Как подобрать стабилизатор напряжения: Стабилизатор напряжения какой мощности выбрать – как выбрать и какой лучше

Как выбрать стабилизатор напряжения. Рекомендации по выбору стабилизатора напряжения

Чтобы приступить к выбору стабилизатора в первую очередь нужно понимать - для чего нужен стабилизатор напряжения?

Этот вопрос возникает достаточно часто, а вместе с ним и другой – что нужно знать перед тем, как выбрать стабилизатор напряжения?

Целью использования стабилизатора является защита бытовых электроприборов от перепадов напряжения и других дефектов электроснабжения, к которым можно отнести импульсные помехи и искажения синусоидальности.

выбор стабилизатора напряжения

Несмотря на то, что поставщик электроэнергии обязан обеспечивать ее надлежащее качество, а именно частоту 50 Гц и напряжение 220 В ±10%, зачастую эти требования не соблюдаются. На это влияет множество факторов, и что касается частоты, то с ней все в порядке, поскольку ее стабильность является залогом нормального функционирования всей энергетической системы.

А вот с напряжением дело обстоит вовсе не так гладко – в наших сетях можно наблюдать его колебания, иногда в достаточно широких пределах, а также резкие скачки. Электроприборы при этом работаю в экстремальных для себя условиях, что в конечном итоге может привести к преждевременному выходу их из строя.

Какой выбрать стабилизатор – трехфазный или однофазный?

Этот вопрос может возникнуть, только если имеется трехфазная сеть, поскольку при однофазной сети ответ очевиден – стабилизатор также должен быть однофазным.

однофазный стабилизатор напряжения

С трехфазной сетью не все так однозначно, поскольку во многих случаях можно обойтись однофазными стабилизаторами. Это позволит избежать отключения всей системы при потере напряжения на одной из фаз.

Несмотря на то, что на каждую фазу нужен отдельный стабилизатор, как правило три однофазных стабилизатора обходятся дешевле, чем один трехфазный. Без последнего никак не обойтись лишь в случае наличия хотя бы одного трехфазного потребителя.

Выбор стабилизатора по мощности

Мощность – это

основная характеристика стабилизатора, по которой и происходит его выбор. Совершенно понятно, что мощность стабилизатора должна быть немного больше, чем суммарная мощность всех потребителей. Таким образом, перед тем как выбрать стабилизатор напряжения нужно правильно определить суммарную потребляемую мощность приборов, которые предстоит защищать.

как выбрать стабилизатор для дома

Стоит учитывать, что потребляемая мощность подразделяется на активную и реактивную, из которых состоит полная потребляемая мощность прибора. Обычно на приборах указывается активная потребляемая мощность (в ваттах, Вт), но в зависимости от типа нагрузки следует учитывать и реактивную мощность. Таким образом, при расчете мощности стабилизатора нужно учитывать полную потребляемую мощность, которая измеряется в вольт-амперах (ВА).

формула мощности для выбора стабилизатора

  • S - полная мощность, ВА;
  • P - активная мощность, Вт;
  • Q - реактивная мощность, ВАр.

Активная нагрузка непосредственно преобразуется в другие виды энергии – световую или тепловую. Примерами устройств с чисто активной нагрузкой могут служить обогреватели, утюги и лампы накаливания. При этом если устройство имеет потребляемую мощность в 1 кВт, то для его защиты достаточно стабилизатора мощностью 1 кВА.

Реактивная нагрузка имеет место в приборах с электродвигателями, а также в различных электронных устройствах. В приборах с вращающимися элементами говорят об индуктивной нагрузке, а в электронике – о емкостной.

На таких приборах кроме потребляемой активной мощности в ваттах обычно указывается еще один параметр – коэффициент cos(φ). С его помощью можно без труда вычислить полную потребляемую мощность.

Для этого активную мощность нужно разделить на cos(φ). К примеру, электродрель с активной мощностью в 700 Вт и cos(φ) равным 0,75 имеет полную потребляемую мощность в 933 ВА. На некоторых приборах коэффициент cos(φ) не указывают. Для примерного расчета его можно брать равным 0,7.

формула нахождения полной мощности

Немаловажно при выборе стабилизатора учитывать то, что у некоторых приборов пусковой ток в несколько раз превышает номинальный. Примером таких устройств могут быть приборы с асинхронными двигателями - холодильники и насосы. Для их нормального функционирования нужен стабилизатор, чья мощность в 2-3 раза превышает потребляемую.

Таблица 1. Приблизительная мощность электроприборов и их коэффициент мощности cos (φ)

 Бытовые электроприборы   Мощность, Вт   cos (φ) 
 Электроплита 1200 - 6000 1
 Обогреватель 500 - 2000 1
 Пылесос 500 - 2000 0.9
 Утюг 1000 - 2000 1
 Фен 600 - 2000 1
 Телевизор 100 - 400 1
 Холодильник 150 - 600 0.95
 СВЧ-печь 700 - 2000 1
 Электрочайник 1500 - 2000 1
 Лампы накаливания 60 - 250 1
 Люминисцентные лампы 20 - 400 0.95
 Бойлер 1500 - 2000 1
 Компьютер 350 - 700 0.95
 Кофеварка 650 - 1500 1
 Стиральная машина 1500 - 2500 0.9
 Электроинструмент  Мощность, Вт  cos (φ)
 Электродрель
400 - 1000 0.85
 Болгарка 600 - 3000  0.8
 Перфоратор 500 - 1200 0.85
 Компрессор 700 - 2500 0.7
 Электромоторы 250 - 3000 0.7 - 0.8
 Вакуумный насос 1000 - 2500 0.85
 Электросварка (дуговая) 1800 - 2500  0.3 - 0.6 

Кроме того, сами изготовители настоятельно рекомендуют использовать стабилизаторы с 20-30% запасом мощности.

Точность стабилизации для оптимальной защиты приборов

При выборе стабилизатора следует также учитывать максимально допустимый диапазон перепада напряжения для приборов, которые предстоит защищать.

Если речь идет об защите осветительных приборов, то для них необходимо

выбирать стабилизатор с точностью стабилизации напряжения не менее 3%. Именно такая точность обеспечит отсутствие эффекта мерцания освещения даже при достаточно резких скачках напряжения в сети.

какие лучше выбрать стабилизаторы напряжения

Большинство бытовых электроприборов способны нормально работать при колебаниях напряжения в пределах 5-7%.

Как поступить – поставить один стабилизатор на всех потребителей, или на каждый отдельно?

Конечно, в идеале на каждый прибор, который необходимо защитить от скачков напряжения, следует ставит отдельный стабилизатор соответствующей мощности и точности стабилизации.

Однако с точки зрения материальных затрат такой подход не может быть оправданным. Поэтому чаще всего стабилизатор устанавливается на всю совокупность потребителей, и его мощность рассчитывается исходя из суммарной потребляемой мощности. Впрочем, возможен и другой подход.

К примеру, стабилизатором может быть защищен какой-либо один прибор. Кроме того, можно выделить группу электроприборов, защита которых от перепадов напряжения составляет насущную необходимость, и для их питания устанавливается стабилизатор, а остальные, не столь важные и чувствительные к перепадам, остаются без защиты.

Понравилась статья - сохрани на стену!

Выбор стабилизатора напряжения | Заметки электрика

Здравствуйте, уважаемые читатели сайта http://zametkielectrika.ru.

В прошлой статье я рассказывал Вам про необходимость установки стабилизатора напряжения для дома, показатели качества электрической энергии и типы стабилизаторов. Сегодня проведем выбор стабилизатора напряжения по мощности на примере своего дома (дачи) в деревне. В конце статьи я расскажу Вам про виды крепления и установку стабилизаторов напряжения.

Пример выбора стабилизатора напряжения для однофазной сети

Вы решили приобрести стабилизатор напряжения, но не знаете, как его правильно выбрать. Привожу наглядный пример выбора стабилизатора напряжения для своего «домика в деревне».

Пока речь завели про деревянный дом, то рекомендую Вам почитать мои следующие полезные статьи:

1. Однофазная или трехфазная сеть

Для начала необходимо узнать количество фаз питающего напряжения. В моем примере это однофазная сеть, поэтому мне будет достаточно выбрать один однофазный стабилизатор напряжения.

Если у Вас трехфазная сеть, то в таком случае необходимо выбирать трехфазный стабилизатор напряжения, либо три однофазных стабилизатора, соединив их  «звездой».

2. Мощность потребителей

Теперь нам нужно определиться с мощностью потребителей, для которых будем использовать стабилизатор напряжения. Это может быть один или несколько электроприемников. Также стабилизатор напряжения можно установить на вводе для абсолютно всех потребителей. Но об этом чуть позже.

Мощность всех потребителей выписываю в один список с указанием их активной мощности. Активная мощность измеряется в ваттах (Вт). Ее можно найти в руководстве (паспорте) на прибор или на корпусе самого прибора.

Вот мой составленный список:

Подход к расчету мощности для выбора стабилизатора напряжения должен быть рациональным, ведь у Вас не всегда включены в сеть все перечисленные выше потребители. Поэтому здесь нужно точно определиться, что у нас будет включено одновременно.

Если не хотите с этим «заморачиваться», то берите всю мощность.

Например, для себя я определил потребителей, которые могут быть включены одновременно:

Далее из полученного списка необходимо выбрать те приборы, в которых содержатся электродвигатели.

Это нужно нам для того, чтобы учесть их пусковые токи, которые достигают величину в 3-5 раз больше, чем номинальные. Пусковая мощность или пусковой ток этих потребителей можно найти в паспортах. Если паспортов уже давно нет, то можно воспользоваться приблизительным расчетом, умножив их номинальную мощность на 3. Я так и сделал.

Далее рассчитаем общую полную мощность. Полная мощность измеряется в вольт-амперах (ВА) и отличается от активной мощности на коэффициент мощности «косинус фи» (cosφ). Этот коэффициент всегда указан в паспортах на приборы. Опять же, если паспортов у Вас нет, то можно принять приближенный cosφ = 0,75.

Еще хочу заметить, что нагреватель и утюг имеют cosφ = 1, т.к. это чисто активная нагрузка, которая идет только на образование тепла.

Освещение в моем доме выполнено с помощью энергосберегающих ламп, у которых коэффициент мощности равен примерно cosφ = 0,9. Кому интересно, то можете почитать мою статью о том, почему мигают энергосберегающие лампы.

Для остальных потребителей принимаем средний коэффициент мощности, равный cosφ = 0,75.

Чтобы перевести активную мощность в полную мощность необходимо разделить активную мощность на cosφ.

В итоге получаем суммарную полную мощность наших потребителей: 12322,22 + 12600 = 24922,22 (ВА) или 24,9 (кВА).

Можно округлить до 25 (кВА).

3. Фактическое напряжение сети

После расчета потребляемой мощности необходимо измерить фактическое напряжение питающей сети. Сделать это можно самостоятельно, воспользовавшись мультиметром. Более подробно об этом я писал в статье: «Как пользоваться мультиметром при измерении напряжения».

Еще вариант, это пригласить специалистов для проведения энергоаудита, но это обойдется Вам дороже. Они установят приборы на 24 часа для анализа качества электрической энергии и в конце выдадут Вам подробный отчет.

Допустим Вы зафиксировали, что напряжение в сети в вечернее время у Вас составляет 180 (В).

4. Выбор мощности стабилизатора напряжения

Номинальная полная мощность стабилизатора напряжения всегда указывается в вольт-амперах (В) и соответствует питающему напряжению 220 (В).

При снижении питающего напряжения, соответственно, снижается его выходная мощность. Также хочу сказать Вам, что не допускается длительная работа стабилизатора напряжения при пониженном напряжении, т.к. это вызывает перегрузку и может привести к его отключению, что приведет к обесточиванию всех потребителей.

Чтобы избежать таких последствий, необходимо к полученной полной мощности наших потребителей 25 (кВА) добавить коэффициент нижнего предела напряжения стабилизатора, который равен 1,2 при 180 (В), и 1,3 — при напряжении 170 (В). В нашем случае напряжение в вечернее время составляет 180 (В), поэтому применяем коэффициент 1,2.

25 · 1,2 = 30 (кВА)

Чтобы была возможность использовать стабилизатор напряжения длительное время со всей включенной нагрузкой, необходимо к полученной выше мощности добавить коэффициент запаса по мощности, равный 1,25.

30 · 1,25 = 37,5 (кВА)

Остается только выбрать стабилизатор напряжения из предложенных моделей, зная его необходимую мощность. Например, нам подойдет стабилизатор напряжения мощностью 40 (кВА) и больше.

 

Как выбрать стабилизатор напряжения для трехфазной сети

Выбор стабилизатора напряжения для трехфазной сети практически аналогичен. Производим расчет мощности для какой-то одной фазы, желательно наиболее загруженной. По этой фазе замеряем фактическое напряжение в сети в часы пиковых нагрузок. Полную мощность в вольт-амперах, умножаем на 3 (количество фаз).

Запас по мощности делаем порядка 10%.

Полученное значение и есть полная мощность стабилизатора напряжения для трехфазной сети. По этой мощности из всего ассортимента предлагаемой продукции выбираем необходимый стабилизатор напряжения.

А вообще выбор стабилизатора напряжения лучше доверить специалистам. Так будет надежнее.

Иногда меня спрашивают, можно ли вместо трехфазного стабилизатора напряжения приобрести три однофазных? Да конечно можно, так будет даже дешевле и практичнее. Например, при обрыве одной питающей фазы, остальные фазы будут в рабочем состоянии. Но если у Вас в доме имеется хоть какая нибудь трехфазная нагрузка, то в любом случае Вам нужен трехфазный стабилизатор напряжения, потому что он ведет контроль фаз по линейному напряжению сети. И если хоть одна фаза оборвется, то стабилизатор полностью отключается.

Еще два не менее важных совета по выбору стабилизатора напряжения для трехфазной сети:

  • стабилизаторы должны быть установлены в каждой фазе (оставлять без стабилизатора напряжения хоть одну фазу запрещено)
  • нагрузка по каждому стабилизатору напряжения должна быть примерно равная, иначе в нуле пойдет большой ток, который может вывести стабилизатор из строя
  • если разница линейных напряжений сети составляет более 25%, то стабилизаторы напряжений устанавливать запрещено

Функция BYPASS

Для начала давайте определимся что это за функция BYPASS (Байпас) и нужна ли она нам?

Практически во всех стабилизаторах мощностью от 3 (кВА) имеется функция BYPASS (Байпас). Включив автомат с этой надписью, стабилизатор на выходе выдает входное напряжение. Удобна эта функция тогда, когда напряжение в сети понижается не всегда, а например, только по вечерам, как в моем случае.

 

Выбор стабилизатора напряжения. Функция задержки

Еще одна из удобных функций стабилизатора напряжения, на которую стоит обратить внимание при покупке. Это функция задержки включения выходного напряжения, когда питающее напряжение вышло за пределы входного напряжения стабилизатора или совсем пропало. Существует несколько регулировок задержки — у разных производителей по-разному.

Крепление и установка стабилизатора напряжения

Стабилизатор напряжения можно крепить двумя способами:

  • на полу
  • на стене

Установка стабилизатора напряжения на полу или на полке применима к стабилизаторам небольшой мощности. У них малые габариты и вес. Например, мой небольшой и старенький стабилизатор напряжения «Ресанта» мощностью всего 0,5 (кВА) установлен прямо на подоконнике окна.

Более мощные стабилизаторы напряжения целесообразно размещать на стене, поэтому они выпускаются немного плоскими. Хотя по желанию их тоже можно установить на полу.

 

Заключение по выбору стабилизатора напряжения

В конце данной статьи хочу сделать небольшой вывод. Я показал пример расчета и выбора стабилизатора напряжения для однофазной сети. Мы получили, что стабилизатор напряжения для наших потребителей должен быть мощностью не ниже 37,5 (кВА). Можно идти покупать, но я задумался о его стоимости. Ведь стабилизатор напряжения такой мощности стоит совсем не дешево.

Как вариант можно через него не запитывать нагреватель и утюг, ведь при понижении напряжения в сети они будут лишь медленнее нагреваться. Остальным потребителям необходима только  качественная электрическая энергия. Если воспользоваться таким вариантом, то можно немного сэкономить.

P.S. На этом я заканчиваю статью на тему выбора стабилизатора напряжения. Если у Вас есть вопросы, то спрашивайте в комментариях. Можете поделиться данной статьей с друзьями и коллегами, особенно владельцев дач и домов. Спасибо.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


основные критерии, принцип работы, недостатки и преимущества

Электронный стабилизатор напряжения картинка

06.05.2019

Электронные стабилизаторы напряжения широко используются в быту для защиты техники от перепадов напряжения. В отличие от релейных стабилизаторов, эти приборы не содержат механических или электромеханических компонентов, что дает им более лучшие технические возможности. Для преобразования напряжения в них применяются полупроводниковые элементы – тиристоры или симисторы.

В данной статье мы расскажем об электронных стабилизаторах, их особенностях, принципах работы и сферах применения, а также раскроем их недостатки и выделим достоинства.

Устройство и принцип действия электронного стабилизатора

Электронный стабилизатор обычно состоит из следующих компонентов:

  • измерителей входного и выходного напряжения;
  • управляющей микросхемы, которая анализирует данные от измерителей и при необходимости включает процесс преобразования напряжения;
  • трансформатора с возможностью переключения обмоток для регулировки напряжения;
  • блока электронных ключей (тиристоров или симисторов), который управляет переключением обмоток.

Структурная схема электронного стабилизатора картинка

Принцип действия электронного стабилизатора может быть описан следующим образом:

при изменении напряжения в питающей сети фиксируется разница между фактическим и номинальным его значением. Управляющий микропроцессор подает сигнал на включение определенного силового ключа, коммутирующего именно ту секцию обмотки трансформатора, коэффициент трансформации которой обеспечит наиболее приближенное к номиналу значение выходного напряжения.

Таким образом, принцип действия электронных стабилизаторов во многом схож с работой устройств релейного типа. Если в последних коммутация необходимых обмоток автотрансформатора осуществляется при помощи электромеханических реле, то в электронных устройствах вместо них используются отличающиеся гораздо более высоким быстродействием силовые полупроводниковые ключи - тиристоры или симисторы.

Также конструкция электронного стабилизатора предусматривает работу в режиме «байпас» – когда сетевое напряжение находится в пределах нормы, электричество направляется в обход трансформатора и непосредственно подается потребителю.

Таким образом, питание электроприборов через электронный стабилизатор напряжения осуществляется следующим образом:

  1. Если параметры электротока соответствуют нормативным, он проходит через байпас, не нагружая основные цепи стабилизатора.
  2. Если происходит падение или возрастание напряжения, измеритель на входе стабилизатора фиксирует это изменение.
  3. Управляющая микросхема стабилизатора отдает соответствующую команду и срабатывает блок электронных ключей.
  4. В цепь включаются обмотки трансформатора, которые осуществляют преобразование напряжений до нужного уровня.

В чем разница между симисторным и тиристорным стабилизатором?

Электронные стабилизаторы могут строиться на основе тиристоров или симисторов.

Принцип работы тиристора

Принцип работы симистора

Тиристор представляет собой полупроводниковый элемент, который позволяет управлять прохождением тока.

Он пропускает ток только в одном направлении и имеет два состояния - «открыто» или «закрыто». Ими можно управлять с помощью подачи импульса на один из входов.

В стабилизаторе тиристор используется для подключения обмотки трансформатора.

Симистор функционирует сходным c тиристором образом. Его название представляет собой сокращение от слов «симметричный тиристор».

Главное отличие от тиристора заключается в том, что симистор пропускает ток в двух направлениях. Поэтому в симисторном стабилизаторе при тех же параметрах можно использовать в два раза меньше электронных компонентов. Это делает его более компактным и надежным.

Достоинства и недостатки электронных стабилизаторов

Ниже представлены основные достоинства и недостатки электронных стабилизаторов по сравнению с релейными приборами. Они обусловлены, в первую очередь, строением и особенностями метода преобразования напряжения электронных стабилизаторов.

Достоинства

Недостатки

  1. Не имеют механических элементов, поэтому издают меньше шума при работе и считаются в целом более надежными.

  2. Реагируют на изменения параметров электросети быстрее.

  3. Имеют меньший шаг изменения при регулировке напряжения, что позволяет добиться более высокой точности стабилизации – от 5 до 10 %.

  4. Электронные ключи, в отличие от реле, весьма компактны, а значит, их количество можно увеличить без существенного увеличения размеров устройства.

  1. Выходное напряжение имеет форму, отличную от синусоидальной (трапециевидную или с другими искажениями, в зависимости от конкретной модели стабилизатора).

  2. Точности, которую дает ступенчатая регулировка напряжения, может оказаться недостаточно для питания устройств, чувствительных к качеству электроснабжения.

  3. Более высокая стоимость в сравнении с релейными моделями.

Сферы применения электронных стабилизаторов напряжения

Такие преимущества электронных стабилизаторов перед релейными устройствами, как более высокая скорость и точность регулирования напряжения, бесшумность в работе, надежность и длительность ресурса работы, благодаря отсутствию механических элементов коммутации, обеспечивают их широкое применение в домашних условиях для защиты бытовой нагрузки, не имеющей в своем составе электромоторов, например, телевизионной и кухонной техники, а также приборов освещения.

Серьезным ограничением области применения электронных стабилизаторов является отличие формы выходного напряжения от синусоидальной, а также недостаточно высокая точность стабилизации.

Крайне не рекомендуется подключать высокоточное чувствительное оборудование к электронным стабилизаторам. Например, определенные проблемы могут возникнуть при работе с:

  • устройствами, в составе которых есть электродвигатель (насосами, системами отопления) – выходное напряжение стабилизатора, имеющее неправильную форму кривой, может привести к выходу двигателя из строя;
  • профессиональным аудио- и видеооборудованием – помехи, создаваемые при ступенчатом переключении, отрицательно скажутся на качестве картинки и звука;
  • компьютерной техникой – точности, которую дает ступенчатая регулировка напряжения, может оказаться недостаточно.

Таким образом, полностью обеспечить электропитание загородного дома или коттеджа с помощью электронного стабилизатора не получится, поскольку через него нельзя будет запитать часть чувствительного оборудования с электродвигателями, например, насосы системы водоснабжения.

Подключение нагрузки к электронному стабилизатору картинка

Критерии выбора электронного стабилизатора

При выборе электронного стабилизатора следует руководствоваться следующими техническими характеристиками устройства.

Мощность стабилизатора

Одна из важнейших характеристик устройства независимо от его типа, которая определяется в соответствии с суммарной мощностью потребления подключаемой нагрузки.

Для активной нагрузки мощность стабилизатора рекомендуется выбирать с небольшим резервом в 20-30%, для нагрузок с высокой реактивной составляющей запас по мощности рекомендуется взять большим.

Скорость стабилизации напряжения

Не менее важный параметр стабилизатора. Время коррекции практически одинаково у всех моделей этого типа. По скорости стабилизации электронные стабилизаторы безусловно являются лидерами среди устройств, использующих для преобразования напряжения автотрансформатор.

Точность регулирования

Показатели данной характеристики во многом определяются количеством дискретных ступеней регулирования - установленных полупроводниковых ключей (мощных тиристоров или симисторов). Чем их в схеме больше, тем меньше проявляется ступенчатость регулирования и на выходе устройство будет способно выдавать напряжение со значением, более приближенным к номинальному.

Рабочий диапазон входного напряжения

Нижним и верхним его порогами определяются минимальное и максимальное напряжения питающей сети, при которых устройство сможет работать, сохраняя заявленную точность стабилизации, а также защитное срабатывание - отключение стабилизатора при выходе значений входного напряжения за пределы рабочего диапазона.

Диапазон допустимых температур эксплуатации

В стабилизаторах электронного типа отсутствуют механически коммутируемые контакты, поэтому устройства неплохо переносят резкие перепады температур окружающей среды. Выбор устройства необходимо делать в соответствии этой характеристики с условиями эксплуатации.

Тип исполнения корпуса

Требуемое исполнение зависит от площади, геометрии помещения, близости расположения отопительных и нагревательных приборов и т. д. По типу корпуса стабилизаторы можно разделить на:

  • навесные - с креплением на стену;
  • стоечные - предназначенные для установки в стандартные 19-дюймовые шкафы или стойки;
  • напольные - устанавливаемые на горизонтальную поверхность.

Средства индикации и мониторинга

Довольно востребованными опциями является возможность мониторинга состояния сети и параметров работы стабилизатора, реализованного выводом данных на ЖК-дисплей или светодиодов индикации. При необходимости организации удаленного мониторинга и управления следует учитывать наличие коммуникационных интерфейсов и используемых соответствующих протоколов передачи данных.

Инверторный стабилизатор напряжения как альтернатива электронным стабилизаторам

В связи с описанными выше недостатками электронные стабилизаторы постепенно уходят в прошлое. Они стоят дороже, чем релейные приборы, но при этом все равно не обеспечивают достаточной точности и качества выходного напряжения. В качестве альтернативы для бытового использования многие все чаще используют инверторные стабилизаторы. В них применяется более современный метод преобразования, который позволяет избавиться от недостатков, свойственных устройствам на симисторах и тиристорах.

В инверторном стабилизаторе напряжение, поступающий на вход, преобразуется в постоянное, а затем снова в переменное, но уже с нужными параметрами. Благодаря этому обеспечивается форма идеальной синусоиды и достигается высокая точность стабилизации (2 %).

Инверторные стабилизаторы работают практически бесшумно и имеют полный набор защит: от перегрузок, перегрева, коротких замыканий, аварий в сети. Они являются оптимальным вариантом, если нужно обеспечить питание дорогостоящих устройств, чувствительных к перебоям в электропитании - компьютерной техники, систем отопления, котлов с электронным управлением, систем безопасности загородного дома.

Купив инверторный стабилизатор, вы сможете обеспечить надежную подачу электроэнергии на все электроприборы, которые используются в доме: от мелкой бытовой техники до систем водоснабжения и отопления. Технические особенности инверторного стабилизатора делают его сферу применения намного шире, чем у электронных моделей.

Читайте также:

Модельный ряд инверторных стабилизаторов «Штиль»

Виды стабилизаторов напряжения. Их схемы, принцип работы, плюсы и минусы

Виды стабилизаторов напряжения картинка

13.04.2018

В настоящее время возрастает спрос на стабилизаторы напряжения. Это связано как с активным использованием этих электроприборов во всех сферах жизнедеятельности современного человека, так и с периодически возникающими в сетях проблемами с качеством электроэнергии.

Специализированные магазины и интернет-сайты предлагают большой выбор стабилизаторов отечественного и зарубежного производства, удовлетворяющих практически любые запросы покупателей. Однако следует понимать, что каждый стабилизатор, несмотря на его мощность и стоимость, построен по типовой схеме (топологии), в основе которой – определённый физический принцип стабилизации электрической энергии. Всего таких топологий пять:

  • феррорезонансная;
  • электромеханическая;
  • релейная;
  • полупроводниковая;
  • инверторная.

Практически все виды стабилизаторов напряжения имеют свои преимущества и недостатки, которые в основном обусловлены схемой их построения. Основные параметры устройств каждого типа требуют пристального изучения, так как именно от их значений зависит эффективность работы выбранной модели стабилизатора с различной современной аппаратурой.

Феррорезонансные стабилизаторы

f.jpgФеррорезонансный стабилизатор

Это первые стабилизаторы, получившие широкое распространение в нашей стране. Начало их массового использования в 50-60-х годах ХХ века связано с появлением ламповых телевизоров и прочей бытовой техники, требующей защиты от сетевых колебаний.

Устройство и принцип работы. Стабилизаторы такого типа отличаются от большинства более современных моделей простотой электронной схемы и отсутствием автотрансформатора. Они понижают или повышают значение напряжения за счёт эффекта феррорезонанса – электромагнитного взаимодействия между двумя дросселями один из которых имеет ненасыщенный сердечник (входной), а второй насыщенный (выходной).

Преимущества. Феррорезонансные стабилизаторы не имеют склонных к поломкам подвижных компонентов, что обеспечивает их надёжность и большой ресурс безотказной работы – некоторые изделия советского производства до сих пор находятся в обиходе и исправно выполняют свою работу. Другие преимущества данной топологии:

  • надёжность и большой ресурс безотказной работы благодаря отсутствию склонных к поломкам подвижных компонентов;
  • высокая точность выходного напряжения за счёт плавного, безразрывного регулирования сетевого сигнала;
  • устойчивость к неблагоприятным условиям окружающей среды;
  • быстродействие.

Недостатки. Отвечающее современному уровню комфорта бытовое использование феррорезонансных стабилизаторов осложняется рядом свойственных им недостатков:

  • шумность работы – гул от встроенных трансформаторов ощущается даже через стену;
  • повышенное тепловыделение;
  • большой вес и крупные габариты;
  • малый диапазон регулируемого входного напряжения – более узкий, чем предельные значения отклонений, встречающихся в отечественных сетях;
  • невысокий КПД вследствие значительных потерь энергии на нагрев;
  • неспособность работать при перегрузках и на холостом ходу;
  • искажения синусоиды.

Стоить отметить, что все указанные недостатки характерны в первую очередь для классических феррорезонансных стабилизаторов первых поколений, в устройствах нового образца они максимально снижены или полностью исключены. Существенный минус современных моделей этой топологии - это их высокая цена, превышающая не только стоимость изделий других типов, но и on-line ИБП соответствующей мощности.

Применение. Несмотря на серьезные сдвиги в разработке более производительных, мощных и надежных преобразователей напряжения, устаревшие феррорезонансные стабилизаторы все еще пользуются спросом при работе с неприхотливой техникой такого же старого поколения. Приборы этой группы - не самый удачный вариант для бытового пользования по причине высокого уровня шумов и громоздкости конструкции, однако вполне могут быть использованы в подсобных помещениях или на загородных усадьбах при плюсовых температурах.

Электромеханические стабилизаторы

элмех.jpgЭлектромеханический стабилизатор

Устройство и принцип работы. Стабилизаторы данного типа появились практически одновременно с феррорезонансными, но имеют отличные от них конструкцию и принцип работы. Главные элементы любого устройства данной топологии – автотрансформатор и подвижный токосъёмный контакт, выполненный в виде ролика, ползунка или щетки. Указанный контакт перемещается по обмотке трансформатора, вследствие чего происходит плавное увеличение или уменьшение коэффициента трансформации и соответствующее изменение (коррекция) поступающего из сети напряжения. Первые электромеханические стабилизаторы имели ручную регулировку – специальный бегунок передвигался по катушке и отключал или подключал витки до количества, необходимого для достижения номинального значения выходного напряжения. В современных устройствах этот процесс автоматизирован: плата управления анализирует входной ток и в случае отклонения его параметров сигнализирует сервоприводу, перекатывающему коммутационный контакт на сегмент тороидальной обмотки автотрансформатора с напряжением, максимально приближенным к номинальному.

Схема электромеханического стабилизатора картинка

Рисунок 1 – Схема электромеханического стабилизатора напряжения

Преимущества. Основное достоинство электромеханического принципа стабилизации напряжения – непрерывное регулирование с высокой точностью и без искажения синусоидальной формы сигнала. Также ключевым преимуществом является самая низкая стоимость электромеханических стабилизаторов на отечественном рынке.

Недостатки. Эти устройства имеют и ряд существенных недостатков, делающих их не самым оптимальным решением для защиты многих видов нагрузки, а именно:

  • низкое (за исключением некоторых моделей) быстродействие – скорость реакции на изменение входного сигнала ограничивается временем, требуемым сервоприводу для срабатывания;
  • возникновение кратковременных скачков выходного напряжения при резких перепадах входного, что пагубно влияет на чувствительные электронные компоненты защищаемого оборудования и осложняет применение в сетях с сильными перепадами напряжения;
  • низкое качество фильтрации входных электромагнитных помех и трансляция возмущающего воздействия на выход устройства;
  • низкая надежность из-за механически движущихся деталей, что значительно сокращает срок эксплуатации устройства, из-за чего именно этот тип стабилизаторов чаще всего выходит из строя.

Дополнительные неудобства при эксплуатации электромеханических стабилизаторов в домашних условиях создают:

  • повышенный уровень шума и возможное искрение при работе – следствие движения сервопривода по виткам катушки;
  • громоздкая конструкция, большое количество механических узлов и деталей, и, соответственно, большой вес;
  • необходимость периодического обслуживания подверженного износу узла механического контакта, надёжность которого снижается пропорционально числу срабатываний.

Кроме того, приборы этой группы могут давать сбои при длительном использовании в условиях отрицательной температуры – такому оборудованию комфортнее в отапливаемых помещениях.

Применение. Перечисленные недостатки обуславливают ограниченную сферу применения электромеханических стабилизаторов - они все еще востребованы в сетях без молниеносных скачков напряжения. Разумеется, такие устройства не подходят для бытового использования в домашних условиях, но вполне удачно используются в качестве временной стабилизации напряжения в подсобном хозяйстве, гаражах, небольших мастерских - там, где снижение температуры незначительно. Хотя рассматриваемый тип преобразователей постепенно уходит в прошлое и уступает место более современным конструкциям на релейной и тиристорной основе.

Релейные стабилизаторы

реле2.jpgРелейный стабилизатор

Устройство и принцип работы. Приборы этой топологии относятся к электронным устройствам, действие которых построено на базе дискретного (ступенчатого) принципа стабилизации электроэнергии. Он заключается в автоматическом переключении обмоток автотрансформатора и выбора той, напряжение на которой максимально близко к номинальному. Коммутация необходимых для повышения или снижения входного напряжения контуров происходит благодаря срабатыванию силовых электронных реле (отсюда и название данной разновидности стабилизаторов). Управление процессом осуществляет специальный блок. Он контролирует характеристики сетевого напряжения и при их отклонении от установленного значения включает в работу ту или иную ступень стабилизации (количество ступеней соответствует числу установленных реле).

Схема релейного стабилизатор картинка

Рисунок 2 – Схема релейного стабилизатора напряжения

Преимущества. Основное преимущество этих устройств перед электромеханическими аппаратами устаревших конструкций – повышенная скорость срабатывания (не более 10-20 мс). Кроме того, релейные стабилизаторы обладают простейшей структурой, в которой исключены сложные узлы и дорогостоящие компоненты, что упрощает их техническое обслуживание и ремонт. Ремонтные работы, как и сами приборы, отличаются низкой стоимостью. Релейные стабилизаторы не боятся перегрузок, чем и обусловлен их длительный срок эксплуатации. Также этот тип устройств выделяется сравнительно небольшими габаритами и малым весом. Они не требуют дополнительного охлаждения и отлично справляются со своими функциями в условиях отрицательных температур.

Недостатки. Главный недостаток релейных стабилизаторов напряжения – дискретное (неплавное) регулирование. Он обусловлен принципом работы и проявляется в виде мигания электрических ламп при переключении ступеней стабилизации. Cтупенчатая корректировка напряжения также:

  • снижает точность стабилизации (может достигать 10%), при этом рост быстродействия релейных устройств неминуемо повышает погрешность в их работе;
  • способствует трансляции искажений сетевой синусоиды на выход устройства.

Релейная топология сохраняет и ряд минусов присущих электромеханическим изделиям:

  • работа стабилизатора не бесшумна – срабатывание сопровождается звуковым эффектом подобным щелчку;
  • реле подвержены механическому износу, в меньшей степени чем элементы сервопривода, но тенденция к ухудшению качества работы с увеличением срока эксплуатации сохраняется.

Применение. Релейные стабилизаторы подходят для защиты маломощных приборов в сетях, характеризующихся небольшими колебаниями напряжения. Вышеперечисленные недостатки говорят о недостаточном соответствии приборов этой группы требованиям по защите современной электроники, чувствительной к малейшим отклонениям питающего напряжения.

Тиристорные стабилизаторы

тиристр.jpgТиристорный стабилизатор

Устройство и принцип работы. Данные устройства можно рассматривать как результат развития и усовершенствования дискретного принципа стабилизации. Их конструкция и принцип работы схожи с аппаратами релейной топологии. Главное различие состоит в том, что переключение обмоток автотрансформатора выполняют не реле, а полупроводниковые силовые ключи – тиристоры, увеличивающие точность стабилизации и делающие работу устройства практически бесшумной.

Преимущества. Исполнительные блоки на базе полупроводниковых элементов не имеют механических деталей и обеспечивают минимальное время реакции на изменение входного напряжения (однако некоторая задержка всё-таки сохраняется). Кроме бесшумной работы, быстродействия и увеличенной (относительно релейных моделей) точности стабилизации тиристорные стабилизаторы обладают следующими преимуществами:

  • долговечность и надежность – полупроводниковые компоненты не подвержены механическому износу и имеют большой рабочий ресурс;
  • широкий диапазон сетевого напряжения – возможна работа с большинством предельных отклонений;
  • отсутствие генерации электромагнитных помех при работе;
  • устойчивость к низким и высоким температурам окружающей среды;
  • скромные габариты и небольшой вес;
  • высокий КПД - отсутствие обмоток, реле и движимых элементов снижает уровень собственного энергопотребления.

Недостатки. Применение тиристорных ключей не способно полностью исключить основной недостаток дискретного принципа работы – ступенчатые скачки напряжения. Они неминуемо возникают при переключении трансформаторных обмоток и снижают точность стабилизации, повышение которой, как и в релейных моделях, негативно влияет на быстродействие устройства. Даже самые современные стабилизаторы на полупроводниковых элементах не гарантируют безразрывное электропитание и сигнал идеальной синусоидальной формы. Определённые проблемы могут возникнуть, например, при работе с профессиональным аудио-видео оборудованием – помехи создаваемые при ступенчатом переключении отрицательно скажутся на качестве картинки и звука. Ещё один минус тиристорных стабилизаторов – чувствительность к перегрузкам, которые могут привести к выходу из строя электронных ключей и дорогостоящему ремонту.

Схема тиристорного/симисторного стабилизатора картинка

Рисунок 3 – Схема электронного стабилизатора напряжения

Симисторные стабилизаторы

симистр.jpgСимисторный стабилизатор

Поскольку симисторы являются одним из типов тиристоров, то и принцип работы стабилизаторов на их базе существенно не различаются. Разница заключается в том, что в отличие от тиристоров, симисторы способны пропускать ток в обоих направлениях, поэтому нет необходимости в параллельно-встречном подключении двух тиристоров. Также при подключении индуктивной нагрузки симисторы более уязвимы для скачков напряжения, нежели тиристоры, и требуют дополнительной защиты. Хотя этот недостаток компенсируется тем, что в симисторных устройствах применяется более простая электронная схема.

В целом же симисторные стабилизаторы обладают теми же преимуществами, что и тиристорные:

  • низкий уровень шума при работе;
  • быстрое реагирование на сетевые изменения, скорость составляет 10-20 мс;
  • высокий уровень КПД, достигающий 98%, что выделяет их среди конкурентов более старых поколений;
  • устойчивость к перегрузкам - например, тиристорные стабилизаторы способны проработать до 12 часов при перегрузке в 20%;
  • долговечность прибора при работе на износ, но в то же время дорогостоящий ремонт в случае выхода из строя одного из компонентов;
  • способность выдерживать температурные перепады, но уязвимость для повышенных уровней влажности.

Также устройства не лишены некоторых недостатков:

  • низкая точность регулирования, обусловленная ступенчатой стабилизацией;
  • более габаритная конструкция, по сравнению с тиристорными стабилизаторами;
  • высокая стоимость в сравнении с релейными моделями.

Подводя итог по тиристорным и симисторным моделям следует уточнить, что по параметрам они не намного превосходят релейные стабилизаторы, хотя их стоимость выше и в случае возникновения неисправности замена электронных компонентов обойдется дороже. Тем не менее, такие приборы пользуются спросом и в домашних условиях, и на даче, поскольку неприхотливы к окружающей среде и в то же время не создают шума. Однако крайне не рекомендуется подключать высокоточное оборудование к тиристорным/симисторным стабилизаторам.

Инверторные стабилизаторы

6789aa20716d25235945c74491635854.jpgСовременные инверторные стабилизаторы Штиль серии "Инстаб"

Это наиболее «молодой» вид стабилизаторов – серийное производство начато в конце 2000-х годов. Инновационная конструкция и характеристики, недоступные для моделей других топологий, делают данные устройства прорывом в стабилизации электрической энергии.

Устройство и принцип работы. Принцип действия данных устройств схож с on-line ИБП и построен на базе прогрессивной технологии двойного преобразования энергии. Сначала выпрямитель превращает входное переменное напряжение в постоянное, которое затем накапливается в промежуточных конденсаторах и подаётся на инвертор, осуществляющий обратное преобразование в переменное стабилизированное выходное напряжение. Инверторные стабилизаторы кардинально отличаются от релейных, тиристорных и электромеханических по внутреннему строению. В частности, в них отсутствует автотрансформатор и любые подвижные элементы, в том числе и реле. Соответственно, стабилизаторы двойного преобразования избавлены от недостатков, присущих трансформаторным моделям.

Преимущества. Алгоритм работы этой группы устройств исключает трансляцию любого внешнего возмущающего воздействия на выход, что обеспечивает полную защиту от большинства проблем электроснабжения и гарантирует питание нагрузки напряжением идеальной синусоидальной формы со значением максимально приближенным к номинальному (точность ±2%). Кроме того, инверторная топология устраняет все недостатки характерные другим принципам стабилизации электрической энергии и обеспечивает моделям, реализованным на её базе, уникальное быстродействие – стабилизатор реагирует на изменение входного сигнала мгновенно, без задержек во времени (0 мс)!

Другие важные преимущества инверторных стабилизаторов:

  • максимально широкие границы рабочего сетевого напряжения – от 90 до 310 В, при этом идеальная синусоидальная форма выходного сигнала сохраняется во всем указанном диапазоне;
  • непрерывное бесступенчатое регулирование напряжения – исключает ряд неприятных эффектов, связанных с переключением порогов стабилизации в электронных (релейных и полупроводниковых) моделях;
  • отсутствие автотрансформатора и подвижных механических контактов – повышает ресурс работы и снижает массу изделия;
  • наличие входного и выходного фильтров высоких частот – эффективно подавляют возникающие помехи (присутствуют не во всех моделях, характерны в частности для продукции ГК «Штиль» – ведущего производителя инверторных стабилизаторов).

Возникает закономерный вопрос - есть ли недостатки у инверторных устройств? Единственным и в то же время спорным недостатком является более высокая цена. Но учитывая технические требования современной бытовой техники и одновременно сохраняющуюся тенденцию перепадов сетевого напряжения, инверторные стабилизаторы сегодня являются самым экономически оправданным вариантом для постоянного пользования как в частных домах и загородных коттеджах, так и на промышленных объектах. Они гарантируют устойчивое, корректное функционирование дорогостоящей бытовой техники и чувствительных электронных устройств при любом качестве питающей электросети.

Схема инверторного стабилизатора картинка

Рисунок 4 – Схема инверторного стабилизатора напряжения

Подробнее по этой теме читайте ниже:

Инверторные стабилизаторы напряжения «Штиль». Модельный ряд.

Технические преимущества инверторных стабилизаторов «Штиль»

Как рассчитать мощность стабилизатора напряжения для дома

Правильный подбор стабилизатора напряжения необходимо выполнять по основному параметру – общей мощности электроприборов, которые необходимо защитить от чрезмерной нагрузки и перепадов напряжения, подключенных к определенной сети питания.

Однофазные устройства устанавливают чаще всего для создания качественных параметров напряжения в небольшом офисе, квартире. Чтобы правильно рассчитать мощность стабилизатора, необходимо сначала сложить мощность всех электрических устройств. Кроме мощности по паспорту устройства, оснащенного электродвигателем, нужно учесть пусковой ток. Для этого к расчету добавляют около 30% мощности.

Наличие в цепи стабилизатора напряжения дает возможность обеспечить защиту бытовой техники. Через стабилизатор можно подключить отдельные приборы, однако эффективнее всего будет выбор прибора, через которое будет работать все оборудование

Расчет по техническим характеристикам

Каждый прибор в комплекте имеет паспорт, где указаны все характеристики работы. В нем указана мощность устройства. Необходимо суммировать все значения устройств. Эта величина будет приблизительной.

К ней необходимо добавить запас мощности около 30% для пусковых токов, и также 50% для устройств, изготовленных в Китае.

Мощность стабилизатора напряжения по автоматам

Оптимальным методом является посмотреть значение мощности на автоматах входа, находящихся в щитке. Они расположены вместе со счетчиком электрической энергии. Электронный стабилизатор рассчитать намного проще:

  1. Сначала определяем номинал автомата.
  2. Далее, эту величину делим на 5. В результате получаем необходимую полную мощность вашего стабилизатора.

Если автоматы на 25 А, то маркировка стоит С25. В результате деления получаем 5 кВА. Если у вас в квартире никогда не выбивало автоматы, то значит нагрузка вашей квартиры меньше 5 кВА. По этой информации подбираем полную мощность стабилизатора.

Расчет мощности стабилизатора будет сложнее, если в щите есть несколько автоматов. Необходимо выписать все значения с них. И по этим данным осуществляют подбор стабилизатора.

Стабилизаторы серии ЛЮКС функционируют без снижения мощности при низком напряжении. Элемент измерения находится на выходе устройства. В итоге защита сработает, когда потребитель превысит более 100% нагрузки от заданных номиналов. При пониженном напряжении на входе сила тока возрастет. В итоге падение напряжения будет оплачивать производитель устройства, а не потребитель.

Подкатегории стабилизаторов

Существуют различные типы стабилизирующих устройств с разным типом работы. Рассмотрим основные из таких стабилизаторов, для облегчения выбора в торговой сети.

Релейные

При повышенной скорости регулирования, сильных скачках напряжения, за небольшой промежуток несколько раз, стабилизаторы работают с малой точностью, при работе способны издавать щелчки. Это работает реле, переключает ступени трансформатора.

Тиристорные

Такие устройства еще называют симисторными. Они относятся к электронным приборам. Их повышенная точность и скорость регулирования напряжения питания, бесшумность работы привлекает покупателей при приобретении.

Из недостатков можно отметить различные микросекундные провалы при переключении. Однако, даже имею повышенную стоимость, для домашнего использования они вполне подходят. Чаще всего на такие приборы заводы изготовители дают расширенную длительную гарантию.

Электромеханические

К таким типам приборов относятся: сервоприводные, роликовые, щеточные, и электродинамические устройства. Они обладают повышенной точностью регулирования, не имеют шума при работе, постепенного изменения напряжения при входных колебаниях питания.

Одним из недостатков является быстрый износ узла щеток из-за повышенного искрообразования при значительной нагрузке. Стабилизаторы напряжения электродинамического вида, роликовые фирмы Ortea не имеют таких недостатков. Они являются оптимальным выбором для частного дома.

Особенности расчётов

Параметров выбора приборов стабилизации существует много. Одним из основных является полная мощность стабилизатора напряжения. Речь идет о характеристике напряжения и тока, то есть, о параметрах выхода тока, которые устройство может поддерживать в номинальном режиме работы. Однако исходными данными расчета становится расходуемая мощность устройств, которые будут подключаться к прибору.

  • Иногда к стабилизатору подключают дополнительное оборудование. При этом нужно учитывать это показатель мощности при расчете.
  • Если вы планируете устанавливать внешние циркуляционные насосы, то необходимо брать в расчет также их мощность.
  • При преобразовании напряжения до требуемого значения всегда имеются потери мощности. Чем больше отклонение от 220 вольт, тем выше эти потери. Поэтому перед расчетом, целесообразно сделать проверку – измерить сетевое напряжение днем, вечером, утром, и в часы «пик». Эту проверку лучше провести за несколько дней. В результате вы получите информацию, которая вам пригодится для расчетов.
  • Обычная сумма значений мощности будет неточными данными, так как значительное число приборов расходует кроме полезной мощности, также и реактивную составляющую. Она определяется по определенной формуле, и добавляется в результаты расчета.

Особенности выбора стабилизатора

Необходимо заметить, что если ваша электросеть способна выдать в пиковые часы напряжение 120 вольт, то понятно, что в это время нельзя подключать к прибору другие устройства значительной мощности. При таком режиме допускается подключать только маломощные потребители в виде телевизора, освещения. А такие устройства, как чайник, бойлер или стиральная машина перегрузят бытовую сеть, и защита обесточит всю вашу квартиру.

В торговой сети продавцы чаще всего говорят, что мощность при малых напряжениях входа теряется только на недорогих стабилизаторах. Однако, практически это далеко не так. Даже дорогой прибор не способен сделать чудо, и нарушить законы физики.

Многие изготовители стабилизаторов вместо Вт в инструкции указывают В/А. Это делается для введения покупателей в заблуждение, так как имеются приборы, расходующие электроэнергию, с разными типами нагрузки:

  1. Активная нагрузка (лампы освещения, нагревательные элементы).
  2. Реактивная нагрузка (электродвигатели).

При расчете мощности следует учитывать сечение кабеля. При размере в 4 кв. мм нагрузка не должна превышать 10 киловатт. Следовательно, если купить при этом стабилизатор выше 10 кВт, то это не даст больше мощности, и вы зря потратите деньги.

Как стабилизатор напряжения выбрать по мощности и по фазам: советы профессионалов :: SYL.ru

Увеличение количества домашних электроприборов неизбежно оказывает и высокую нагрузку на электросеть. Эксплуатация холодильника, телевизора, осветительных приборов и стиральной машины давно стала нормой, но к этому списку регулярно добавляются новые потребители энергии. И даже стремление производителей бытовой техники вводить энергосберегающие режимы не всегда позволяет минимизировать риски перепадов напряжения. Решить данную проблему поможет только стабилизирующее устройство. Такие аппараты нужны и для предохранения эксплуатируемых приборов, и в целом как инструмент обеспечения противопожарной безопасности внутри дома. Следовательно, возникает вопрос: как стабилизатор напряжения выбрать? Эксперты рекомендуют подходить к этой задаче комплексно, при этом уделяя особое внимание главным характеристикам оборудования.

Мощность как базовая характеристика

как стабилизатор напряжения выбрать

Мощностный потенциал определяет, с какими нагрузками в электросети сможет справляться конкретный стабилизатор. Одно дело – обслуживать пару небольших кухонных приборов, а другое – контролировать нагрузки от высокопроизводительных котлов. Непосредственно на мощность стабилизатора влияет автотрансформатор. Его формирует проволочная обмотка, от размерных характеристик которой и зависит потенциал устройства. Если на нее оказываются сверхвысокие нагрузки, то прибор и подчиненная ему бытовая техника отключаются. Но в любом случае в домашнем хозяйстве должен использоваться стабилизатор напряжения 220 В. Какой выбрать по мощности? Доступные на рынке предложения охватывают диапазон 0,5-100 кВт. При этом минимальный уровень до 3 кВт обычно применяется для обслуживания одной потребительской единицы – холодильника, стиральной машины, телевизора и т. д. Чаще всего используются модели стабилизаторов мощностью 10-15 кВт. Этого достаточно для работы с несколькими единицами бытовой техники.

Для точного определения минимального уровня требуемой мощности необходимо произвести соответствующие измерения. Для этого используют токоизмерительные клещи, позволяющие фиксировать пусковой ток. Вычислить потребляемую энергию можно у любого прибора, который оснащен электродвигателем. Затем показатели нагрузки от всех целевых приборов складываются – таким образом получается оптимальная мощность стабилизатора.

Учет входного и выходного напряжения

как выбрать стабилизатор напряжения

Уже говорилось, что на мощность влияет автотрансформатор, однако разработчики стабилизаторов смотрят на эту связь с обратной стороны. Автоматический преобразователь с параметрами обмотки изготавливается исходя из требований к двум рабочим показателям – мощности и напряжению. Поэтому внимания будет заслуживать и напряжение – входное и выходное. Номинально практически все бытовые модели поддерживают возможность работы с сетью 220 В. Но это нормальная величина, которая при регулярной поддержке не требует подключения такого корректирующего оборудования, как стабилизатор напряжения. Выбрать прибор по входному напряжению позволит знание амплитуды колебаний в сети. В частности, стандартные модели стабилизаторов поддерживают интервал 140-260 В. Это значит, что автотрансформатор сможет в рамках этого диапазона напряжений предоставить на выходе те же 220 В. Это и будет выходное напряжение, которое получает бытовая техника в оптимальном режиме энергоснабжения. Встречается и менее широкий разброс – порядка 160-250 В, а также версии с возможностью регуляции крайних значений.

Что такое фазность стабилизатора?

Количество фаз можно перевести в число проводов. Существуют одно- и трехфазные стабилизаторы. Соответственно, трехфазные модели рассчитаны на эксплуатацию в сетях с большим напряжением. Что касается однофазных сетей, то в них используется не один провод, а два – фаза и ноль. В обоих случаях важно учитывать напряжение. В домашних условиях чаще применяется однофазная система питания на 220 В, а в промышленности – трехфазные мощные сети на 380 В. Как же поступить, если нужен стабилизатор напряжения 220 В для дачи? Какой выбрать прибор в данном случае – это зависит от потребителей. Бывает, что и предприятия обеспечиваются стабилизаторами на 220 В. Однако, если на даче стоит высокомощный котел, то можно подумать об оснащении его стабилизирующим устройством на 380 В.

Как выбирать однофазный стабилизатор?

стабилизатор напряжения 220 в какой выбрать

Такие модели подходят в тех случаях, когда нет смысла использовать мощный стабилизирующий инструмент. Однофазные приборы к тому же отличаются низким уровнем шума, небольшими габаритами и более точной коррекцией напряжения. Но стремление к минимизации по всем параметрам вовсе не гарантирует эффективную работу устройства. Поэтому важен следующий вопрос: как стабилизатор напряжения выбрать, чтобы он был экономным и в то же время эффективно выполнял свою функцию? Однофазные модели особенно важно оценивать по мощности. Средний коридор составляет 5-30 кВт. Если речь идет о небольшом количестве малопроизводительной бытовой техники, то можно внимательнее рассмотреть модели от 0,5 до 4,5 кВт. Что касается напряжения, то верхний уровень для однофазных стабилизаторов редко превышает 275 В, а нижний – 140 В. Чем шире интервал, тем надежнее будет работать сеть, но и стоимость аппарата в данном случае немаленькая.

Нюансы выбора трехфазных моделей

Стабилизаторы такого типа изначально ориентируются на работу с мощной техникой, требующей больших энергетических ресурсов. Если требуется надежный блок для предприятия, то стоит обращаться к универсальным моделям с повышенными защитными качествами. Это может быть трехфазный аппарат с полной мощностью 3-100 кВА, дополненный системой коммутации. Для целенаправленной работы с чувствительным профессиональным оборудованием желательно также приобретать модели с широким диапазоном полной мощности, которые при этом отличаются точностью регулировки напряжения. Теперь другой вопрос: как стабилизатор напряжения выбрать для дачи с трехфазной сетью? Такое тоже бывает и ориентироваться стоит на аппараты, полная мощность которых не превышает 30 кВА. При этом важно понимать, что точность регулировки будет невысокой.

стабилизатор напряжения 220 в для дачи какой выбрать

Особенности выбора стабилизатора для котла

Если других потребителей в комплексе энергоснабжения не планируется, то желательно ориентироваться на модели конкретно для котла. Соответственно, это будет стабилизатор мощностью порядка 7-10 кВт, хотя в загородных домах часто используются и высокомощные отопительные агрегаты, нуждающиеся в более солидной поддержке стабилизатора. Но просчитаться в этой характеристике очень сложно, поэтому целесообразнее задуматься над другим вопросом: как выбрать стабилизатор напряжения для котла, чтобы он обеспечил надежность и долговечность оборудования? Даже если рабочие характеристики прибора полностью укладываются в требования котла и местной электросети, он сможет гарантировать бесперебойность только при наличии защитных систем. Стабилизатор для котельной как минимум должен иметь защиту от короткого замыкания, от перегрева и перегрузок. Наиболее технологичные агрегаты также обеспечиваются системой самодиагностики.

Какой стабилизатор напряжения выбрать для дачи?

какой стабилизатор напряжения выбрать для дачи

В условиях эксплуатации на даче также будут иметь значения защитные системы и оптимальные показатели мощности. Но если в домашних условиях пользователь в постоянном режиме контролирует функцию стабилизатора и обслуживаемого им оборудования, то на даче может потребоваться автоматический режим управления. Речь идет о самостоятельной работе в течение нескольких дней или месяцев. В такой ситуации может подойти программируемый стабилизатор напряжения 220 В для дачи. Выбрать подходящую модель поможет составление эксплуатационного графика и определение удобных способов дистанционного контроля оборудования. Далее по этим требованиям подбирается стабилизатор с подходящими режимами автономной работы, средствами автоматизированного управления и т.д.

Электронный или электромеханический стабилизатор?

Программируемые модели стабилизаторов входят в группу электронных устройств. Это современные аппараты, отличающиеся наличием эргономичных цифровых дисплеев. Недостатком электроники является низкая точность регулировки напряжения с погрешностью порядка 10%. Для бытовой техники это лучший вариант, поскольку отклонение от нормативного показателя особого значения иметь не будет, чего нельзя сказать об удобстве взаимодействия с системой через цифровую панель. Как выбрать стабилизатор напряжения из этой категории? Желательно опираться на модели, в которых предусмотрены режимы восстановления электронных ключей и самодиагностика. Что касается электромеханического оборудования, то оно менее долговечно, обеспечивает плавную регулировку и отличается высокой точностью. Такой стабилизатор подойдет для специализированной медицинской или музыкальной аппаратуры, чувствительной к малейшему перепаду в сети.

стабилизатор напряжения 220 в для дачи выбрать

Дополнительные аксессуары

В комплект рабочей вспомогательной фурнитуры входят провода, переходники, крепежные муфты, соединительные хомуты и т.д. Непосредственно для монтажных работ также потребуются крепежные скобы, соответствующие проводу по размеру диаметра. Перед входом линии на стабилизатор можно предусмотреть автоматический переключатель и счетчик при необходимости. Если стоит вопрос о том, как выбрать стабилизатор напряжения для дома с возможностью самостоятельного замера показаний, то для конкретной модели нужно будет предусмотреть и мультиметр. Это измерительный аппарат, который с помощью щупов позволяет фиксировать показатели силы тока, сопротивления и др.

Каким производителям отдать предпочтение?

Лидером сегмента на отечественном рынке стабилизаторов напряжения является компания «Ресанта». Российский изготовитель выпускает модели с широкими показателями входного напряжения – от 90 до 260 В для домашней эксплуатации, и от 240 до 430 В для промышленных трехфазных сетей. Если стоит вопрос о том, как выбрать стабилизатор напряжения с экономией и относительно высоким качеством, можно довериться этой фирме. Конкурентов у «Ресанты» много, а главные из них – это зарубежные компании Sturm, Walton и Elitech. Причем второй производитель славится высококачественными стабилизаторами промышленного назначения.

как выбрать стабилизатор напряжения для дома

Заключение

В оценке стабилизаторов немалую роль играют и характеристики, которые проявятся уже в дальнейшем при эксплуатации. В немалой степени на характер применения повлияет способ установки. Например, каким образом может быть инсталлирован стабилизатор напряжения 220 В для дома – как выбрать прибор по этому признаку? Чаще всего для бытовых нужд предлагаются компактные модели переносного типа. Такой прибор достаточно поставить в безопасное от влаги, огня и пыли место. Но в случае с трехфазными промышленными устройствами может потребоваться специальная установочная площадка – это следует учитывать изначально. Производители даже предлагают специальные платформы, позволяющие монтировать крупное оборудование на ровной поверхности с антивибрационной защитой.

Основные параметры стабилизаторов напряжения | Статьи

07.08.2018

Первое, в чем следует разобраться перед покупкой стабилизатора – это основные технические характеристики прибора. Понимание их практического смысла поможет не ошибиться с выбором и не приобрести устройство, несоответствующее требованиям подключаемой нагрузки.

Мы рассмотрим 9 основных параметров, которыми следует руководствоваться при выборе стабилизатора.

Фазность

Количество фаз указывает на тип сети, в которую может включаться стабилизатор, и на категорию нагрузки, которая может от него запитываться. С этого параметра следует начинать выбор стабилизатора.

Однофазные стабилизаторы предназначены для работы с однофазным входным напряжением и предусматривают подключение только однофазных потребителей. Трехфазные стабилизаторы работают, соответственно, с трехфазным входным напряжением, подключать к таким устройствам можно как трёхфазную, так и однофазную нагрузку.

В городских квартирах трехфазная сеть, как правило, не используется либо используется только для электроплиты, в большинстве случаев не требующей стабильного электропитания. Следовательно, для обычной квартиры в черте города выбор чаще всего очевиден – однофазный стабилизатор.

В частных домах и загородных коттеджах трехфазный ввод от питающей сети более распространён. В случае его наличия можно использовать как один трехфазный стабилизатор, так и три однофазных (отдельное устройство на каждую питающую фазу). Вариант с тремя независимыми стабилизаторами позволит индивидуально подобрать и настроить прибор для каждой фазы, учитывая потребляемую от неё мощность и особенности подключенной к ней нагрузки. Кроме того, система из трех стабилизаторов более устойчива к неполадкам, так как возникновение сбоя на одной из фаз не скажется на функционировании двух других. Стоит отметить, что и суммарная цена трёх однофазных стабилизаторов обычно меньше, чем одного – трехфазного.

Главным минусом вышерассмотренного варианта является невозможность подключения мощных трехфазных потребителей. Поэтому трехфазный стабилизатор необходим при наличии даже одного работающего от трех фаз устройства.

При подключении однофазных нагрузок к трехфазной сети (через отдельные однофазные стабилизаторы или через единый – трехфазный), все электроприёмники следует равномерно распределять между питающими фазами. Иначе возможно возникновение в сети несимметрии токов и напряжений, негативно влияющей на электрооборудование. Исключить подобное явление помогут стабилизаторы топологии «3 в 1», имеющие трехфазный вход и однофазный выход, что гарантирует идентичную нагрузку на все фазы трехфазной сети при подключении однофазной нагрузки.

Мощность

Мощность стабилизатора зависит от его конструкции и определяет допустимую к подключению нагрузку. Чтобы определить необходимое значение данного параметра, необходимо посчитать суммарное энергопотребление всех устройств, которые планируется одновременно питать от стабилизатора. Для этого достаточно сложить указанные в их технических паспортах показатели потребляемой мощности и добавить к полученному значению запас в 30%.

Следует обратить внимание на приборы, в составе которых присутствует электродвигатель. В быту это, как правило, холодильник, стиральная машина, кондиционер, различный электроинструмент и насосы. Включение такого оборудования сопровождается возникновением высоких пусковых токов, обуславливающих кратковременный скачок потребляемой из сети мощности, показатели которой могут превышать номинальную в несколько раз. Поэтому при вычислении суммарного энергопотребления нагрузки, для каждого устройства с электродвигателем необходимо использовать не номинальное значение мощности, а предельное – пусковое (при отсутствии данных о пусковом значении – величину номинальной мощности, умноженную на три).

Распространённая ошибка связана с обозначением электрической мощности, которая для стабилизаторов обычно указывается в Вольт-Амперах (ВА), а для прочих электроприборов – в Ваттах (Вт). Покупатели часто не обращают внимания на единицы измерения, полагаясь только на численный показатель. При этом стабилизатор, имеющий выходную мощность в 500 ВА, не будет соответствовать нагрузке в 500 Вт.

Для подбора актуальной модели стабилизатора необходимо мощность предполагаемой нагрузки перевести из Ватт в Вольт-Амперы, поделив значение в Вт на коэффициент мощности – cos(φ). Величину cos(φ), соответствующую определённому устройству, можно найти в его технических характеристиках или в интернете. При отсутствии данных допустимо принять значение из типового интервала, составляющего для привычных нам бытовых электроприборов – 0,7 - 0,8 (для осветительной и нагревательной техники – 0,9 - 1).

Диапазон входного напряжения

Этот параметр измеряется в вольтах и определяет верхний и нижний порог сетевого напряжения, в пределах которого стабилизатор функционирует и питает нагрузку электроэнергией заявленного качества.

В многоквартирных домах перепады напряжения в сети редко превышают 20% от номинала – большинство современных стабилизаторов соответствуют данным требованиям и легко справляются с подобными колебаниями.

В случае выбора устройства для дома, расположенного за городской чертой, следует учитывать, что чем удалённее находится строение от крупных населенных пунктов, тем шире амплитуда встречающихся в нём скачков напряжения. Для большинства коттеджей требуются модели с границами входного напряжения не менее 130-270 В, а в ряде случае могут понадобиться стабилизаторы и с более широким диапазоном.

Для приобретения стабилизатора с диапазоном входного напряжения, максимально соответствующим колебаниям в электросети, необходимо измерить фактическое напряжение на месте будущей установки прибора. Замеры следует делать в разное время суток и в разные дни недели (желательно в выходные и в будни) – только так вы получите наиболее полную картину сетевых отклонений. При отсутствии навыков, позволяющих провести необходимые измерения самостоятельно, рекомендуем обратиться за помощью к профессиональному электрику.

Важно помнить, что диапазон входного напряжения у стабилизатора должен быть шире, чем амплитуда реальных колебаний в электросети. Также стоит отметить, что внутри допустимого диапазона входного напряжения присутствуют определённые границы, называемые рабочим диапазоном. Выход сетевых параметров за пределы рабочего диапазона сопровождается снижением выходной мощности стабилизатора, что может вызвать перегрузку устройства даже при номинальной нагрузке.

Точность стабилизации

Точность стабилизации или «погрешность стабилизатора» в процентном отношении указывает на величину возможного отклонения выходного напряжения устройства от номинального значения.

Современные стабилизаторы обеспечивают точность в пределах 10% – зависит этот параметр, в первую очередь, от конструкции. Самой высокой точностью обладают инверторные модели, у которых данный показатель составляет 2%, что практически недоступно для полупроводниковых, релейных и электромеханических стабилизаторов. Столь высокая точность необходима для медицинского, измерительного или промышленного оборудования.

У большинства применяемых в быту электроприборов требования к качеству электропитания чуть ниже, они стабильно функционируют при отклонениях входного напряжения и в 7%. Однако отдельным устройствам всё-таки нужен более высокий показатель точности – это техника, работой которой управляет электроника (автоматические стиральные машины, кондиционеры), а также аудио- и видеоаппаратура, где от качества входного электропитания зависит чистота изображения и звука.

При покупке стабилизатора следует убедиться в том, что его точность соответствует величине допустимых для нагрузки отклонений питающего напряжения. Если потребителей несколько и они обладают различными требованиями к точности входного напряжения, то точность стабилизатора следует выбирать исходя из самого узкого диапазона допустимых колебаний.

Быстродействие

Эта характеристика измеряется в миллисекундах и определяет время, которое понадобится устройству, для того чтобы нейтрализовать скачок напряжения и подать на вход нагрузки электроэнергию с номинальными или наиболее близкими к номинальным параметрами.

Быстродействие – важный показатель уровня предоставляемой стабилизатором защиты. Чем выше быстродействие, тем ниже риск повреждения подключенного к прибору оборудования при перепадах сетевого напряжения.

Максимальным быстродействием обладают инверторные стабилизаторы, мгновенно (за 0 мс) отрабатывающие любые сетевые возмущения, что позволяет использовать данные аппараты для защиты абсолютно любого электрооборудования!

Принцип регулирования напряжения

Принцип регулирования сетевого напряжения определяет у стабилизатора форму выходного сигнала.

Приборы с дискретным (ступенчатым) регулированием не могут генерировать идеальную синусоиду, а именно такая форма переменного напряжения необходима для корректного функционирования чувствительной электроники, например – системы управления газового котла. Кроме того, ступенчатое регулирование обуславливает разрывы в электропитании, неминуемо возникающие при переключении порогов стабилизации.

Электромеханические стабилизаторы отличаются плавным регулированием – форма их выходного напряжения ближе к идеальной синусоиде, чем у электронных устройств. Однако электромеханические модели проигрывают приборам с дискретным регулированием в скорости срабатывания, которой иногда может не хватить для обеспечения качественной защиты современного оборудования.

Наиболее плавное регулирование присуще инверторным стабилизатором, только такие приборы гарантируют выходное напряжение в форме идеальной синусоиды и безразрывное электропитание нагрузки во всем допустимом диапазоне входного напряжения.

Способ установки

Существует три способа установки стабилизатора – настенный (навесной), напольный и стоечный. Первый подразумевает размещение на вертикальной плоскости (стене), второй – на горизонтальной поверхности (стол или пол), третий – в телекоммуникационном шкафу или стойке. Исполнение одних стабилизаторов допускает только какое-то определённое размещение, другие более универсальны – их можно устанавливать различными способами.

Выбирая стабилизатор, следует проанализировать помещение, в котором он будет эксплуатироваться, и подобрать модель, способ установки которой позволит поместить изделие с максимальным удобством как для подключения нагрузки, так и для обслуживания.

Важно помнить, что все стабилизаторы имеют предназначенные для вентиляции отверстия в боковых или нижних стенках. Следовательно, при установке стабилизатора нужно обеспечить зазор между указанными отверстиями и ближайшей поверхностью (не менее 20 см). Кроме того, не рекомендуется устанавливать стабилизатор на улице или в холодных, неотапливаемых помещениях, а также вблизи обогревательных приборов и в местах прямого падения солнечных лучей.

Габаритные размеры и вес

Габаритные размеры стабилизатора выбираются исходя из наличия свободного пространства на месте предполагаемой установки прибора. При размещении на поддерживающей конструкции (навесной полке), необходимо удостоверится, что вес стабилизатора не превышает значение нагрузки, допустимой для этой конструкции.

Следует понимать, что с увеличением мощности стабилизатора возрастают как его габаритные размеры, так и масса.

Средства индикации и мониторинга

Небольшим бытовым стабилизаторам достаточно иметь световую индикацию для сигнализации о различных режимах работы и дисплей для отображения информации об основных характеристиках прибора.

Для более мощных стабилизаторов, которые обычно применяются в промышленности и обслуживаются профессиональными специалистами, кроме вышеназванного необходимо также наличие поддерживающих различные каналы связи средств удаленного мониторинга.

Читайте также:

Как купить стабилизаторы напряжения «Штиль» инверторного типа?

About Author


alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *