вкручивается в технологическое входное отверстие подающего коллектора (если расходомер не предназначен для установки в обратный коллектор). Для установки прибора не нужно использовать какие-либо дополнительные герметизирующие материалы (прокладки, ленты). Прибор укомплектован накидной гайкой и уплотнительным пропиленовым кольцом.

    Рекомендация о марках коллекторов, для которых рекомендуется использовать расходомер, имеется в его паспорте. Место установки ротаметра зависит от направления потока жидкости внутри корпуса.

    К трубопроводу прибор крепится при помощи фитинговых соединителей.

    Конструкция и принцип работы модуля расходомера и других устройств, применяющихся для балансировки систем отопления:

    Расходомер – важная деталь систем тёплого пола, которая позволяет решить проблему равномерной подачи теплоносителя в отдельные контуры с возможностью точной настройки потока.

    Вконтакте

    Facebook

    Twitter

    Google+

    Коллекторная группа для теплого пола: насос 6 контуров, расходомер

    Для среднестатистического человека система отопления теплый пол не выглядит сложной, всего лишь трубы с горячей водой, проложенные внутри стяжки. На практике – все совсем не так. Из-за особых требований и механики работы, в системе обвязки обязательно присутствует коллекторная группа для теплого пола, которая распределяет теплоноситель и обеспечивает регулировку микроклимата в каждой комнате.

    Коллекторная группаКоллекторная группа

    Проблематика работы системы отопления

    Теплые полы относятся к одной из самых популярных современных систем отопления. Это обусловлено высокой функциональность, эффективностью работы структуры труб, а также – возможностью гибко регулировать температуру в каждой комнате. Последнюю задачу решает коллектор для теплого пола. Это устройство устраняет самую главную проблему построения системы отопления.

    Работа расположенной в полу структуры труб должна происходить с температурой жидкости в 35-40 градусов. Такой показатель нагрева способны обеспечить газовые или другие котлы конденсационного типа.

    На практике, такие устройства дороги, сложны в настройке, поэтому используются стандартные отопительные системы. На выходе нагревательного узла вода имеет температуру до 80-90 градусов. Ходить по такой поверхности – не комфортно. Поэтому в системе отопления устанавливается коллектор теплого пола. Он работает по следующей схеме:

    • поступающая от нагревательного котла вода попадает в коллекторный блок;
    • теплоноситель смешивается в водой из обратного контура, его температура падает;
    • коллекторная группа распределяет жидкость с приемлемой температурой по всем контурам отопления.

    Среднестатистическое решение, которое можно приобрести на массовом рынке – коллекторы для теплых полов на 6 контуров. Это схема для обычной трехкомнатной квартиры. Делаются отдельные трассы циркуляции для комнат, кухни, санузла и прихожей. Поэтому коллекторный узел данного типа распространен и предлагается в разных модификациях.

    Зачем нужен дополнительный циркуляционный насос

    Коллекторная группа для теплого пола часто оснащается собственным дополнительным нагнетательным насосом. Данный узел нужен для повышения давления и обеспечения изолированной циркуляции, не зависящей от отопительного оборудования. Это особенно важно, если коллекторная группа для теплого пола применяет двухходовые клапаны.

    Более продвинутое и технологичное решение использует трехходовые смешивающие узлы. Но присутствие дополнительного циркуляционного насоса все равно рекомендуется. Хотя трехходовой клапан не предусматривает перекрытие подачи, он снижает объем прокачки теплоносителя нагревательным котлом.

    Дополнительный циркуляционный насос, которым оборудуется коллекторная группа для теплого пола – решает все проблемы с давлением.

    Схема с насосом и трехходовым клапаномСхема с насосом и трехходовым клапаном

    Зачем нужны расходомеры

    Краткий принцип работы, на котором построен коллектор теплого пола в системе циркуляции – рассмотрен выше. Но после решения задачи снижения температуры теплоносителя на входе контуров, возникает другая проблема. Тезисно ее можно описать так:

    • в каждую комнату поступает вода равной температуры;
    • длина проложенных в полу труб в каждом помещении различна;
    • в коллектор для теплого пола поступает вода разной температуры после прохождения контуров отопления отдельных комнат.

    Без балансировки расхода, коллектор для теплого пола создаст ситуацию, когда в маленьких помещениях очень жарко, а в больших – прохладно. Такие теплые полы вряд ли можно назвать эффективными. Расходомер для коллектора теплого пола решает задачу балансировки тепла следующим образом:

    • оснащенный температурным датчиком, определяет характеристики жидкости, поступающей из обратки;
    • в зависимости от полученных результатов, уменьшает или полностью перекрывает поступление горячей воды;
    • домешивание нагретого теплоносителя из подачи прекращается до тех пор, пока температура в обратке не упадет до заданного значения.

    Расходомер для коллектора теплого пола легко регулируется. Самые простые изделия позволяют проводить ручную настройку системы. В этом случае пользователь сам подбирает комфортные условия в конкретной комнате, прикручивая или ослабляя головку узла.

    Сложные изделия оснащаются интерфейсом для получения сигнала от внешнего датчика. Можно приобрести систему коллектора для теплого пола в сборе с насосом, на которой установлены расходомеры, рассчитанные на использование с терморегуляторами комнат.

    Доступны и решения, которые ориентируются на показатели внешней среды. При снижении температуры на улице расходомер автоматически увеличит циркуляцию. Можно регулировать работу сразу нескольких контуров по сигналу одного определителя температуры.

    Расходомер выступает одной из главных деталей, которые четко нормируют установку коллекторного узла. Данный элемент конструкции надежно работает только в вертикальном положении. Поэтому при монтаже коллектора потребуется провести работы так, чтобы расходомеры располагались соответствующим образом.

    Коллекторная группа с расходомером:

    Как функционирует коллектор с двухходовыми клапанами

    Если приобретается коллекторный узел теплого пола в сборе с насосом, у недорогого решения будут применены двухходовые клапаны. Они работают по следующей схеме:

    • термодатчик постоянно контролирует температуру воды в зоне смешивания жидкости;
    • как только показатели превышают заданное значение, подача горячей воды перекрывается;
    • циркуляционный насос продолжает работать, прокачивая теплоноситель;
    • когда температура воды падает, двухходовой клапан приоткрывается и горячая вода из котла домешивается в контуры отопления.

    Главная особенность системы, работающей на двухходовых клапанах, заключается в периодическом перекрытии поступления горячей воды. Поэтому во избежание бросков температуры отопительной структуре рекомендуется подключать ее к котлам, рассчитанным на прокачку не постоянного, а изменяемого потока жидкости.

    Двухходовой клапан имеет главный недостаток. У него низкая пропускная способность. На работу системы это не влияет, поскольку поступление горячей воды в сбалансированном режиме относительно мало. Но низкий показатель прохода воды ведет к неизбежному засорению клапана. Поэтому его нужно сразу устанавливать так, чтобы можно было провести замену или обслуживание. Еще одна рекомендация к применению двухходовых клапанов: использовать их при площадях отопления меньше 200 квадратных метров.

    Как работает система с трехходовыми клапанами

    Трехходовой клапан считается оптимальным решением для отопления больших помещений, при условии существования нескольких контуров. Данный узел работает следующим образом:

    • внутри клапана находится перегородка;
    • жидкости из обратки и подачи из котла постоянно смешиваются;
    • для регулировки температуры достаточно повернуть верхнюю головку клапана.

    Простые системы предлагают ручное управление работой узла смешивания. Но трехходовой клапан предоставляет возможность автоматического регулирования. Делается это при помощи сервопривода, который получает сигналы от датчиков температуры. Это могут быть устройства, расположенные в конкретных помещениях или определяющие параметры климата снаружи здания.

    К недостаткам трехходового датчика относится возможность резкого увеличения температуры в контуре отопления. Это происходит после легкого поворота головки, что усложняет ручную настройку параметров микроклимата. При применении датчиков температуры и сервоприводов также существует опасность получения неверных данных. Но она – относительно мала. У трехходового клапана хорошая пропускная способность, он надежен и редко засоряется.

    Рекомендации к самостоятельной сборке

    Если принято решение сделать коллектор на теплый пол своими руками, следует обязательно предусмотреть клапан сброса воздуха. Другие элементы конструкции и регулировки могут быть такими:

    • расходомеры, которые потребуют отводов определенного формата с резьбовыми соединениями, можно заменить запорной арматурой. Простой кран, регулирующий поток – достаточно эффективен;
    • чтобы задать постоянный режим поступления тепла, рекомендуется применять трехходовой клапан. Его настройка будет достаточно тонкой, но после ее завершения система долгое время не потребует вмешательства.

    При размещении самостоятельно сделанного коллектора в навесном шкафу или других местах с ограниченным пространством следует предусмотреть достаточное количество места для циркуляционного насоса. Кроме этого, потребуется обеспечить подвод энергопитания и удобный доступ к точкам регулировки.

    Для улучшения работы самостоятельно сделанного коллектора можно применить трехходовой клапан с термоголовкой. Регулировка такого узла максимально проста. Сложные модели термоголовок могут получать сигнал от внешних датчиков, например, расположенных вне здания.

    Независимо от того, применяется ли готовое решение коллектора или он собирается самостоятельно – система теплого пола, оснащенная таким узлом, будет работать эффективно и надежно. Поэтому, планируя получить хороший микроклимат и возможности его изменения в каждой комнате – стоит внимательно изучать предложения рынка.

    Бюджетный вариант коллектора своими руками:

    А еще лучше – получить консультации специалистов или поручить разработку системы отопления профессионалам.

    About Author


    admin

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о
    ЮК «Эгида-Сочи» - недвижимость.

    Наш принцип – Ваша правовая безопасность и совместный успех!

    2020 © Все права защищены.