Физические свойства грунтов – ГОСТ 25100-2011 Грунты. Классификация (с Поправками), ГОСТ от 12 июля 2012 года №25100-2011

1.Физические свойства грунтов

Грунты состоят из твердых минеральных частиц («скелет» грунта), воды и воздуха и, таким образом, представляют собой (при положительной температуре) трехфазную систему. Все грунты различаются между собой многими признаками. Для механики грунтов наиболее важными являются их физические и механические свойства. Количественные показатели свойств грунтов называют характеристиками. Основные из этих характеристик определяют опытным путем в лаборатории или в полевых условиях, остальные вычисляют затем по найденным основным характеристикам. Основными характеристиками физических свойств грунтов служат: гранулометрический состав, удельный вес грунта природного сложения, удельный вес частиц грунта, влажность, границы раскатывания и текучести. Гранулометрический состав характеризует содержание по массе групп частиц (фракций) грунта различной крупности по отношению к общей массе абсолютно сухого грунта. В зависимости от содержания в грунте частиц разных размеров определяют степень неоднородности гранулометрического состава.Степень неоднородности гранулометрического состава не может быть меньше единицы и практически не бывает больше 200.

Удельным весом грунта природного сложения у называют отношение массы грунта, включая массу воды в его порах, к занимаемому этим грунтом объему, включая поры, умноженное на ускорение свободного падения g, равное 9,81 м/с2. Удельные веса нескальных грунтов природного сложения, встречающихся в строительной практике, имеют значения от 15 до 22 кН/м3.Разные грунты имеют удельные веса частиц, мало отличающиеся между собой. Удельные веса частиц песков составляют от 26,5 до 26,8 кН/м3, супесей и суглинков — от 26,0 до 27,0 кН/м3 и глин — от 26,0 до 27,5 кН/м3. Пластичность   и   консистенция   глинистых   грунтов. Изменение влажности оказывает большое влияние на свойства глинистых грунтов, которые при этом могут переходить из твердого состояния в полутвердое, затем в пластичное и, наконец, в текучее или  наоборот. Если образцу маловлажного глинистого грунта попытаться путем раскатывания придать форму проволоки, то он будет крошиться Основными физико-механическими свойствами грунтовявляются: 1. Гранулометрический состав, т. е. процентное содержание по весу частиц различной крупности: гальки (40 мм), гравия (2—40 мм), песка (0,25—2 мм), песчаной пыли (0,05— 0,25 мм), пылеватых частиц (0,005—0,05 мм) и глинистых частиц (менее 0,005 мм).
2. Объемный вес
, т. е. отношение веса грунта к его объему при естественной влажности. Для грунтов он составляет от 15 до 20 кн/м3 (1,5—2 г/,и3). 3. Пористост ь — объем пор, заполненных водой и воздухом в процентах от общего объема грунта. Она характеризуется коэффициентом пористости, представляющим собой отношение объема занятых водой и воздухом пор к объему твердых частиц. 4. Весовая влажность — отношение веса воды к весу сухого грунта в %. 5. Связность (взаимное сцепление частиц) — способность грунта сопротивляться разделению на отдельные частицы под действием внешних нагрузок. Типичным представителем связных грунтов являются глину, несвязных грунтов — сухие пески. 6. Пластичность — свойство грунта изменять свою форму под действием внешних сил и сохранять эту форму после удаления внешних сил. Наибольшей пластичностью отличаются влажные глины; песок и промытый гравий — материалы непластичные. 7. Прочность. В связи с тем, что грунты, особенно не связные, имеют незначительную прочность, не удается пользойваться такими характеристиками, как прочность на одноосное.
8. Сопротивление сдвигу.
Под действием механической нагрузки грунт разрушается в результате деформаций, превосходящих предельные значения. Считается, что эти деформации происходят по плоскостям скольжения (плоскостям, по которым происходит сдвиг одних частиц относительно других). При разрушении грунта частицы сопротивляются относитель—ному сдвигу. Это сопротивление характеризуется величиной, сцепления. Сопротивление сдвигу по плоскости скольжения уве-личивается в результате внутреннего трения частиц, возникаю щего под действием нормальных напряжений. Если выделить условно сдвигаемую частицу грунта, то напряжения, действующие в плоскости скольжения частицы, могут быть упрощенно представлены так, как показано на рис. 49.

Рис. 48. Предел прочности на одноосное сжатие мерзлых грунтов в зависимости от температуры и влажности ш в :

Рис. 49. Условия равновесия частицы грунта на откосе

9. Угол естественного откоса ф — угол у основания конуса, который образуется при отсыпании разрыхленного грунта с некоторой высоты. Этот угол зависит от величины коэффициента внутреннего трения и от связности. Для несвязных грунтов угол естественного откоса равен углу внутреннего трения. Величины углов естественного откоса приводятся в табл. 8.

10. Сопротивл ени е грунта вдавливанию. При вдавливании в грунт штампа или какой-либо опорной поверхности (ходовой части машины, элемента рабочего органа) под штампом происходят деформации в условиях, близких к всестороннему сжатию (т. е. когда на элемент грунта действуют одновременно окружающий массив и поверхность штампа так, что элемент оказывается сжатым со всех сторон). Чем ближе к поверхности грунта расположен элемент, тем меньше влияние всестороннего сжатия. Вдавливание на небольшую глубину (до 1 см) называют смятием. При этом усилие, необходимое для вдавливания штампа, во много раз меньше, чем при вдавливании штампа на значительную глубину. В частности, допускаемые нагрузки для ходовых частей” машин предусматривают погружение до 6—12 см. Величина усилия, необходимого для вдавливания штампа, зависит от размеров штампа. Чем меньше он, тем больше должно быть удельное усилие при вдавливании.

11. Абразивность (от латинского слова abrasio — соскабливать) — способность материала оказывать истирающее действие на другой материал. Абразивность грунтов из горных пород в значительной степени определяет износ рабочих органов землеройных машин. Имеются различные методы оценки аб-разивности, однако все они пока еще являются относительными, так как износ зависит от удельных давлений, скорости взаимного перемещения и прочностных показателей. При одних и тех же прочностных показателях величина износа может быть различной.

Коэффициент трения грунта о сталь зависит от состояния поверхности стали и физико-механических свойств грунта.

12. Разрыхляемость определяется как отношение объема разрыхленного грунта Vp к объему V первоначальному (в плотном теле).

Первоначальное разрыхление — это разрыхление, наблюдаемое сразу после отделения грунта от массива; остаточное разрыхление наблюдается через некоторое время после укладки грунта в отвал или насыпь, где происходит его самоуплотнение без трамбования.

Копание и резание грунтов

Копание — совокупность процессов отделения грунта от массива, включающих резание грунта, перемещение его по рабочему органу и впереди последнего, а в отдельных случаях и перемещение внутри рабочего органа (в частности, в ковшах экскаваторов).

Резание — процесс отделения грунта от массива при помощи режущей части рабочего органа, обычно имеющей вид клина.

Одно из них — движение, при котором отделяется стружка1, другое (оно может быть названо движением подачи) — при котором изменяется толщина стружки.

Скорость движения подачи обычно в несколько раз меньше скорости главного движения. Соотношение скоростей этих движений в известной мере определяет траекторию рабочего органа.

Рис. 50. Геометрия рабочего органа

В землеройно-транспортных машинах режущий орган (нож) предварительно внедряется в грунт до определенной глубины, а затем, двигаясь в нужном направлении, срезает стружку заданной толщины.

Как правило, внедрение в грунт происходит в результате одновременного перемещения ножа вглубь и вперед.

Механику отделения грунта от массива в процессе резания можно представить так.

Термином «стружка» пользуются при обработке металлов, он не всегда отражает физическую сущность процессов, происходящих при резании грунтов, однако удобен при расчетах сил сопротивления грунта резанию и копанию, наполнения ковша и производительности землеройных машин. Поэтому применяется условно.

Указанный способ моделирования процесса резания был впервые предложен М. И. Гальпериным и В. Д. Абезгаузом.

У передней грани формируется уплотненное ядро (рис. 52), которое, двигаясь перед режущей частью рабочего органа, внедряется в массив и отделяет стружку. Размеры ядра в процессе резания непрерывно изменяются, а само ядро периодически обновляется.

При углах резания, меньших 30°, у большинства грунтов ядро не образуется. В этом случае стружка отделяется под воздействием передней грани рабочего органа.

Рис. 51. Внедрение штампа у одной открытой стенки

Грунт отделяется от массива в результате сдвига или отрыва. Характер этого отделения зависит от физико-механических свойств грунта, геометрии рабочего органа и режимов работы.

Определение отдельных параметров процесса резания и копания грунта, усилий, наивыгоднейших режимов, геометрии рабочего органа из-за сложности процесса и одновременного влияния многих факторов пока еще не получило аналитического решения. В основном усилия и режимы подбираются на основе экспериментальных данных.

Рис. 53. Удельное сопротивление резанию при разработке

До определенных значений с по мере его увеличения второй фактор оказывает большее влияние и, следовательно, величина kp уменьшается. После увеличения с сверх определенных значений большее влияние оказывает всестороннее сжатие и сопротивление kp увеличивается. Это продолжается, пока значение с не достигнет величины си после чего значения kp стабилизируются.

С увеличением Ь величина kv уменьшается и после определенных значений Ь она также стабилизируется.

При полусвободном и свободном резании удельное сопротивление с увеличением с при постоянном b уменьшается и после определенных значений с тоже стабилизируется.

Величина kp в значительной степени зависит от физико-механических свойств грунта и в большей степени от его прочности на одноосное сжатие. Последняя зависит от влажности, объемного веса, пластичности, связности грунта и других параметров. Так как прочность на одноосное сжатие многих талых грунтов мала и трудно поддается измерению, а для некоторых грунтов, например для песков, ее вообще нельзя измерить, то трудность разработки характеризуют категорией грунта.

Рис. 54. Ударник конструкции ДорНИИ

Под действием удара стержень внедряется в грунт. В зависимости от физико-механических свойств грунта для внедрения стержня на глубину 0,1 м требуется различное число ударов: например, в просеянный песок влажностью 9,2 требуется всего один удар, а в легкий суглинок вл а леностью 10,6% — 12 ударов. Величина kp зависит также от геометрии режущей части рабочего органа. Опыты показывают, что для большинства грунтов оптимальное значение угла резания б должно быть 20—30°. При меньших углах б лезвие получается очень тонким. С увеличением этого угла удельное сопротивление резанию возрастает. Задний угол а должен быть не меньше 7°, особенно для экскаваторов и бурильных машин, при работе которых в результате сложного перемещения рабочего органа угол а фактически уменьшается. При а = 7-М0° не всегда можно достигнуть, чтобы угол резания составлял 20—30°, так как в этом случае угол заострения р не превышает 25°, а при такой величине угла заострения прочность режущей части рабочего органа недостаточна. Поэтому угол р делают больше 25°, тогда при а — 7—10° угол резания получается очень часто больше 20—30°.

С увеличением угла б на каждые 10° удельное сопротивление резанию возрастает примерно на 10—12%. Поэтому, если прочность режущей части достаточна, то следует работать на углах, близких к оптимальным значениям.

2. Сила сопротивления внедрению режущего лезвия рабочего органа в грунт Р п (в направлении, нормальном к траектории) , т. е. сила подачи.

Как правило, режущая часть рабочего органа быстро затупляется и на ней образуется так называемая площадка затупления. Профиле площадки затупления может совпадать или не совпадать с траекторией движения режущего лезвия. На форму профиля влияют физико-механические свойства грунта и режимы работы.

Рис. 55. Виды затупления режущего лезвия

На рис. 55 показан различный характер затупления режущего лезвия и возникающие при этом силы.

Если траектория движения совпадает с профилем площадки затупления и радиус закругления незначителен, то можно считать, что сопротивление Рп возникает только при отжиме рабочего органа от поверхности грунта (рис. 55.а) в результате упругого последействия.

Если траектория движения совпадает с профилем площадки затупления и при этом на режущей кромке образовался радиус закругления, определяющий площадку затупления, то появляются дополнительные силы, отжимающие рабочий орган в процессе резания.

Если профиль траектории не совпадает с профилем площадки затупления, то выступающая за траекторию часть (рис. 55, в) внедряется в грунт. Сила Р„ при этом определяется сопротивлением внедрению выступающей части в грунт.

Рис. 56. Изменение усилий при вдавливании плоского штампа в мерзлый песок в условиях всестороннего сжатия

.

Классификационные показатели грунтов.

Основные физические показатели, характеризующие состав и состояние грунтов. Гранулометрический состав, плотность грунтов, удельный вес, влажность, пористость. Пластичность глинистых грунтов, границы текучести и раскатывания, показатели текучести. Методы определения физических характерист

Раздел 1. Физическая природа и физические свойства грунтов

1.1. Происхождение и состав различных видов грунтов

Грунтами называют любые горные породы, почвы и антропогенные (техногенные) геологические образования, залегающие в верхней части земной коры и являющиеся объектом инженерно-хозяйственной деятельности человека. Массивы грунтов используются как основания сооружений, как среда, вмещающая подземные сооружения, и как материал для постройки земляных сооружений. Состав, строение, состояние и свойства грунтов определяются генезисом, возрастом отложений и характером постгенетических процессов.

Грунты являются преимущественно осадочными горными породами, т.е. представляют собой продукты выветривания различных горных пород, прошедшие стадии изменений в процессе их переноса, отложений и диагенеза. Свойствами «грунтов» обладают и некоторые магматические изверженные породы (вулканические пеплы), органогенные породы (трепел, торф), отходы различных производств – техногенные породы (шлам, зола, шлак, городской мусор и др.).

По происхождению и условиям формирования грунты подразделяют на континентальные и морские осадочные образования. К континентальным отложениям относят: аллювиальные – отложения постоянно действующих водотоков (рек, крупных ручьев), образующих мощные слоистые толщи в речных долинах; элювиальные – залегающие на месте своего образования и сохранившие в той или иной степени структуру и текстуру исходных пород; делювиальные – отложения на склонах, перенесенные к основанию склона дождевыми и талыми водами; эоловые – отложения, переносимые ветром на значительные расстояния; ледниковые – рыхлые отложения, перенесенные ледником; водно-ледниковые – образовавшиеся при таянии ледников; пролювиальные – отложения в зоне конуса выноса временных или постоянных потоков; озерные – образуются осаждением частиц на дне озер (сапропели, илы). К морским отложениям относят отложения морей (толщи дисперсных глин, органогенных грунтов, ракушечников, илы, различные пески и галечники).

В состав грунтов входят твердые минеральные частицы, вода в различных состояниях и воздух или газовые смеси, т.е. грунты являются многофазными дисперсными системами (рис. 1.1).

Грунт, состоящий только из твердых частиц, является однофазным грунтом («сухим»), в его порах отсутствует вода, которая замещается воздухом. Двухфазный грунт состоит из двух компонентов: твердых частиц и воды, это грунт «водонасыщенный»; трехфазный грунт – «неводонасыщенный», состоит из трех компонентов: твердых частиц, воды и воздуха; четырехфазный – «мерзлый» грунт, в котором четвертой компонентой является лед. Причем основу любого грунта составляют твердые частицы, поэтому изучение состава грунта начинается именно с анализа твердых частиц. Грунты состоят из частиц различной крупности и могут представлять собой грубодисперсные, тонкодисперсные и коллоидные системы.

Степень дисперсности грунтов зависит от условий образования и минералогического состава частиц грунта. В составе дисперсных грунтов присутствуют первичные и вторичные минералы. Первичные – те, которые не претерпели химических изменений, зерна устойчивых против выветривания минералов (чаще всего зерна кварца и полевого шпата). Они слагают обычно грубодисперсную часть грунта. Вторичные – измененные процессами выветривания – глинистые минералы (каолинит, гидрослюда, монтмориллонит и др.). Они слагают наиболее дисперсную часть грунта. Глинистые минералы обладают высокой гидрофильностью, т.е. связывают и удерживают на своей поверхности некоторое количество воды, имеют пластинчатую или игольчатую форму, в связи с этим имеют огромную удельную поверхность. Например, 1 г монтмориллонита имеет суммарную поверхность 800 м², а в 1 г каолинита суммарная поверхность составляет 10 м². Содержание глинистых минералов значительно влияет на свойства грунтов и прежде всего на характер связности грунтов. Поэтому грунты, содержащие глинистые частицы, такие как глины, суглинки, супеси, называют связными грунтами. При взаимодействии глинистых минералов с водой резко изменяются прочность, пластичность, проявляются набухание, липкость и др. свойства. В твердой компоненте грунтов могут содержаться и растворимые в воде минералы: гипс, кальцит, каменная соль и др., а также органические вещества.

Органические вещества присутствуют в грунтах органоминерального образования (торфы, илы). Наличие органических веществ также влияет на физико-механические свойства грунтов: повышаются пластичность грунтов, набухание, уменьшаются фильтрационные свойства, грунт плохо уплотняется и проч. В грунтах у поверхности земли органические вещества находятся в виде микроорганизмов, корней растений и гумуса.

При значительном увлажнении грунта его поры заполняются водой, образуются коллоидные системы – золи. С уменьшением содержания воды в золе коллоидные системы застудневают – это уже гель. Коллоидные системы в грунтах обычно находятся в состоянии геля. При переходе золя в гель происходит слияние отдельных частиц в хлопья, частицы слипаются друг с другом и могут склеивать более крупные частицы грунта, образуя агрегаты. Этот процесс называется коагуляцией. Обратный процесс, т.е. разъединение частиц при переходе геля в золь, называется пептизацией. Оба эти процесса широко распространены в грунтах.

Тонкодисперсные и коллоидные частицы способны поглощать своей поверхностью другие вещества из растворов, из окружающей среды. Это есть поглотительная или адсорбционная способность грунтов. Различают следующие виды поглотительной способности: механическая – способность грунта задерживать в своих порах частицы, фильтрующиеся через грунт с водой; физическая – это налипание мелких частиц на поверхности более крупных за счет сил молекулярного притяжения; химическая – это химические реакции частиц грунта с веществами, поступающими в грунт с растворами; обменное поглощение – способность коллоидных частиц поглощать ионы из раствора, выделяя взамен ионы из адсорбционных пленок. Общее количество ионов в грунте, способных к обмену, называется емкостью поглощения или емкостью обмена.

II. Основы грунтоведения

2.1. Классификация грунтов Гост 25100–95

Грунт – горные породы, почвы, техногенные образования, являющиеся объектом инженерно-хозяйственной деятельности человека.

Различают грунты: скальные – монолиты или трещиноватые массивы, рыхлые (нескальные) – крупнообломочные, песчаные и глинистые породы.

Грунты могут служить:

– материалом оснований сооружений,

– материалом самого сооружения (дорог, насыпей, плотин),

– средой для размещения в них сооружений (тоннелей, трубопроводов, хранилищ) и др.

Классы грунтов

Природные скальные грунты с жесткими структурными связями (кристаллизационными и цементационными).

Природные дисперсные – грунты с механическими и водноколлоидными структурными связями.

Природные мерзлые – грунты с криогенными структурными связями.

Техногенные (скальные, дисперсные и мерзлые) – грунты с различными структурными связями, образованными в результате деятельности человека.

Термины и определения

Грунт скальный, состоящий из кристаллов одного или нескольких минералов, имеющих жесткие структурные связи кристаллизационного типа (прочность на одноосное сжатие Rс>5 Мпа).

Грунт полускальный – грунт, состоящий из кристаллов одного или нескольких минералов, имеющих жесткие структурные связи цементационного типа (прочность на одноосное сжатие Rс≤5 Мпа).

Грунт дисперсный – грунт, состоящий из отдельных зерен разного размера, слабосвязанных друг с другом – результат выветривания скальных грунтов, транспортировки продуктов выветривания водным или эоловым путем и их отложения.

2.2. Физические свойства грунтов

Плотность (объемный вес) – один из наиболее важных показателей: масса единицы объема грунта с естественной влажностью и ненарушенным сложением, зависит от минералогии. У дисперсных грунтов ρ0=1,3–2,0 г /см3, ρ0=2,5–3,3 г /см3 у скальных.

ρ0=m/V, (2)

где, m – масса с естественной влажностью, V – объем грунта ненарушенного сложения.

Плотность частиц грунта (удельный вес) – отношение массы сухого грунта, исключая массу воды в порах, к объему твердой части, ρs=2,2–3,2 г /см3.

ρs=(m–mв)/V–Vпор, (3)

где, mв – масса воды, Vпор – объем пор.

Естественная влажность (W) – все количество воды, содержащееся в порах грунта в естественном залегании. Определяют высушиванием грунта при tº=105º–107ºв течение 8 часов, определяется как отношение массы воды к массе сухой породы.

Удельный вес (γ) – отношение веса грунта и воды, содержащейся в порах, к объему грунта.

Пористость (n) – отношение объема пор к объему грунта, измеряется в %, обычно 30–60 %, но чаще в расчетах используется величина приведенной пористости – коэффициент пористости (е) – отношение объема пор к объему твердых минеральных частиц.

Физические значения плотности применяются:

1. для характеристики физических свойств породы как основания или строительного материала.

2. для расчетов при динамических нагрузках.

2.3. Водно-физические свойства грунтов

Водно-физические свойства грунтов являются важнейшими характеристиками физического состояния определяющие прочность и деформируемость.

Природная влажность – отношение массы воды, содержащейся в в порах породы, к массе сухой породы, W, д.е.

W=(m–m1)/m1, (4)

где m – масса грунта вместе с содержащейся в ней водой, m1 – масса высушенного грунта, г.

Полная влагоемкость – максимальное содержание воды, содержащееся в породе, Wп, д.е.

Wп,=n/ρd, (5)

где, n – пористость грунта, ρd – плотность сухого грунта.

Коэффициент водонасыщения грунта (степень влажности) – степень заполнения объема пор водой, Sr, д.е.

Sr=W·ρs/eρw, (6)

где, W – природная влажность грунта, д.е.; е – коэффициент пористости; ρs – плотность частиц грунта, г/см3; ρw – плотность воды, 1 г/см3.

Критерий физического состояния глинистых грунтов (Jp; JL)

Пластическими свойствами обладают дисперсные связные грунты – глины, суглинки и супеси.

Пластичность – способность пород изменять под действием внешних сил (давление) свою форму без разрыва сплошности и сохранять полученную форму, после того как действие внешней силы прекратилось – характеристика определяемая деформируемость.

Чтобы выразить пределы влажности, при которых грунты обладают пластичностью, вводят понятие верхнего и нижнего предела пластичности.

WL – граница текучести соответствует такой влажности, при незначительном увеличении которой, грунт переходит в текучее состояние (определяется опытным путём).

Wp – граница раскатывания соответствует такой влажности, при незначительном уменьшении которой, грунт переходит в твёрдое состояние (определяется опытным путём). Определение характерных влажностей WL и Wp для глинистых грунтов является кропотливым лабораторным процессом и требует определенных навыков и даже профессиональной подготовки.

Число пластичности Jp=WL–Wp.

Показатель текучести JL=(W–Wp)/(WL–Wp).

Таблица 6

Зависимость расчетного сопротивления R глинистых

(связных) грунтов нагрузкам от величины JL, (табл. СНиП 2.02.01–83).

Твердое состояние

Пластичное состояние

Текучее состояние

JL < 0

0 < JL < 1

JL ≥ 1

R ≈ 4 кг/см2 = 0,4 МПа

R ≈ 0,2 МПа

R ≈ 0 (строить практически невозможно)

Физические свойства грунтов и их характеристики

Вернуться на страницу «Основания фундаментов»

Физические свойства грунтов и их характеристики

Все грунты отличаются между собой многими признаками. Для механики грунтов наиболее важными являются их физические и механические свойства, количественные показатели свойств грунтов называют характеристиками. Характеристики физических свойств условно разделяют на группы: основные и производные. К основным характеристикам относятся: плотность твердых частиц, плотность грунта природного сложения и влажности. Их определяют опытным путем в лаборатории или в полевых условиях. К производным относят: плотность сухого грунта (Скелета), пористость, коэффициент пористости и коэффициент водонасыщения. Их вычисляют по формулам, используя основные характеристики.

Рис.1. Определение характеристик грунтов.

В состав взятого объема V грунтов входят: твердые частицы суммарным объемом Vs и массой ms, а также полости между ними с объемом Vp. При этом поры могут быть заполнены частично воздухом с объемом Va и частично водой объемом Vw с массой mw.

Плотностью твердых частиц грунта называют массу единицы объема твердых частиц, составленных абсолютно плотно, то есть без каких-либо зазоров, и пор между ними. Плотность твердых частиц выражают отношением массыms твердых частиц, содержащихся в общем объеме V почвы, к их суммарному объемуVs:

ps= ms/Vs

За единицу измерения плотности твердых частиц грунта используют г / см3. Определяют эту характеристику зачастую пикнометрическим методом. При этом массу твердых частиц находят взвешиванием образца грунта, предварительно высушенного до постоянной массы при температуре 100 … 1050С, а объем твердых частиц определяют по массе, вытесненной им жидкости с известной плотностью, с помощью специальных мерных колб (так называемых Пикнометры).

Величина плотности твердых частиц почвы зависит только от их минералогического состава. Она возрастает при увеличении содержания в почве и плотности породо-образовательных минералов (кварца, каолинита, ортоклаза, плагиоклаза, биотита,мусковита и т.п.), а уменьшается — при увеличении содержания органических веществ.

Средние значения плотности твердых частиц отдельных типов дисперсных грунтов составляют: песков — 2,65 … 2,67; супесей — 2,68 … 2,72; суглинков — 2,69 … 2,73;глин — 2,71 … 2,76; заторфованных грунтов — 2,0 … 2,2; торфов — 1,4 … 1,8 г / см3.

Плотностью грунта природной (ненарушенной) структурой называют массу единицы его объема и выражают отношением массы грунта m, включая массу твердых частиц ms и массу воды mw, к общему объему почвы V, включая объем твердых частиц Vs и объем пустот Vp:

p = m/V = (ms + mw)/(Vs + Vp)

Соответственно плотность грунта измеряют в г / см3. Для определения плотности грунтов могут быть применены несколько методов:

— метод режущего кольца (Для грунтов, которые легко поддаются обработке ножом), метод парафинирования,

— метод гидростатического взвешивания в нейтральной жидкости — бензине, керосине, и т.п. (для скальных и мерзлыхпочв).

Величина плотности зависит от минералогического состава, влажности и пористости (плотности строения) грунта. Почвы одинакового состава и строения имеют наибольшую массу в случае полного заполнения пор водой. Величина плотности глин, суглинков, супесей, песков и крупнообломочных грунтов находится в диапазоне от 1,2 до 2,4 г / см3. Более высокие значения плотности относятся к крупнообломочным (разнозернистым) грунтам, моренным суглинкам и глин. Меньшее значение плотности характерны для грунтов, содержащих гумус, или для лессовых грунтов. Плотность сухого торфа может быть меньше 1,0 г / см3.

Влажностью грунта W называют относительное количество воды, содержащейся в его полостях. В механике грунтов пользуются, так называемой, абсолютной (весовой) влажностью. Абсолютную влажность выражают отношением массы mводы, содержащейся в порах некоторого объема грунта V, к массе ms твердых частиц, содержащиеся в этом же объеме. Влажность почвы измеряют в относительных единицах (г / г) или в процентах, то есть

W = mw / ms = ( m – ms)/ms

W = (mw / ms)100% = [( m – ms)/ms]100%

В дальнейшем весовую влажность будем называть просто влажностью. Ее величина изменяется в очень широких пределах, достигая 200% и более (например, в текучих глинах, морских и речных илах). Влажность определяют высушиванием грунта до постоянной массы при температуре 100 … 1050С. Грунт, высушенный до постоянной массы, называют абсолютно сухим.

 

С.М. Простов Определение физических свойств грунтов

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное образовательное учреждение высшего профессионального образования

"КУЗБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ"

Кафедра теоретической и геотехнической механики

ОПРЕДЕЛЕНИЕ ФИЗИЧЕСКИХ СВОЙСТВ ГРУНТОВ

Методические указания к лабораторным работам по дисциплине "Методы и средства геоконтроля" для студентов специальности 070600 "Физические процессы горного производства"

Составители С.М. Простов Е.В. Костюков

Утверждены на заседании кафедры Протокол № 17 от 26.05.03

Рекомендованы к печати учебно-методической комиссией специальности 070600 Протокол № 14 от 26.05.03

Электронная копия находится в библиотеке главного корпуса ГУ КузГТУ

1

1. Цель работы – изучение ускоренных методов исследований физических свойств однородных связных и несвязных грунтов с помощью полевой лаборатории ПЛЛ-9, приборов КФ-ООМ СПЕЦГЕО и УВТ-3.

2. Теоретические положения

Состав песчаных, гравелистых, щебенистых, галечниковых и особенно глинистых пород в значительной степени определяет их физикомеханические свойства и является главным классификационным показателем, позволяющим одновременно судить о свойствах и условиях образования рыхлых несвязных и мягких связных пород.

Гранулометрический состав характеризует осадочные породы в отношении их дисперсности, т.е. размеров слагающих частиц. Он выражает процентное содержание в породе групп частиц (фракций) различных размеров, взятых по отношению к массе абсолютно сухой породы. Размер фракций, слагающих ту или иную породу, выражают обычно в миллиметрах. Результаты гранулометрических анализов обычно приводят в виде таблиц, в которых показывают процентное содержание в породе различных фракций. Для наглядного представления о составе и степени однородности породы строят различные графики.

Мерой неоднородности гранулометрического состава песчаных и глинистых пород служит коэффициент неоднородности

где d60 – контролирующий диаметр частиц; d10 – действующий, или эффективный, диаметр частиц.

Под действующим, или эффективным, обычно понимают такой диаметр частиц, меньше которого в породе имеют 10 % от всех частиц. Контролирующим диаметром частиц называют такой, меньше которого в данной породе обладают 60 % частиц.

Чем больше КН, тем неоднороднее грунт. Если КН < 3, грунт считается однородным.

Для наглядности представления о составе и степени однородности породы строят различные диаграммы и графики (рис. 1-4).

Наиболее важными физическими свойствами песчаных и глинистых пород являются плотность, пористость и влажность.

2

d, мм

Рис. 1. Диаграмма гранулометрического состава однородной глинистой породы

d, мм

Рис. 2. Диаграмма гранулометрического состава неоднородной глинистой породы

3

d, мм

Рис. 3. Интегральные кривые гранулометрического состава глинистых пород

Рис. 4. Треугольная диаграмма для изображения гранулометрического состава глинистых пород

Плотность минеральной части горных пород ρS характеризует-

ся массой единицы объема минеральной части породы (в г/см3 или т/м3). Она определяется минеральным составом пород и выражает сред-

4

нюю плотность слагающих ее минералов. Плотность наиболее распространенных породообразующих минералов песчаных и глинистых пород изменяется в сравнительно небольших интервалах, вследствие чего и плотность минеральной части большинства этих пород изменяется мало. У легких, сильнопесчаных разностей глинистых пород, супесей и песков среднее значение плотности минеральной части равно 2,65 г/см3, у среднепесчаных (суглинки) – 2,70 г/см3, у тяжелых разностей глин –

2,75 г/см3.

Плотность породы ρ – это масса единицы ее объема при естественной влажности и сложении. Она определяется плотностью минеральной части, пористостью и влажностью породы. Обычно чем выше плотность минеральной части, тем выше и плотность породы, чем больше пористость, т.е. чем более рыхлую упаковку имеют частицы в единице объема породы, тем меньше ее плотность. При увеличении влажности при данной пористости порода становится тяжелее, плотность ее повышается. Численно она равна отношению массы породы к ее объему.

От плотности породы отличают плотность скелета ρd, под которой понимают массу единицы объема ее минеральной части естественного сложения, т.е. это масса единицы объема сухой породы естественного сложения. По плотности скелета грунты подразделяют согласно табл. 1.

Таблица 1

Тип грунта

ρd

Очень плотный

>2,50

Плотный

2,50-2,10

Рыхлый

2,10-1,20

Очень рыхлый

<1,20

Влажность породы W характеризуется количеством воды, заполняющей ее поры. В зависимости от степени влажности песчаные и глинистые породы могут находиться в различном физическом состоянии, в соответствии с которым (особенно у глинистых пород) изменяются их прочность, деформируемость и устойчивость. Численно влажность пород выражают отношением массы воды, заполняющей поры, к массе сухой породы в долях единицы или в процентах от массы сухой породы.

5

Указанные выше свойства взаимосвязаны и в целом выражают физическое состояние грунтов как в условиях естественного залегания, так и в земляных сооружениях (плотинах, дамбах, насыпях и др.). По основным физическим свойствам можно косвенно судить о прочности, деформируемости и устойчивости песчаных и глинистых пород, а также об их изменении под влиянием геологических процессов или искусственных факторов.

Очень важной дополнительной характеристикой физического состояния глинистых пород служит их консистенция IL, определяющая физическое состояние при определенной влажности. Термин "консистенция" употребляется главным образом для глинистых пород, которые при определенной влажности под воздействием внешних усилий приобретают определенную подвижность (деформируемость) и могут занимать промежуточное положение между жидкоили вязкотекучими и твердыми телами. Обычно величина IL характеризуется определенными влажностями, которые принято называть пределами консистенции.

Наиболее важными для определения физического состояния гли-

нистой породы являются предел текучести WL и предел пластичности

WР. Консистенцию грунтов определяют по формуле

IL = (W – WР)/ IР,

(2)

где IР – число пластичности; W – естественная влажность.

Предел текучести WL соответствует такой влажности, при незначительном превышении которой глинистая порода нарушенного сложения из полутвердого состояния переходит в пластичное. При значениях W, соответствующих пределам текучести и пластичности, происходит резкое изменение внутреннего сопротивления глинистых пород приложенным нагрузкам. Между пределами текучести WL и пластичности WР глинистые породы находятся в пластичном состоянии, когда под действием внешней силы они могут принимать различную форму и сохранять ее после устранения этой силы.

Разделение глинистых грунтов по величине консистенции приведено в табл. 2.

Интервал влажности, в пределах которого глинистая порода находится в пластичном состоянии, называется числом пластичности IР. Число пластичности определяют по разности между влажностями, соответствующими пределу текучести и пределу пластичности:

IР = WL – WР, % .

(3)

 

 

6

 

 

 

Таблица 2

 

 

 

Разновидность глинистых

 

Консистенция,

 

грунтов

 

IL

Супесь:

 

 

 

-

твердая

 

<0

-

пластичная

 

0-1

-

текучая

 

>1

Суглинки и глины:

 

 

-

твердые

 

<0

-

полутвердые

 

0-0,25

-

тугопластичные

 

0,25-0,50

-

мягкопластичные

 

0,50-0,75

-

текучепластичные

 

0,75-1,00

-

текучие

 

>1,00

Величина IР в значительной мере характеризует степень глинистости породы, поэтому ее используют для классификации глинистых отложений (табл. 3).

Таблица 3

Наименование породы

Значение, %

Глина

IР > 17

Суглинок

17 > IР >7

Супесь

7 > IР >1

К числу основных водно-физических свойств горных пород относится водопроницаемость, т.е. способность пропускать через себя воду под действием напора. Водопроницаемость песков, галечников и других рыхлых обломочных пород зависит от их пористости и скважности. Глинистые породы при небольших напорах очень слабоводопроницаемы или практически водонепроницаемы, так как размер пор в них мал. Движение воды, а также других жидкостей и газов через пористые горные породы называется фильтрацией. Следовательно, водопроницаемость песчаных и глинистых пород – это их фильтрационная способность.

Мерой водопроницаемости горных пород служит коэффициент фильтрации КФ, для его определения применяют прибор КФ-ООМ СПЕЦГЕО. Разделение грунтов по степени водопроницаемости приведено в табл. 4.

 

7

 

 

 

Таблица 4

 

 

 

Разновидность грунтов

 

Коэффициент фильтрации КФ,

 

 

м/сут

Водонепроницаемый

 

<0,005

Слабоводопроницаемый

 

0,005-0,3

Водопроницаемый

 

0,3-3

Сильноводопроницаемый

 

3-30

Очень сильноводопроницаемый

 

>30

Под углом естественного откоса понимают предельный угол наклона откоса, при котором порода в откосе находится в устойчивом состоянии – не осыпается, не оплывает и т.д. Настоящими методическими указаниями рекомендуется определять угол естественного откоса при помощи прибора УВТ-3.

3. Содержание работы

3.1.Изучение устройства комплекта приборов для лабораторных исследований физических свойств грунтов, методики подготовки образцов грунта и их испытания (2 часа).

3.2.Проведение испытаний для определения комплекса физических свойств песчаных и глинистых грунтов (10 часов).

3.3. Обработка, оформление и анализ результатов испытаний

(2 часа).

3.4. Ознакомление с результатами инженерно-геологических исследований грунтов на реальном объекте строительной геотехнологии

(2 часа).

Общая продолжительность выполнения лабораторных работ

16часов.

4.Описание комплекта приборов для проведения инженерно-геологических изысканий в полевых условиях

Всостав полевой лаборатории ПЛЛ-9 (полевая лаборатория Литвинова) входят следующие приборы и принадлежности: прибор для определения угла естественного откоса песчаных грунтов, комплект сеток для определения гранулометрического состава песчаных грунтов, прибор для определения пластичности глинистых грунтов, два нажимных

8

стакана для отбора грунта, толкатель, весы с разновесами, два подвеса, коробка с банками для определения пластичности, две коробки с компрессионными гильзами, воронка, четыре гильзы для определения физических показателей, компрессионный прибор.

Кроме приборов, находящихся в футляре, в состав полевой лаборатории ПЛЛ-9 входит сушильный шкаф.

Комплект сит (рис. 5) предназначен для гранулометрического анализа песчаных грунтов.

Рис. 5. Комплект сит для определения гранулометрического состава грунтов

В комплекте имеются сетки с размерами отверстий в свету: 0,1; 0,25; 0,5 и 2 мм. Размеры отверстий указаны на ободках сеток.

Прибор для определения пластичности глинистых грунтов (рис. 6) представляет собой балансирный конус 1 (угол при вершине 30°) с двумя противовесами 2, жестко закрепленными на нем так, что центр тяжести устройства в рабочем положении опущен ниже вершины конуса для устойчивости при измерениях. Конус имеет кольцевую риску в 10 мм от вершины и комплектуется чашкой для грунтовой пасты и подставкой. Общий вес балансирного конуса 76 г при допускаемом отклонении ± 2 г.

Толкатель предназначен для: перемещения отобранных проб грунта из грунтоотборных гильз в алюминиевые банки; уплотнения песчаных грунтов при определении коэффициента пористости в предельно плотном состоянии; использования в качестве пестика при растирании глинистых грунтов; в последнем случае на грибообразную рукоятку толкателя надевают резиновый колпачок, предохраняющий слабые

9

фракции грунта от раздробления в процессе их растирания. 1

2

Рис. 6. Прибор для определения пластичности глинистых грунтов

Основные алюминиевые банки предназначены для хранения отобранных образцов грунта. В этих банках определяют также природную влажность грунта.

Компрессионные гильзы, закрытые с двух сторон крышками, служат для упаковки и хранения отобранных монолитов грунта.

Компрессионный прибор (рис. 7) состоит из грунтоотборной гильзы 1, струбцины 2, штатива с воронкой 3 и рычажной системы 4. Основание прибора служит для опирания на него гильзы с образцом грунта. В выемку поверхности основания помещают сетку, снабженную отверстиями для пропуска воды. Под сеткой имеется свободное пространство. Две боковые трубки с ниппелями служат: одна для наполнения нижней части прибора водой 5, другая для вытеснения воздуха 6. Компрессионная гильза является обоймой для образца грунта при его испытании. Верхняя часть прибора 7 служит для установки поршня и вертикального его перемещения при испытании грунта. Специальный винт 8 позволяет закрепить шток поршня для предотвращения набухания образца грунта при насыщении его водой.

Воронка предназначена для подачи к исследуемому образцу грунта воды под разными напорными градиентами. Раздвижная трубка воронки обеспечивает установку ее на нужной высоте. Стеклянная трубка, вставляемая между двумя отрезками резиновой трубки, служит для отсчета объема воды, фильтрующейся через грунт. Для приложения нагрузки в приборе используют струбцину и рычажную систему 4 компрессионного прибора.

Для определения коэффициента фильтрации песчаных грунтов с

Лекция 1.

1. Основные понятия курса. Цели и задачи курса. Состав, строение, состояние и физические свойства грунтов.

1.1. Основные понятия курса.

Механика грунтов изучает физические и механические свойства грунтов, методы расчета напряженного состояния и деформаций оснований, оценки к устойчивости грунтовых массивов, давление грунта на сооружения.

Грунтом называют любую горную породу, используемую при строительстве в качестве основания сооружения, среды, в которой сооружение возводится, или материала для сооружения.

Горной породой называют закономерно построенную совокупность минералов, которая характеризуется составом структурой и текстурой.

Под составом подразумевают перечень минералов, составляющих породу. Структура – это размер, форма и количественное соотношение слагающих породу частиц. Текстура – пространственное расположение элементов грунта, определяющее его строение.

Все грунты разделяются на естественные – магматические, осадочные, метаморфические - и искусственные – уплотненные, закрепленные в естественном состоянии, насыпные и намывные.

1.2. Задачи курса механики грунтов.

Основной задачей курса является обучить студента:

- основным законам и принципиальным положениям механики грунтов;

- свойствам грунтов и их характеристики - физические, деформационные, прочностные;

- методам расчета напряженного состояния грунтового массива;

- методам расчета прочности грунтов и осадок.

1.3. Состав и строение грунтов.

Грунт является трехкомпонентной средой, состоящей из твердой, жидкой и газообразной компоненты. Иногда в грунте выделяют биоту – живое вещество. Твердая, жидкая и газообразная компоненты находятся в постоянном взаимодействие, которое активизируется в результате строительства.

Твердые частицы грунтов состоят из породообразующих минералов с различными свойствами:

- минералы инертные по отношению к воде;

- минералы растворимые в воде;

- глинистые минералы.

Жидкая составляющая присутствует в грунте в 3-х состояниях:

- кристаллизационная;

- связанная;

- свободная.

Газообразная составляющая в самых верхних слоях грунта представлена атмосферным воздухом, ниже – азотом, метаном, сероводородом и другими газами.

1.4. Структура и текстура грунта, структурная прочность и связи в грунте.

Совокупность твердых частиц образует скелет грунта. Форма частиц может быть угловатой и округлой. Основной характеристикой структуры грунта является гранулометрический состав, который показывает количественное соотношение фракций частиц различного размера.

Текстура грунта зависит от условий его формирования и геологической истории и характеризует неоднородность грунтовой толщи в пласте. Различают следующие основные виды сложения природных глинистых грунтов: слоистые, слитные и сложные.

Основные виды структурных связей в грунтах:

1) кристаллизационные связи присуще скальным грунтам. Энергия кристаллических связей соизмерима с внутрикристаллической энергией химической связи отдельных атомов.

2) водно-коллоидные связи обуславливаются электромолекулярными силами взаимодействия между минеральными частицами, с одной стороны, и пленками воды и коллоидными оболочками – с другой. Величина этих сил зависит от толщины пленок и оболочек. Водно-коллоидные связи пластичны и обратимы; при увеличении влажности они быстро уменьшаются до значений близких к нулю.

1.5. Физические свойства грунтов.

Представим себе некоторый объем трехкомпонентного грунта массой, разделенный на отдельные компоненты, где,,,,,— соответственно объем и масса твердой, жидкой и газообразной компонент грунта (рис. 1.1). Тогда ;, так как масса газообразной составляющей ничтожно мала и не оказывает влияния на результаты определений.

Плотность грунта (г/см3, т/м3) - отношение массы грунта к его объему:

. (1.1)

Удельный вес грунта (кН/м3): . (1.2)

Влажность грунта - отношение массы воды к массе твердых частиц, выражаемое в долях единицы, иногда в процентах:

. (1.3)

Плотность частиц грунта (г/см3, т/м3) определяется как отношение массы твердых частиц грунта к их объему:

. (1.4)

Плотность сухого грунта (плотностью скелета грунта) - отношение массы сухого грунта (частиц грунта) к объему всего грунта:

или . (1.5)

Пористость грунта - отношение объема пор ко всему объему грунта, что соответствует объему пор в единице объема грунта:

. (1.6)

Относительное содержание твердых частиц в единице объема грунта:

, тогда . (1.7)

Коэффициент пористости грунта - отношение объема пор к объему твердых частиц:

или . (1.8)

Степень влажности (степень водонасыщения) - отношение объема воды в порах грунта к объему пор и соответствует отношению влажности грунта к его полной влагоемкости:

или . (1.9)

По консистенции различают три состояния глинистого грунта: твердое, пластичное и текучее. Границами между этими состояниями являются характерные значения влажности, называемые границей раскатывания (нижний предел пластичности) играницей текучести (верхний предел пластичности) .

Число пластичности грунта - разница между границей текучести и границей раскатывания:

. (1.10)

Показатель текучести глинистого грунта:

. (1.11)

About Author


alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *