Для чего строят графики – Урок 13. Построение и преобразование графиков функций. Обзор графиков основных функций. Практика

ДЛЯ ЧЕГО НАМ НУЖНЫ ГРАФИКИ ФУНКЦИИ?

ДЛЯ ЧЕГО НАМ НУЖНЫ ГРАФИКИ ФУНКЦИИ?
ВИДЫ ФУНКЦИЙ.

Один из наиболее важных методических вопросов - вопрос мотивации изучения конкретного математического содержания. Находясь на уроке один десятиклассник, не желая выполнять задание, говорит другому: «Приступая к построению графиков с помощью производной, учитель говорил нам, что это надо уметь делать для того, чтобы по графику функции видеть ее свойства. Но потом оказалось, что для построения графика эти свойства надо сначала изучить, а если о функции мы уже все знаем, зачем строить ее график?»
Прежде всего отметим, некоторую внутреннюю нелогичность ученика: он ставит вопрос, зачем строить график функции после ее исследования, хотя в предыдущем предложении уже содержится ответ: чтобы видеть свойства функции. Это, конечно, шутка, но, как иногда говорят, в каждой шутке есть доля шутки.
Конечно, на графике видно, например, что функция непрерывна на некоторых промежутках, видны промежутки ее возрастания и убывания, экстремумы, поведение в бесконечности, в особых точках. Другими словами, график функции можно использовать как геометрическую иллюстрацию, интерпретацию свойств функции. И умение изобразить, «объединить» полученные алгебраически свойства функции «на картинке», на графике важно с точки зрения дидактики. Это умение один из частных случаев перевода с языка алгебры на язык геометрии, и оно необходимо как физикам, так и лирикам. Именно поэтому задаче чтения графиков стали уделять повышенное внимание уже в основной школе, где, впрочем, чаще ставится обратная задача - перевод с наглядного геометрического языка на язык свойств функций (часть языка алгебры). Другими словами, с точки зрения дидактики это оправданно. Впрочем, в профильном курсе математики эта задача вряд ли должна быть приоритетной, и естественно предполагать, что для соответствующего контингента учащихся эта задача визуализация свойств функции должна быть просто тривиальной, уровня стандарта.

Между тем классический аргумент учителя предназначен, скорее всего, для объяснения важности методов математического анализа и, прежде всего, применения производной для исследования функций. А сами графики функций в этом вопросе, можно сказать, просто ни при чем. Более того, для использования графиков в качестве средства наглядности, средства визуализации естественно применять современные компьютерные технологии, готовые пакеты мощных математических программ.
Основная причина непонимания сути задачи состоит в том, что процесс построения графика это, в глазах учащихся, специальная задача. Такое задание «со стороны», а вовсе не самостоятельно, «добровольно» применяемое наглядное эвристическое средство решения других задач.
Они не обучаются главному применению графиков. А ведь только при таком понимании роли графиков функций в обучении математике можно решить методические вопросы о необходимом уровне точности построения графиков, о существенных моментах и несущественных деталях строимого графика, о построении графиков «по точкам» или «по промежуткам», о роли вычислений конкретных значений функции, составлении таблиц значений. И подход к решению этих вопросов в действительности не зависит от применяемого способа построения графика способ выбирается для решения конкретного вопроса, а не наоборот: вопрос необходимо решать исходя из его важности для решения задачи, а не из возможности его решения применяемым способом.
Так для чего же вообще нужны графики, точнее какую пользу может принести их знание? На наш взгляд, главное назначение графиков состоит в их значении для эвристической д

Урок 13. Построение и преобразование графиков функций. Обзор графиков основных функций. Практика

На этом практическом занятии мы рассмотрим примеры, демонстрирующие методы построения графиков основных типов простейших функций, решим задания на исследование функции по изображенному графику и задачи на преобразования графиков функций.

Данный урок поможет Вам подготовиться к одному из типов заданий С5.

Подготовка к ЕГЭ по математике 

Эксперимент 

Урок 13. Построение и преобразование графиков функций. Обзор графиков основных функций 

Практика

Конспект урока

Сначала разберем примеры на построение графиков основных функций.

Задача №1. Построить графики функций: а) ; б)

; в) ; г) .

Решение. Воспользуемся методом построения линейных функций «по точкам».

а)

0

-1

1

2

Как видим,  и угол наклона к оси  острый,  смещение по оси .

б)

0

2

1

1

 и  можно сделать аналогичные выводы, как и в первом пункте.

в)

Статистические графики Правила  построения графиков Лекции

Содержание курса лекций «Статистика»

Графический метод в статистике

Графический метод в статистике

В результате сводки и дальнейшей обработки данных отчетности, различного рода обследований, переписей, наблюдений и т.п. экономист получает большое количество различных статистических показателей, которые он располагает в виде таблиц. Применение табличного метода значительно облегчает ориентацию в материале. Однако из этого не следует, что можно ограничиться одними таблицами. Для того чтобы сделать дальнейший шаг в понимании материала, надо от табличного метода перейти, к графическому.


График в статистике — условное изображение статистических данных в виде различных геометрических образов: точек, линий, фигур и т.п.  Главное достоинство графиков ‑ наглядность.


 Для чего используются в статистике графики?

Во-первых, в целях широкой популяризации данных и для облегчения их восприятия неспециалистами. Поэтому в различного рода докладах, речах и сообщениях представление статистических данных часто осуществляется при помощи графиков. Графики облегчают ознакомление масс со статистическими данными, оживляют таблицу, делают ее более доступной.


Во-вторых, графики широко ис­пользуются для обобщения и анализа статистических данных. Они находят большое применение в исследовательской работе. Именно при помощи графиков легче уяснить закономерности развития, распределения и размещения явлений. При помощи графиков в ряде случаев можно сделать выводы, которые на базе табличного метода были бы затруднительными.


В-третьих, надо еще указать и на контрольное значение графиков. Под этим следует понимать тот факт, что во многих случаях различного рода ошибки и неточности выявляются при применении графиков, т.е. они иногда являются контролером точности расчётов и вычислений.


В настоящее время графики прочно вошли в практику экономического анализа в связи с внедрением в статистическую работу новых математических методов и современной вычислительной техники и информационных технологий, с использованием пакетов прикладных программ компьютерной графики.

Наиболее распространёнными пакетами прикладных программ являются: «Excel», «Stat Graff», «Super call», «Hazard graphics» и др. Эти программы облегчают задачу исследователя в практическом применении графиков, так как с помощью дисплеев можно демонстрировать графики на световом экране, при необходимости оперативно изменяя в них одни данные, вводя другие и т. д. Такого рода графики в принципе могут заменить громоздкие таблицы компактными изображениями.


Графики различаются по своему виду, и задача состоит в том, чтобы найти наиболее подходящий график. Нужно научиться правильно пользоваться орудием графического метода при изображении статистических данных. Кроме этого, график надо уметь строить, понимать принцип его построения. В противном случае можно выбрать правильный график, но сделать его таким, что он исказит действительную картину.



Общие правила  построения графиков,  классификация

При построении графика важно найти такие способы изображения, которые наилучшим образом отвечают содержанию и логической природе изображаемых показателей.

В графике, кроме заголовка, обязательно даются словесные пояснения условных знаков и смысла отдельных элементов графического образа. Сюда относятся названия и цифры масштабов, названия ломаных линий, цифры, характеризующие величины отдельных частей графика, ссылки на источники и т.д.



Классификация статистических графиков

по : характеру графического образа, способу построения и назначению (содержанию)

По способу построения графики можно разделить на диаграммы и статистические карты  представлены на (рис. 7.1).

Рисунок 7.1 Классификация статистических графиков по способу построения и содержанию изображаемых данных

Различные виды диаграмм применяются для сравнения одноименных статистиче­ских данных, характеризующих разные территории или объекты.

Наиболее распространённым видом таких диаграмм являются столбиковые диаграммы.


Столбиковые диаграммы представляют собой график, в котором различные величины представлены расположенными в высоту прямоугольниками. Столбиковые диаграммы применяются для сравнения некоторых объектов во времени. Масштабная шкала должна начинаться с нуля, быть непрерывной и на ней записы­ваются лишь круглые или округленные значения. Столбики должны быть даны на некотором, одинаковом для всех расстоянии или вплотную друг к другу. Ширина столбиков берется произвольно. На шкале должна быть указана единица измерения. При выборе масштаба надо рассчитать так, чтобы максимальное число было представлено на графике.

Примеры построения графиков и диаграмм

Пример 1 . Требуется изобразить с помощью столбиковой диаграммы данные о тру­доустройстве граждан органами государственной службы занятости региона (цифры условные): в 2007 г. трудоустроено 2822 чел.; в 2006 г. – 2398 чел.; в 2005 г. – 2406 чел.; в 2004 г. – 2218 чел. Примем масштаб: 500 чел. Наглядность данной диаграммы достигается сравнением высоты столбиков (рис. 7.2).

Рис. 7.2 Динамика трудоустройства граждан органами государственной службы занятости в регионе за 2004-2007 гг.


Если прямоугольники, изображающие показатели, расположить не по вертикали, а по горизонтали, то диаграмма получит название ленточной. В качестве примера приведем полосовую диаграмму сравнения, характеризующую данные о количестве сотрудников на предприятии N за 2009 г. (рис. 7.3, табл. 7.1,)

Рис.7.3 Динамика количества сотрудников на предприятии N за 4 квартала 2018 г.


Таблица 7.1 ‑ Данные о количестве сотрудников на предприятии N за 2018 г. (цифры условные)

Квартал

1

234
Количество работников , чел20402000950

960


Вторую большую группу показательных графиков составляют структурные диаграммы.

Структурные диаграммы — диаграммы, в которых отдельные статистические совокупности сопоставляются по их структуре, характеризующейся соотношением разных параметров совокупности или ее отдельных частей.

Пример. Рассмотрим построение секторной диаграммы по данным табл. 5.4 .

Таблица 7.2 ‑ Структура иностранных инвестиций в РФ в 2018 г

Тип инвестиций

прямыепортфельныепрочие
Доля инвестиций, в %202

78

Рис. 7.4 Удельный вес иностранных инвестиций в РФ за 2018 г. (цифры условные)


Секторные диаграммы выглядят убедительно при существенных различиях сравниваемых структур, а при небольших различиях они могут быть не достаточно выразительны.


Для изображения и внесения суждений о развитии явления во времени строится диаграммы динамики. В рядах динамики используются для наглядного изображения явлений многие диаграммы: столбиковые, ленточные, квадратные, круговые, линейные, радиальные и другие. Выбор вида диаграмм зависит в основном от особенностей исходных данных, от цели исследования. Например, если имеется ряд динамики с неравноотстоящими уровнями во времени (1913, 1940, 1950, 1980, 2000, 2005, 2015, 2018 гг), то часто для наглядности используют столбиковые, квадратные или круговые диаграммы. Они зрительно впечатляют, хорошо запоминаются, но не годны для изображения большого числа уровней, так как громоздки, и если число уровней в ряду динамики велико, то целесообразно применять линейные диаграммы, которые воспроизводят непрерывность процесса развития в виде непрерывной ломаной линии.

Для построения линейных диаграмм используют систему прямоугольных координат. Обычно по оси абсцисс откладывается время (годы, месяца и т.д.), а по оси ординат наносят масштабы для отображения явлений или процессов. Особое внимание следует обратить на масштаб осей координат, так как от этого зависит общий вид графика. Обеспечение равновесия, пропорциональности между осями координат необходимо в диаграмме, так как нарушение равновесия дает неправильное изображение развития явления. Если масштаб для шкалы на оси абсцисс очень растянут по сравнению с масштабом на оси ординат, то колебание в динамике явлений мало выделяются, и наоборот, преувеличение масштаба по оси ординат по сравнению с масштабом на оси абсцисс дает резкие колебания. Если в ряду динамики данные за некоторые года отсутствуют, это должно быть учтено при построении графика. Равным периодом времени и размером уровня должны соответствовать равные отрезки масштабной шкалы.

Пример. Рассмотрим построение линейной диаграммы на основании следующих данных:

Таблица 7.3 ‑ Динамика валового сбора кормовых в регионе за 1995-2004 гг.

Год1995199619971998199920002001200220032004
Валовой сбор,              млн. тонн237179189158186192172190210211

Изображение динамики валового сбора кормовых культур на координатной сетке с неразрывной шкалой значений, начинающихся с нуля, вряд ли целесообразно, так как 2/3 поля диаграммы остается неиспользованным и ничего не дает для выразительности изображения. Поэтому в данных условиях рекомендуется строить шкалу без вертикального нуля, то есть шкала значений разрывается недалеко от нулевой линии и на диаграмму попадает лишь часть возможного поля графика. Это не приводит к искажениям в изображении динамики явления и процесс его изменения рисуется диаграммой более четко (Рис. 7.5).

Рис. 7.5 Динамика валового сбора кормовых культур в регионе за 1995-2004 гг

Контрольные задания

По данным статистических сборников о численности населения, динамики производства отдельных видов продукции, экспорта, импорта товаров и др. показателям за последние 5-10 лет постройте диаграммы и графики.

Содержание курса лекций «Статистика»

Представление данных в виде точечной диаграммы или графика

Основным различием между точечными и графикными диаграммами является способ отображения данных на горизонтальной оси. Например, если использовать следующие данные листа для построения точечной диаграммы и графика, они будут представлены по-разному:

Изображение данных о суточном количестве осадков на листе

На точечной диаграмме значения суточного количества осадков из столбца A отображаются в виде значений X на горизонтальной оси (X), а показатели содержания твердых частиц из столбца B — в виде значений на вертикальной оси (Y). На точечной диаграмме категории никогда не отображаются на горизонтальной оси.

На точечной диаграмме всегда есть две оси значений, то есть один набор числовых данных представлен вдоль горизонтальной оси, а другой — вдоль вертикальной. На пересечении координат X и Y отображается точка данных, объединяющая эти два числовых значения. Такие точки данных могут быть распределены по горизонтальной оси равномерно или неравномерно, в зависимости от конкретных данных.

Первая точка данных на точечной диаграмме представляет значение Y (содержание частиц), равное 137, и значение X (суточная норма осадков), равное 1,9. Эти числа представляют значения в ячейках A9 и B9 на листе.

На графике те же значения суточного количества осадков и содержания частиц будут показаны как две разные точки данных, которые равномерно распределяются вдоль горизонтальной оси. Дело в том, что на графике есть только одна ось значений (вертикальная ось). Горизонтальная ось графика предназначена для отображения группировок (категорий) данных с равномерными интервалами. Так как категории не были заданы, они генерируются автоматически, например 1, 2, 3 и т. д.

Это наглядный пример ситуации, когда график использовать не следует.

Изображение графика

На графиках данные категории равномерно распределяются вдоль горизонтальной оси (оси категорий), а все числовые значения откладываются по вертикальной оси (оси значений).

Значение Y (содержание частиц), равное 137 (ячейка B9), и значение X (суточное количество осадков), равное 1,9 (ячейка A9), показаны на графике двумя разными точками данных. Ни одна из этих точек данных не является первой точкой данных, отображаемой на диаграмме, а первая точка данных для каждого ряд данных ссылается на значения в первой строке данных на листе (ячейке A2 и B2).

Различия между типами и шкалами осей

Так как горизонтальная ось точечной диаграммы всегда является осью значений, на ней можно показывать числа и даты (в том числе дни и часы), представляемые в виде числовых значений. Чтобы отображать числовые значения вдоль горизонтальной оси с большей гибкостью, можно изменить параметры ее шкалы аналогично тому, как изменяется настройка шкалы вертикальной оси.

Поскольку горизонтальная ось графика — это ось категорий, она может быть только осью текста или осью дат. На оси текста отображается только текст (нечисловые данные или числовые категории, не являющиеся значениями) с равномерными интервалами. На оси дат отображаются даты в хронологическом порядке через заданные интервалы (базовые единицы измерения), такие как число дней, месяцев или лет, даже если даты на листе расположены в ином порядке или выражены в других единицах.

Набор параметров шкалы оси категорий ограничен по сравнению с параметрами шкалы оси значений. Доступные параметры шкалы также зависят от типа используемой оси.

Основные правила преобразования графиков функций. Видеоурок. Алгебра 9 Класс

Если вы знаете, как выглядят графики элементарных функций, или умеете быстро строить их по характерным точкам, то сумеете быстро построить на их основе графики более сложных функций того же класса. Для этого существуют правила преобразования графиков функций, которые мы рассмотрим на этом уроке.

Наверняка многие из вас могут быстро и правильно построить графики некоторых функций, не прибегая к вычислениям значений точек. Всем известно, что график функции  – это прямая, а график функции  – это парабола. Но как построить, например, график функции , не вычисляя значения точек? Для этого существуют правила преобразования графиков функций.

Предположим, что у нас есть функция  (график этой функции – это парабола) и необходимо построить график функции . Вычислим значения некоторых точек для графиков этих функций.

Из таблиц видно, что одним и тем же значениям аргумента соответствуют противоположные значения функций. Графически это означает, что графики расположены симметрично относительно оси абсцисс. То есть заданная парабола () зеркально отобразится относительно оси  (см. Рис. 1).

Рис. 1. Графики функций  и

Таким образом, если у нас есть произвольный график , то для построения графика  необходимо график  симметрично отразить относительно оси  (см. Рис. 2). Такое преобразование называется преобразованием симметрии относительно оси .

Рис. 2. Преобразование симметрии относительно оси

Преобразование симметрии – зеркальное отражение относительно прямой. График  получается из графика функции  преобразованием симметрии относительно оси .

На рисунке 3 показаны примеры симметрии относительно оси

Построение графиков функций

Функции и их графики — одна из самых увлекательных тем в школьной математике. Жаль только, что проходит она... мимо уроков и мимо учеников. На нее вечно не хватает времени в старших классах. А те функции, которые проходят в 7-м классе, - линейная функция и парабола — слишком просты и незамысловаты, чтобы показать все разнообразие интересных задач.

Умение строить графики функций необходимо для решения задач с параметрами на ЕГЭ по математике. Это одна из первых тем курса математического анализа в вузе. Это настолько важная тема, что мы в ЕГЭ-Студии проводим по ней специальные интенсивы для старшеклассников и учителей, в Москве и онлайн. И часто участники говорят: «Жаль, что мы не знали этого раньше».

Но это не все. Именно с понятия функции и начинается настоящая, «взрослая» математика. Ведь сложение и вычитание, умножение и деление, дроби и пропорции — это все-таки арифметика. Преобразования выражений — это алгебра. А математика — наука не только о числах, но и о взаимосвязях величин. Язык функций и графиков понятен и физику, и биологу, и экономисту. И, как сказал Галилео Галилей, «Книга природы написана на языке математики».

Точнее, Галилео Галилей сказал так:«Математика есть алфавит, посредством которого Господь начертал Вселенную».

Темы для повторения:

Понятие функции

Типы элементарных функций

Преобразования графиков функций

Производная функции

1. Построим график функции

Знакомая задача! Такие встречались в вариантах ОГЭ по математике. Там они считались сложными. Но сложного ничего здесь нет.

Упростим формулу функции:

при

График функции — прямая с выколотой точкой

M (-1;-2).

2. Построим график функции

Выделим в формуле функции целую часть:

График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции

y=\frac{1}{x}.

Выделение целой части — полезный прием, применяемый в решении неравенств, построении графиков и оценке целых величин в задачах на числа и их свойства. Он встретится вам также на первом курсе, когда придется брать интегралы.

3. Построим график функции

Он получается из графика функции растяжением в 2 раза, отражением по вертикали и сдвигом на 1 вверх по вертикали

y=

4. Построим график функции

Главное — правильная последовательность действий. Запишем формулу функции в более удобном виде:

Действуем по порядку:

1) График функции y=sinx сдвинем на влево;

2) сожмем в 2 раза по горизонтали,

3) растянем в 3 раза по вертикали,

4) сдвинем на 1 вверх

\frac{ \pi }{6}

Сейчас мы построим несколько графиков дробно-рациональных функций. Чтобы лучше понять, как мы это делаем, читайте статью «Поведение функции в бесконечности. Асимптоты».

5. Построим график функции

Область определения функции:

Нули функции: и

Промежутки знакопостоянства функции определим с помощью метода интервалов.

x = 3.

Прямая x = 0 (ось Y) — вертикальная асимптота функции. Асимптота — прямая, к которой бесконечно близко подходит график функции, но не пересекает ее и не сливается с ней (смотри тему «Поведение функции в бесконечности. Асимптоты»)

Есть ли другие асимптоты у нашей функции? Чтобы выяснить это, посмотрим, как ведет себя функция, когда x стремится к бесконечности.

Раскроем скобки в формуле функции:

Если x стремится к бесконечности, то стремится к нулю. Прямая является наклонной асимптотой к графику функции.

y = x-4

6. Построим график функции

Это дробно-рациональная функция.

Область определения функции

Нули функции: точки — 3, 2, 6.

Промежутки знакопостоянства функции определим с помощью метода интервалов.

Вертикальные асимптоты:

Если x стремится к бесконечности, то у стремится к 1. Значит, — горизонтальная асимптота.

Вот эскиз графика:

y = 1

Еще один интересный прием — сложение графиков.

7. Построим график функции

Если x стремится к бесконечности, то и график функции будет бесконечно близко подходить к наклонной асимптоте

Если x стремится к нулю, то функция ведет себя как Это мы и видим на графике:

\frac{1}{x}.

Вот мы и построили график суммы функций. Теперь график произведения!

8. Построим график функции

Область определения этой функции — положительные числа, поскольку только для положительных x определен

Значения функции равны нулю при (когда логарифм равен нулю), а также в точках, где то есть при

При , значение {cos x} равно единице. Значение функции в этих точках будет равно

{{log}_2 x}.

9. Построим график функции

Функция определена при Она четная, поскольку является произведением двух нечетных функций и График симметричен относительно оси ординат.

Нули функции — в точках, где то есть при

Если x стремится к бесконечности, стремится к нулю. Но что же будет, если x стремится к нулю? Ведь и x, и sin x будут становиться меньше и меньше. Как же будет вести себя частное ?

Оказывается, что если x стремится к нулю, то стремится к единице. В математике это утверждение носит название «Первого замечательного предела».

{\frac{sinx}{x} }

А как же производная? Да, наконец-то мы до нее добрались. Производная помогает более точно строить графики функций. Находить точки максимума и минимума, а также значения функции в этих точках.

10. Построим график функции

Область определения функции — все действительные числа, поскольку

Функция нечетна. Ее график симметричен относительно начала координат.

При x=0 значение функции равно нулю. При значения функции положительны, при отрицательны.

Если x стремится к бесконечности, то стремится к нулю.

Найдем производную функции
По формуле производной частного,

если или

В точке производная меняет знак с «минуса» на «плюс», — точка минимума функции.

В точке производная меняет знак с «плюса» на «минус», — точка максимума функции.

Найдем значения функции при x=2 и при x=-2.

y\left(2\right)=1, y\left(-2\right)=-y\left(2\right)=-{\rm 1.}

Графики функций удобно строить по определенному алгоритму, или схеме. Помните, вы изучали ее в школе?

Общая схема построения графика функции: 

1. Область определения функции

2. Область значений функции

3. Четность — нечетность (если есть)

4. Периодичность (если есть)

5. Нули функции (точки, в которых график пересекает оси координат)

6. Промежутки знакопостоянства функции (то есть промежутки, на которых она строго положительна или строго отрицательна).

7. Асимптоты (если есть).

8. Поведение функции в бесконечности

9. Производная функции

10. Промежутки возрастания и убывания. Точки максимума и минимума и значения в этих точках.

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)                        +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Алгебра. Урок 5. Графики функций

Смотрите бесплатные видео-уроки на канале Ёжику Понятно по теме “Графики функций”.

Ёжику Понятно

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

 

Система координат – это две взаимно перпендикулярные координатные прямые, пересекающиеся в точке, которая является началом отсчета для каждой из них.

Координатные оси – прямые, образующие систему координат.

Ось абсцисс (ось x ) – горизонтальная ось.

Ось ординат (ось y ) – вертикальная ось.

декартова система координат

 

Функция – это отображение элементов множества X на множество Y. При этом каждому элементу x множества X соответствует одно единственное значение y множества Y.

 

Линейная функция – функция вида y=ax+b где a и b – любые числа.

Графиком линейной функции является прямая линия.

Рассмотрим, как будет выглядеть график в зависимости от коэффициентов a и b:

 

Если a>0, прямая будет проходить через I и III координатные четверти.

b – точка пересечения прямой с осью y.

График линейной функции, a > 0

 

Если a<0, прямая будет проходить через II и IV координатные четверти.

b – точка пересечения прямой с осью y.

График линейной функции, a < 0

 

Если a=0, функция принимает вид y=b.

График линейной функции y = b

 

Отдельно выделим график уравнения x=a.

Важно: это уравнение не является функцией так как нарушается определение функции (функция ставит в соответствие каждому элементу x множества X одно единственно значение y множества Y). Данное уравнение ставит в соответствие одному элементу x бесконечное множества элементов y. Тем не менее, график данного уравнения построить можно. Просто не будем называть его гордым словом «Функция».

График уравнения x = a

 

Графиком функции y=ax2+bx+c является парабола.

Для того, чтобы однозначно определить, как располагается график параболы на плоскости, нужно знать, на что влияют коэффициенты a,b,c:

  1. Коэффициент a указывает на то, куда направлены ветки параболы.
  • Если a>0 , ветки параболы направлены вверх.
  • Если a<0 , ветки параболы направлены вниз.
  1. Коэффициент c указывает, в какой точке парабола пересекает ось y.
  2. Коэффициент b помогает найти xв – координату вершины параболы.

xв=−b2a

  1. Дискриминант позволяет определить, сколько точек пересечения у параболы с осью .
  • Если D>0 – две точки пересечения.
  • Если D=0 – одна точка пересечения.
  • Если D<0 – нет точек пересечения.

 

Графиком функции y=kx является гипербола.

Характерная особенность гиперболы в том, что у неё есть асимптоты.

Асимптоты гиперболы – прямые, к которым она стремится, уходя в бесконечность.

Ось x – горизонтальная асимптота гиперболы

Ось y – вертикальная асимптота гиперболы.

На графике асимптоты отмечены зелёной пунктирной линией.

Если коэффициент k>0, то ветви гиперолы проходят через I и III четверти.

Гипербола

Если k  <  0, ветви гиперболы проходят через II и IV четверти.

Гипербола

Чем меньше абсолютная величина коэффиента k (коэффициент k без учета знака), тем ближе ветви гиперболы к осям x и y.

 

Функция y  =  x имеет следующий график:

График квадратного корня

 

Функция y = f(x)возрастает на интервале, если большему значению аргумента (большему значению x) соответствует большее значение функции (большее значение y).

То есть чем больше (правее) икс, тем больше (выше) игрек. График поднимается вверх (смотрим слева направо)

Примеры возрастающих функций:

Возрастающие функции

Функция y = f(x)убывает на интервале, если большему значению аргумента (большему значению x) соответствует меньшее значение функции (большее значение y).

То есть чем больше (правее) икс, тем меньше (ниже) игрек. График опускается вниз (смотрим слева направо).

Примеры убывающих функций:

Убывающие функции

Для того, чтобы найти наибольшее значение функции, находим самую высокую точку на графике и смотрим, какая у нее координата по оси ординат (по оси y). Это значение и будет являться наибольшим значением функции.

Наибольшее значение функции

Для того, чтобы найти наименьшее значение функции, находим самую нижнюю точку на графике и смотрим, какая у нее координата по оси ординат (по оси y). Это значение и будет являться наименьшим значением функции.

Наименьшее значение функции

 

 

Скачать домашнее задание к уроку 5.

 

About Author


admin

Отправить ответ

avatar
  Подписаться  
Уведомление о