Какой стабилизатор напряжения лучше: как выбрать и какой лучше

Какой стабилизатор лучше релейный или электромеханический

Для того чтобы ответить на вопрос какой стабилизатор лучше – релейный или электромеханический, давайте сравним основные характеристики этих приборов, их основные достоинства и недостатки.

В качестве примера возьмем два популярных у потребителей стабилизатора фирмы РЕСАНТА, которые часто покупают как на дачу, так и в квартиру, это:

Ресанта АСН 10000/1-Ц  – однофазный релейный стабилизатор напряжения (электронный), подробная информация досупна по ссылке

Ресанта АСН 10000/1-ЭМ – однофазный электромеханический стабилизатор напряжения, подробная информация досупна по ссылке

Ниже вы можете видеть сводную таблицу со всеми основными характеристиками этих стабилизаторов напряжения.

В ней, как вы можете видеть, довольно много совпадений, но есть и существенные различия, давайте рассмотрим их, сразу же по каждому пункту выявим лидера, а в конце статьи подведем общий итог и узнаем какого типа стабилизатор напряжения всё же лучше.

Начнем с последнего по положению, но не по значению при выборе и покупке пункту – цена.

 

Стоимость релейного и электромеханического стабилизатора

 

Чаще всего, независимо от производителя, разница в цене на релейные и электромеханические стабилизаторы напряжения составляет около 30%, на столько, в среднем, электронные модели дешевле.

И здесь нечему удивляться, большая часть этой разницы составляет регулируемый автотрансформатор в механическом стабилизаторе, в электронной модели его нет, используются гораздо более дешевые – обычный автотрансформатор и силовые реле.

По этому пункту безоговорочно побеждает релейный стабилизатор, его цена ниже электромеханического на 30%.

 

Масса

Вес стабилизатора напряжения не самый критичный показатель при выборе, но он, в некоторых ситуациях, всё же играет свою роль, мобильность электромеханической модели гораздо ниже, т.к. его масса на 23% больше релейного, переносить сложнее.

 

Габаритные размеры

Габаритные размеры стабилизаторов этих видов вполне сопоставимы, здесь с небольшим преимуществом (разница всего 5-10%) побеждает релейный стабилизатор, его габариты чуть меньше, чем у механического.

Точность поддержания напряжения и номинальная величина выходного напряжения

Две этих важных характеристики, на деле показывают одно и то же, точность стабилизации, поэтому они объединены в один общий пункт. Как вы понимаете, эта характеристика очень важная и показывает насколько точно стабилизатор корректирует входящее напряжение.

Так, например, механический стабилизатор имея точность 2%, в нормальном режиме работы, будет выдавать напряжение в диапазоне от 216 до 224 Вольт, а это очень хороший показатель, даже самые чувствительные приборы не заметят такие изменения напряжения, для большинства из них это заложенные производителем нормальные режимы работы.

При этом релейный стабилизатор со своими 8% точности, будет давать выходное напряжение уже в диапазонах от 202 до 238 Вольт, а вот это уже существенная разница, не каждый прибор будет работать в штатном режиме при таком напряжении.

Таким образом, по точности стабилизации механический стабилизатор безоговорочно выигрывает у релейного.

 Время регулирования

Время регулирования напряжения, она же скорость стабилизации, еще один наиважнейший показатель и здесь ситуация складывается совсем другая.

Так релейный стабилизатор, реагирует на изменения входящего напряжения со скоростью 10 миллисекунд, при этом ему не важно на сколько оно упало или выросло (в пределах своего рабочего диапазона 140-260В), он за эти доли секунды сменит режим и будет выдавать напряжение 200+/- 8%.

В это же время электромеханический стабилизатор имеет скорость стабилизации всего 10 Вольт в секунду. Таким образом, если падение напряжения составит 30 Вольт (входящее напряжение будет 190В), сервоприводной модели потребуется порядка 3 секунд чтобы на выходе было 200+/- 2%. Все эти 3 секунды, приборы подключенные к стабилизатору будут работать при пониженном напряжении.

По времени регулирования релейный стабилизатор значительно превосходит электромеханический.

ИТОГИ СРАВНЕНИЯ ХАРАКТЕРИСТИК релейного и электромеханического стабилизаторов

Как вы видите, если сравнивать основные характеристики, то получается, что релейный стабилизатор напряжения лучше электромеханического. Он в среднем на треть дешевле, а главное значительно быстрее реагирует на изменения напряжения в сети.

Казалось бы, зачем тогда вообще выпускать сервоприводные стабилизаторы, если значительно более доступные релейные модели по многим характеристикам их обгоняют?

Ответ прост, несмотря на все свои недостатки, в частности очень медленную скорость стабилизации напряжения, механические стабилизаторы имеют недостижимый для обычных релейных моделей показатель точности стабилизации.

Таким образом, сравнивать напрямую, какой стабилизатор лучше релейный или электромеханический некорректно, каждый из них предназначен для выполнения определенных задач, с которыми не справится соперник.

Зная эту информацию, давайте теперь рассмотрим, в каких случаях лучше всего купить релейный трансформатор, а в каких электромеханический.

 

В каких случаях лучше купить релейный стабилизатор напряжения

Релейный (сервоприводный) стабилизатор наиболее универсальное устройство и именно его покупают чаще всего на дачу или в квартиру. И даже достаточно низкая точность стабилизации, в стандартных бытовых условиях применения, не такая уж критичная характеристика, ведь ГОСТ 32144-2013, который регламентирует качество электроэнергии в наших квартирах и домах, допускает отклонения по напряжению до 10%.

Получается, что у вас вполне официально напряжение в розетке может быть на 10% ниже номинального, например, 198В, при этом погрешность стабилизации релейных моделей на уровне 8% уже не кажутся такой страшной цифрой. Особенно если учесть, что производители электрооборудования придерживаются того же госта при разработки своих устройств и практически любое из них безболезненно выдерживает напряжения на 10% большее или меньшее чем номинальное.

Более подробно о достоинствах электронных моделей и особенностях их работы читайте в нашей статье – «Что такое релейный стабилизатор напряжения»

В каких случаях лучше купить электромеханический стабилизатор напряжения

Главными преимуществами электромеханического стабилизатора являются его точность стабилизации и отсутствие скачков и искажений при переключении режимов.

Его можно рекомендовать к покупке тогда, когда к нему подключается чувствительное электронное оборудование – персональный компьютер, телевизор, лабораторные или измерительные приборы и многое другое в сетях, в которых не бывает резких скачков и падений напряжения. Так, например, это идеальный вариант если вы живете в городской квартире или даже деревне и из-за старости или недостаточной оптимизации ваши электрические сети выдают заниженное или завышенное напряжение , особенно если у вас нет соседа с мощнейшим сварочным аппаратом, работая которым он даёт просадку на всей линии.

Пусть механический стабилизатор несколько дороже, но позволит вашему оборудованию работать практически в идеальных условиях.

Тяжело посчитать возможную прямую выгоду от решения приобретения механического стабилизатора, но вы должны понимать, что даже один спасённый электроприбор или то что просто исправно проработает весь срок службы и даже больше, уже окупит с лихвой ту разницу в стоимости между релейной и электромеханической моделями.

Более подробно о достоинствах сервоприводных моделей и особенностях их работы читайте в нашей статье – «Что такое электромеханический стабилизатор напряжения»

Ну а если вы еще сомневаетесь, что лучше релейный или электромеханический стабилизатор и у вас есть аргументы в защиту одного или другого решения, расскажите об этом в комментариях к статье, особенно инетересно было бы узнать о вашем опыте использования стабилизатора в хозяйстве – это будет полезным многим.

Какой стабилизатор напряжения лучше: релейный или симисторный

Время прочтения: 5 мин

Дата публикации: 12-08-2020

Вопрос стабильного электропитания будет актуален всегда, так как факторов, влияющих на сетевое напряжение, довольно много. Часть из них является виной человека, а часть - результатом стечения обстоятельств по независящим ни от кого причинам. И не важно, живете ли Вы в квартире или на даче, сеть постоянно будет подвергаться перегрузкам, неблагоприятным метеорологическим условиям и многим другим негативным воздействиям.

Какой бы ни была причина сетевых колебаний, их результат неизменен: некорректная работа оборудования или его выход из строя.

Лучше всего действовать превентивно и обеспечить защиту своих электроприборов, не дожидаясь неудачного стечения обстоятельств, из-за которых оборудование сгорит. Оптимальный вариант сделать это - установить стабилизатор напряжения. В бытовой сфере фигурирует три основных типа стабилизаторов: релейные, электронные и сервоприводные. Последние (их еще называют электромеханическими) не особо популярны из-за некоторых компромиссных моментов в работе, поэтому чаще всего пользователи обращают внимание на релейные и электронные (симисторные/тиристорные).

Какой стабилизатор напряжения лучше: релейный или симисторный? Все зависит от того, чего конкретно Вы хотите от стабилизатора. Попробуем разобраться, как работают данные типы стабилизаторов и какой из них выбрать.

Принцип работы ступенчатого стабилизатора

Как симисторный, так и релейный стабилизатор имеют схожий принцип работы, основанный на коммутации ступеней стабилизации. Ступень стабилизации можно представить как вывод автотрансформатора. Эти выводы находятся в разных частях обмотки и, соответственно, соответствуют разным коэффициентам трансформации. Представим ситуацию: на входе напряжение поднялось до 250В. Чтобы получить искомое значение 220В, надо найти вывод, коэффициент трансформации которого будет несколько ниже единицы. Так мы понизим напряжение до значения, близкого к 220В. И чем больше у трансформатора ступеней (выводов), тем меньше шаг регулировки между двумя ступенями и, как следствие, меньше отклонение от искомого значения 220В.

Таким образом, принцип работы ступенчатого стабилизатора заключается в том, чтобы своевременно фиксировать отклонения на входе и подбирать ту ступень стабилизации, при которой выход будет ближе всего к номинальному значению. За весь этот процесс отвечает автоматика стабилизатора, которая нас не сильно интересует в данном контексте. Куда важнее, посредством чего осуществляется подключение (коммутация) ступени.

Тут у стабилизаторов напряжения релейного и симисторного типа начинаются различия. И об этих отличиях говорит само название. В релейном стабилизаторе напряжения коммутация ступеней осуществляется посредством электромагнитных реле, когда как симисторный аналог выполняет эту задачу при помощи полупроводниковых ключей - симисторов.

Чем отличаются релейные и симисторные стабилизаторы

Выше мы уже упомянули основное отличие электронного стабилизатора от релейного. Пройдемся по преимуществам и недостаткам того или иного решения:

  • Долговечность. Электромагнитные реле состоят из подвижных контактов и якоря, который их перемещает, притягиваясь к намагниченной катушке. Любые подвижные элементы снижают надежность конструкции. К тому же, при каждой коммутации контакта реле возникает искра, приводящая к постепенному подгоранию контакта. Нагар - это одна из самых распространенных причин выхода реле из строя. Ресурс реле при максимальной нагрузке обычно составляет около 100 тыс коммутаций.
    Полупроводниковые ключи подобными проблемами не страдают и имеют неограниченный срок службы.
  • Шум. Нередко стабилизаторы напряжения устанавливаются в жилом помещении, в связи с чем одним из важных критериев может считаться бесшумность работы. Релейные стабилизаторы бесшумными быть просто не могут даже при наличии пассивной системы охлаждения. Каждое переключение ступени стабилизации будет сопровождаться легким щелчком, сравнимым с авторучкой, звук которой несколько приглушен корпусом прибора. Симисторы и тиристоры, ожидаемо, никакие звуковые эффекты не производят.
  • Скорость. Как симисторы, так и реле срабатывают при подаче управляющего сигнала постоянного тока. Временем замыкания тиристора фактически можно пренебречь, посему скорость реакции электронных стабилизаторов обычно оценивается в пределах 20 миллисекунд. Причем, в эти 20 миллисекунд входит время на фиксацию входных колебаний и обработку информации. В случае с реле определенное время тратится на перемещение якоря. Этот процесс очень быстрый, для глаза практически мгновенный, но на деле время реакции релейных стабилизаторов может достигать 100 миллисекунд (0,1с). Однако это время все равно считается очень быстрым и безопасным, особенно на фоне электромеханических аналогов.
  • Цена. Пожалуй, это единственное преимущество релейных ключей перед полупроводниковыми. Стоимость одного реле во много раз ниже стоимости одного симистора. И чем выше мощность, тем больше эта разница.

Какой стабилизатор купить

И все же, какой стабилизатор напряжения лучше: релейный или симисторный? Если смотреть на характеристики, то симисторный стабилизатор по всем параметрам лучше. Но лучшим считается не тот стабилизатор, чьи характеристики превосходят, а тот, который за минимальную цену эффективно выполняет поставленную перед ним задачу.

Попробуем перефразировать сказанное выше на конкретном примере. Вы собираетесь защитить газовый котел, который установлен в отдельном помещении. Смысла переплачивать за симисторный стабилизатор не много, так как щелчки реле беспокоить не будут, а сам котел назвать очень чувствительным к колебаниям нельзя - ему хватит и базовой защиты. Другое дело, когда требуется защитить высокоточную чувствительную технику. Тогда лучше выбрать симисторный стабилизатор с большим количеством ступеней (релейные стабилизаторы обычно не отличаются большим количеством ступеней, чтобы снизить количество коммутаций при слабых сетевых колебаниях). В бытовой сфере симисторный стабилизатор может также пригодиться в случае его установки в жилом помещении.

Если Вы не знаете, какой стабилизатор подойдет именно в Вашем случае - проконсультируйтесь со специалистами.

Важные аспекты при выборе стабилизатора напряжения

Напоминаем, наши инженеры бесплатно помогут с выбором оборудования под ваши задачи.

Стабилизатор напряжения – оборудование, которое подключается к общей электросети. Основное его предназначение – поддержание напряжения в допустимых границах, защита от непредвиденных скачков.

Устанавливают стабилизаторы напряжения на вводе в квартиру, после электросчетчика. Стабилизаторы выравнивают напряжение, ликвидирует большие скачки и обеспечивает беспрерывную работу всего электрооборудования либо отдельных его элементов.

Нужно ли устанавливать стабилизатор напряжения в квартире?

Ответ на этот вопрос можно получить лишь после длительного наблюдения за напряжением в сети на протяжении достаточно длительного времени. Исходя из стандарта IEC 60038:2009, данные показатели не должны выходить за границы 220-240 В. Для Российской Федерации допустимым считается интервал около 198-253 В.

В основном, напряжение практически на территории всей страны не выходит за рамки требуемых стандартов. Если в процессе наблюдения были замечены перепады напряжения на протяжении длительного периода времени и уровень напряжения колебался менее 198 В либо более 253 В, то настоятельно рекомендуем подумать о покупке хорошего стабилизатора напряжения.

Какая именно бытовая техника нуждается в стабилизации напряжения?

Некоторое оборудование имеет встроенные системы защиты, которые дают возможность нормально функционировать оборудованию и «безболезненно» переносить незначительные перепады напряжения.

Сюда можно отнести:

1. Многие телевизоры уже имеют встроенный импульсивный блок питания, который может обеспечить относительно-нормальное бесперебойное функционирование техники при перепадах напряжения.
2. Практически все компьютеры способны функционировать при небольших перепадах напряжения.
3. Можно выделить активные нагрузки. Сюда относят утюг, водонагреватель, плойку, электрическую плиту. Они менее капризны, однако, при низком напряжении их продуктивность падает.
4. Работоспособность светодиодных ламп обеспечивается благодаря встроенному драйверу тока, который в них интегрирован. Напряжение в электросети практически не оказывает никакого влияния на яркость свечения светодиодных ламп.

Существует огромное количество электрооборудования, которому необходима достойная защита от значительных перепадов напряжения в сети:

1. Это могут быть глубинные насосы и кондиционеры. Данные электроприборы имеют встроенные асинхронные двигатели. При функционировании с низким напряжением в сети, им свойственен сильный перегрев, который очень часто и приводит к серьезным поломкам.
2. В холодильнике при работе с низким напряжением в электросети двигатель может сильно перегреться, начать гудеть и выйти из строя.
3. Домашние кинотеатры. Не все производители устанавливают импульсные блоки питания способные работать в широком диапазоне входных напряжений. (Может произойти пробой специального элемента на входе телевизора – варистора).
4. Все лампы накаливания. На яркость их света огромное влияние оказывает характеристика напряжения в электросети.
5. Микроволновые печи. При более низком напряжении снижается и мощность СВЧ-излучения. Если характеристики тока не соответствуют заявленным требованиям сети, то печь просто перестает функционировать.
6. Стиральные машины. Даже новые модели очень чувствительны к перепадам напряжения. Если напряжение резко падает, может произойти сбой программы. Более ранним моделям перепады напряжения страшны сильнее. От скачков напряжения они могут даже сгореть.
7. Посудомоечные машины. Если напряжение в сети очень низкое, то машинка может просто не включиться либо отключиться в процессе работы.
8. Бойлеры новых моделей. Они очень чувствительны к резким скачкам в сети.

Чтобы решить проблему как можно точнее, необходимо в обязательном порядке применять стабилизаторы напряжения для очень чувствительных электроприборов.

Практически все стабилизаторы напряжения обладают такими характеристиками

1. Регулировка напряжения электросети в заданном диапазоне.
2. Защитное отключение выходного напряжения. Оно необходимо для того, чтобы прекратить подачу напряжения на все электрические приборы, если регулятор напряжения вышел из строя либо параметры сети отклонились от допустимых значений.
3. Защита от короткого замыкания - автоматический выключатель для предотвращения перегрузки.

В состав стабилизаторов входят:

1. Плата управления
2. Автотрансформатор или его разновидности
3. Индикация режимов работы
4. Узел регулирования
5. Корпус
6. Клеммная колодка подключения

Какие же стабилизаторы напряжения лучше всего использовать в квартирах?

Современный рынок не ограничивается одним типом стабилизаторов, на нем представлено огромное количество оборудования с различными характеристиками.

Различают такие виды стабилизаторов напряжения:

1. Электромеханические с токосъемными роликами или на щетках;
2. Электронные на тиристорах,транзисторах или реле.

Все это оборудование в зависимости от внешних условий (диапазон колебаний, помехи и т.д.) подходит для устранения проблем в сети. Какие же стабилизаторы подходят для обеспечения полноценной работы электроприборов в Вашей квартире?

Выбор производится исходя из:

1. Количества фаз;
2. Мощности нагрузки;
3. Диапазона перепадов напряжения;
4. Точности выходного напряжения;
5. Допустимого уровня шума;
6. Требуемого быстродействия;
7. Условий окружающей среды.
8. Уровня устойчивости к помехам в сети;
9. Срока эксплуатации.

3 x Atlas 10 (30)

Количество фаз

трехфазный

Мощность

30 кВА

Рабочий диапазон

141-266 В

Габариты

300*560*300 (3 шт. ) мм

3 x Atlas 20 (60)

Количество фаз

трехфазный

Мощность

60 кВА

Рабочий диапазон

141-266 В

Габариты

300*560*300 (3 шт. ) мм

Orion 105

Количество фаз

трехфазный

Мощность

105 кВА

Рабочий диапазон

150-278 В

Габариты

600x800x1800 мм

Orion Plus 500

Количество фаз

трехфазный

Мощность

500 кВА

Рабочий диапазон

150-278 В

Габариты

1200x800x2000 мм

Электромеханические стабилизаторы напряжения:

Регулирование в стабилизаторах данного типа осуществляется при помощи автотрансформатора, по обмоткам которого передвигаются графитовые ролики, либо щетки( в бюджетных вариантах). Регулирование осуществляется плавно и с высокой точностью. Они достаточно хорошо справляются с током нагрузки, и более неприхотливые к помехам в сети. Подходят для эксплуатации радиолюбителям и любителям музыки, так как не вносят посторонних шумов и помех в сеть. Лампы накаливания горят роно и не моргая.

Среди недостатков можно выделить основное:

1. Качественные зарубежные модели достаточно дорогие;
2. Большое количество некачественных китайских подделок;
3. Скорость регулирования ниже, чем у электронных;
4. Необходимость проведения регламентных работ.

Стабилизаторы напряжения электронного типа

Различаются по принципу действия и используемым компонентам. Приведем основные типы:

1. Релейные
2. Тиристорные/ симисторные
3. IGBT/ ШИМ- регулирование.

Первый и второй тип самое популярное и обоснованное направление в улучшении электромеханических стабилизаторов – это производство оборудования с двойными преобразователями – инверторами. Не совсем компактные приборы, однако они в силах обеспечить:

1. Высокое качество тока на выходе;
2. Достаточно высокий уровень работоспособности;
3. Способность подавлять импульсные помехи тока в сети.
Достаточно высокая стоимость делает такое оборудование не доступным для широкой массы покупателя.

Электронные релейные

Наверное, это самые дешевые стабилизаторы напряжения, которые выполняют ступенчатое регулирование напряжения. Самый главный минус такого оборудования – во время работы иногда щелкают. Бывают такие периоды, когда стабилизатор клацает практически все время. Поводом тому может быть:

1. Сломалось одно реле или подгорели контакты;
2. Электросеть находится в плачевном состоянии – имеется огромное число скруток и плохих контактов, маленькое сечение провода;
3. Сломанный контроллер.

Не важно, какая будет причина. Если стабилизатор систематически щелкает, то при таких условиях он очень быстро выйдет из строя.

Стабилизаторы напряжения релейного типа – достаточно удобны для эксплуатации в домашних условиях, за счет:

1. Скорости переключения, которая практически не уступает электромеханическим моделям;
2. Достаточно быстрого срабатывания;
3. Очень удобного корпуса, малого веса;
4. Очень выгодной цене.

Среди недостатков можно выделить следующее: очень часто реле выходит из строя, потому что контакты имеют свойство подгорать: можно обслуживать лишь мощную аппаратуру; синусоида напряжения на выходе очень искажается; не очень любят перегрузки.

Такие приборы отлично подойдут для обеспечения бесперебойной работы телевизора, холодильника, приборов для освещения, различной офисной техники, вентиляционной системы, кондиционеров.
Так что, если у вас нет сверхчувствительной техники, которая боится частых и резких перепадов напряжения, то такие стабилизаторы очень подойдут для использования в условиях квартиры.

Они включают в себя:

1. Серводвигатель;
2. Автотрансформатор;
3. система управления.

Основные достоинства таких стабилизаторов напряжения:

1. Очень удобная регулировка;
2. Возможность нормально полноценно работать при разном напряжении;
3. Результат на выходе очень точный;
4. Способность работать без сбоев достаточно долго;
5. Могут без сбоев переносить не долгосрочные перегрузки.

Основные минусы в работе стабилизаторов:

1. Пыль, при попадании внутрь стабилизатора, обугливается;
2. Очень чувствительны к низкой температуре;
3. Периодически нуждаются в смене токосъемной щетки;
4. Может образоваться искра в процессе замыкания либо размыкания контактов. Из-за этого нельзя устанавливать стабилизаторы в непосредственной близости с газовыми приборами и оборудованием.

Более современные модели стабилизаторов, вместо привычных токосъемных щеток, имеют встроенные долговечные ролики. Если сравнивать по стоимости, то и стоят такие приборы гораздо больше своих предшественников. Чаще всего, такие стабилизаторы используют там, где не наблюдается частых перепадов напряжения в сети.

Как выбрать стабилизатор напряжения исходя из мощности

Руководствуясь данным критерием, не стоит забывать и о числе используемой техники, которая будет подключена к стабилизатору.

Как вычислить необходимую мощность:

1. Необходимо сложить мощность всех электроприборов. Эти данные можно найти в техпаспорте к приборам либо на наклейках корпуса;
2. Нужно выяснить какой же прибор обладает наиболее высокой мощность пуска. Самый распространенный вариант в быту – это мясорубка либо кондиционер. Далее определяем разницу между номинальной и пусковой мощностями и добавляем полученное значение к полученной совокупной мощности.

Выбор стабилизатора по количеству фаз

Практически во всех многоквартирных домах однофазная сеть с напряжением 220В. При таких условиях и стабилизатор необходимо подбирать из однофазных.

Трехфазные устройства могут понадобиться при:

1. Если имеются трехфазные потребители. Сюда можно отнести – компрессор, котел, насос. Однако, в квартире такие приборы не встречаются;
2. Если квартира подключена к трехфазной сети.

Трехфазные стабилизаторы имеют достаточно высокую стоимость и поэтому очень часто вместо одного трехфазного, пользователи покупают три однофазных стабилизатора.
Выбор стабилизатора по точности, диапазону, месту монтажа

По диапазону различают две категории приборов:

1. Рабочий. Указывает на доступный интервал напряжения на входе, при котором будет происходить подача напряжения 220В (это подходит лишь для однофазной сети) либо 380В (для трехфазной сети). Погрешность имеет место быть;
2. Предельный. Указывает на разницу между входным напряжением и оптимальным его значением, при котором стабилизатор не питает все приборы, которые от него отключены, но при этом сам находится в рабочем состоянии. В основном, это 14-18%.

Стабилизаторы напряжения имеют относительную точность. Чем более точно работает стабилизатор, тем дороже он стоит. Самые дешевые стабилизаторы имеют точность около 2-7%, в таких случаях отклонение должно быть не более 1%.

Установить стабилизатор можно без особого труда и специальных навыков. Практически все модели устанавливаются с помощью кронштейнов, которые идут в комплекте. Обязательным условием при монтировании стабилизатора является то, что он должен располагаться не меньше 0,3 м от потолка.

Если у вас остались вопросы, просьба, не стесняться задавать их нашим инженерам. Каждый из них, ежегодно, проходит обучение на заводе производителя. Телефон горячей линии: +7 925 772 2557

Какой стабилизатор напряжения лучше? Отвечаем по пунктам.

Самый лучший стабилизатор напряжения — это тот, который решает именно вашу проблему с электроснабжением, а не соседа или знакомого. У него много характеристик, но ни у одного они не могут быть все сразу самыми лучшими. Даже пользовательские рейтинги не могут являться абсолютным критерием истины. Попробуем в этом разобраться.


Гарантийный срок

Является самым объективным показателем лучшего стабилизатора. Чем он больше, тем:
  • более совершеннее схемотехника и стабильнее характеристики напряжения и мощности;
  • надёжнее комплектующие, из которых он собран;
  • качественнее сборка;
  • жёстче надзор со стороны заводского ОТК.


Гарантия Lider
Гарантия Volter
Лишь немногие производители дают гарантию более года, среди них:
  • Lider, Volter — 5 лет;
  • Progress, Энерготех, Энергия (тиристорые модели) — 3 года;
  • Штиль, Ortea — 2 года.

Чем больше стандартный заводской гарантийный срок, тем стабилизатор напряжения будет лучше по качеству изготовления и надёжности эксплуатации.


Диапазон входного напряжения и выходная мощность

Основная задача стабилизатора — это повышение низких и понижение высоких напряжений в сети до уровня 220 вольт. Однако не все стабилизаторы в силу простоты своей конструкции могут поддерживать 100% мощности при низких напряжениях — они выдают только 50-60% от заявленного номинала. Объясняется это тем, что в них для снижения общей стоимости устанавливают маломощные трансформаторы.

Зависимость выходной мощности стабилизатора от входного напряжения


С мощным трансформатором

С маломощным трансформатором

Полную 100% мощность при самых низких рабочих напряжениях выдают только стабилизаторы Lider, Progress, Штиль. Именно они и будут самыми лучшими по такому важному соотношению, как входной диапазон и отдаваемая мощность.


Точность стабилизации

Не столь существенный показатель для большинства электротехники, которой точности в 3-5% хватает "за глаза", т.е. отклонения напряжения будут в пределах от 209 до 231 вольта, что соответствует требованиям, указанным в инструкциях по эксплуатации. Но есть высококачественные электронные приборы и системы освещения, которые требуют высокоточного питания с точностью не хуже 1-2%. А такие стабилизаторы напряжения выпускают только несколько фирм: Lider, Progress, Штиль, Volter и Энерготех. И только две из них — Lider и Progress, выпускают прецизионные модели на 0,5-1%.

Если нужна высокая точность выходного напряжения, то эти стабилизаторы будут самыми лучшими.


Перегрузочная способность

Практически все бытовые стабилизаторы напряжения не рассчитаны на высокие перегрузки в течение долгого времени, за исключением Progress: у него есть специальные модели серии «L», серии «SL» и серии «SL-20», которые держат 400% номинала в течение 10 секунд! Лучшего варианта с большой устойчивостью к значительным перегрузкам не найти.


Промышленные модификации

Это специализированные модификации стандартных моделей с применением усиленных тиристорных силовых ключей, которые могут питать промышленную нагрузку с КНИ (коэффициент нелинейных искажений) от 15 до 50%. Их производят только две фирмы: Lider и Progress в однофазном (от 3 до 330 кВА) и трёхфазном (от 9 до 990 кВА) исполнении.

Если требуется стабилизатор напряжения для частотного регулятора или инвертора, станка с ЧПУ, плазменного или лазерного комплекса — то только они лучше всего подойдут для такой нагрузки.


Стоимость

Напрямую зависит от качества элементной базы, наличия мощного трансформатора и технологичности сборки. Лучшие стабилизаторы напряжения стоят дорого, разница в цене с простыми и дешёвыми моделями может достигать 3-4 раза. Поэтому, к сожалению, вследствие недостатка семейного бюджета или банальной скупости, люди покупают более дешёвые модели и потом вынуждены мириться с их недостатками.

какой стабилизатор лучше, типы стабилизаторов, требуемая мощность стабилизатора

Газовые котлы реагируют на любые перепады напряжения и незапланированные отключения. Для того чтобы предотвратить порчу и преждевременный износ оборудования стоит использовать стабилизатор напряжения. В нашей статье вы узнаете, как правильно выбрать стабилизатор напряжения.

Содержание:

   1. Необходим ли стабилизатор напряжения

   2. Типы стабилизаторов

      2.1 Электромеханические стабилизаторы с сервоприводом
      2.2 Электронные или релейные стабилизаторы напряжения
      2.3 Симисторные стабилизаторы
      2.4 Тиристорные стабилизаторы

   3. Какой стабилизатор лучше

   4. Требуемая мощность стабилизатора

Необходим ли стабилизатор напряжения

Газовые котлы полностью зависят от электроэнергии. Поэтому работа такого отопительного оборудования зависит от стабильности электропитания. При небольших перепадах в электросети газовый котел может аварийно выключиться или произойдет сбой в работе. 

Для беспрерывной работы электрооборудования необходимо обеспечить напряжение равное 220В. Соблюдая погрешность не больше 5%. Но электрические сети не могут обеспечивать данные требования по нескольким причинам: различные явления в атмосфере, которые обычно возникают летом и весной, резкое увеличение нагрузки в электросети, неусовершенствованные технологии и некачественные линии электропередач.

Защитить газовый котел и сети можно, установив стабилизатор напряжения. Установить его можно как общий на все приборы или же отдельно на газовый котел.

Типы стабилизаторов

Стабилизаторы напряжения разделяются по многим критериям. Они бывают напольные и настенные. А также бывают стабилизаторы, работающие от постоянного, переменного тока и бывают трехфазные и однофазные. 

По способу переключения обмоток стабилизаторы также делятся на несколько видов. Рассмотрим каждый вид подробно.

Электромеханические стабилизаторы с сервоприводом

В таком приборе бегунок движется по обмоткам при помощи сервопривода. Изготавливают такой стабилизатор по принципу автомобильного трансформатора.

К преимуществам электромеханического стабилизатора относятся:

  1. Небольшие размеры.
  2. Регулировка напряжения происходит постепенно без нарушений фазы.
  3. При больших скачках напряжения сохраняется высокая работоспособность. 

Электронные или релейные стабилизаторы напряжения

Обмотки переключаются с помощью реле. Такие приборы имеют невысокую стоимость, но являются качественными и надежными. В релейный стабилизатор не попадает влага и пыль благодаря герметично закрытому корпусу.

Релейные стабилизаторы обладают некоторыми достоинствами:

  1. Быстрая реакция.
  2. Низкая стоимость оборудования.
  3. Электронный стабилизатор не требует обслуживания.
  4. В случаях изменения входного сигнала скорость переключения довольно высокая.

Но релейный стабилизатор имеет недостаток: на выходе происходит ступенчатое регулирование напряжения.

Симисторные стабилизаторы

В конструкции данного прибора применяется реле и симистор совместно. 

К преимуществам симисторного стабилизатора напряжения относится:

  1. Высокий срок службы. Производители заявляют о сроке эксплуатации до 10 лет.
  2. При работе стабилизатора отсутствует шум.
  3. Бывают настенные и напольные виды.
  4. В конструкции стабилизатора отсутствуют детали, которые могут изнашиваться при механическом использовании. Чего не скажешь про электромеханические и релейные стабилизаторы напряжения.
  5. Надежность и долговечность эксплуатации.
  6. Если происходит перегрузка тока, то происходит автоматическое отключение нагрузки. Происходит это благодаря встроенной в оборудовании многоуровневой автоматической защите. А также обеспечивается защита от высокого или пониженного напряжения и защита от короткого замыкания.
  7. При коротких сбоях в работе электросети, которые возникают при перезагрузках, симисторный стабилизатор гарантирует бесперебойную работу газового котла.

Тиристорные стабилизаторы

В таких приборах встроены тиристорные ключи. Они при включении и выключении влияют на форму тока, вызывая искажение. Процессор, который встроен в схему, включает и выключает тиристоры. 

При проблемах в электроснабжении, в тиристорном стабилизаторе не будут происходить перегрузки благодаря микроконтроллеру, который посылает команду выключения стабилизатора напряжения. 

К преимуществам тиристорных стабилизаторов относятся:

  1. Небольшие размеры.
  2. Не создает шума при работе.
  3. Не образуется дуговой разряд при работе тиристоров.
  4. Долговечность.
  5. Высокая скорость и точность при налаживании напряжения.
  6. Экономичность.
  7. Работает при напряжениях 120-300 В.

Но, как и любые приборы тиристорные стабилизаторы имеют недостатки:

  1. Самый дорогой стабилизаторы напряжения.
  2. Стабилизация тока происходит ступенчатым способом.

Какой стабилизатор лучше

Выбор стабилизатора зависит от требуемого напряжения. Если газовый котел рассчитан на напряжение сети 220 В, то достаточно применение однофазного стабилизатора. Если же прибор рассчитан на напряжение в 380 В, то необходимо использовать трехфазный стабилизатор напряжения.

Можно применить еще один вариант: установить на каждую фазу однофазный стабилизатор. Таким образом, вы сэкономите на покупке и установке трехфазного стабилизатора, который обойдется дороже покупки трех однофазных. 

Требуемая мощность стабилизатора

Перед покупкой стабилизатора напряжения необходимо произвести расчет газового котла:

  • В первую очередь необходимо обратить внимание на технические характеристики оборудования, которые указываются в паспорте. 
  • Нужно учитывать общую мощность насоса и газового котла. Но стоит учесть, что при включении насоса потребляемый ток увеличит номинал примерно в 3 раза.
  • В домашней сети произвести замер диапазона входного напряжения.
  • Время, затраченное на изменение напряжения. То есть это показатель, который определяет перепад напряжения. Он стабилизируется прибором за 1 секунду. 
  • Для определения точности и соответствия показателей напряжения на выходе применяют тиристорные и симисторные стабилизаторы. Но они требуются не во всех случаях. Иногда можно обойтись электромеханическим или релейным стабилизатором, который является достаточным для непрерывной работы оборудования со средним значением в 5%.

Чтобы рассчитать мощность стабилизатора напряжения необходимо мощность нагрузки газового котла умножить на 5, а полученное число умножить на коэффициент защиты равный 1,3. 
Многие стоят перед выбором зарубежного и российского стабилизатора напряжения. Как показала практика, российские производители выпускают качественные и надежные приборы. 

Купить стабилизатор для газового котла вы можете в нашем интернет магазине. 

Читайте также:

Какой стабилизатор напряжения выбрать: электромеханический или электронный

Стабилизатор напряжения – прибор, защищающий оборудование от аварий при перегрузке сети путем сглаживания выходного напряжения. Перегрузки могут быть вызваны перенапряжением, бросками питающего напряжения или высоковольтными импульсами.

Для бытовых целей, в малом бизнесе, промышленности и медицине нужны разные по своим техническим параметрам и степени защищенности стабилизаторы. Главное отличие – мощность и точность коррекции.

Существует два вида стабилизаторов напряжения: электромеханические и электронные.

Также стабилизаторы напряжения подбирают по типу сети: однофазный или трехфазный, и по мощности подключаемого оборудования (кВт или кВА).

Широко используются бытовые стабилизаторы напряжения – при отоплении газовыми котлами в коттедже, даче или частном доме, для защиты бытовой и оргтехники.

Сравнение типов стабилизаторов напряжения или в чем разница между электромеханическим и электронным стабилизатором.

Если вы столкнулись с проблемой перепадов напряжения в сети, то вы уже озадачились вопросом подбора стабилизатора напряжения. И наверняка пришли в замешательство от ассортимента представленных моделей, производителей и диапазона цен на стабилизаторы. Разобраться в таком количестве информации достаточно трудно. Эта статья поможет вам найти качественный стабилизатор напряжения. Чем же отличаются  стабилизаторы и как из десятков  названий выбрать тот, который действительно защитит вашу технику?

Стабилизаторы различаются принципом работы: релейные, электромеханические (сервомоторные, сервоприводные), электронные (симисторные, тиристорные), мощностью, эксплуатационными характеристиками, страной производства (Россия), стоимостью и самое главное - качеством, от которого зависит срок службы.

Как выбрать подходящий стабилизатор напряжения, который не только будет надежно выполнять свои функции, но и не заставит вас переплачивать?

В первую очередь необходимо сформулировать проблемы, характерные непосредственно для вашей сети. Обычно это постоянное завышенное, заниженное напряжение, или их резкие скачки. Для выбора стабилизатора желательно знать точные значения сети.

Далее необходимо выбрать стабилизатор напряжения по наиболее значимым параметрам.

Значимые параметры стабилизатора

1. Соответствие стабилизатора и сети

Тип стабилизатора должен соответствовать типу сети. Однофазной сети нужен однофазный стабилизатор, трехфазной сети – трехфазный. Если в сети есть хотя бы один трехфазный прибор, необходим трехфазный стабилизатор. Он устанавливается также в том случае, когда в трехфазной сети используются однофазные приборы.

2. Мощность стабилизатора

Мощность стабилизатора подбирается исходя из суммы мощностей приборов и оборудования, которые будут к нему подключены.

Нужно определить полную мощностью нагрузки (ВА) – это сумма активной (Вт) и реактивной нагрузки (ВАр). Для расчета мощности можно использовать формулу: кВт/cos ф = кВа. Значение cos ф разное у разных потребителей. Cos ф бытовых приборов можно принять за 0,8; cos ф электродвигателей – за 0,7.

При этом покупать стабилизатор завышенной мощности не требуется, так как наши стабилизаторы имеют высокую перегрузочную способность. Считаем важным напомнить, что в момент запуска многие электроприборы (такие как асинхронные двигатели, насосы, компрессоры) имеют высокие пусковые токи, то есть потребляют больше электроэнергии, чем в ходе работы в целом. Оптимальным решением для работы с самой требовательной техникой будет электромеханический стабилизатор, который выдерживает перегрузку в 1000%. Определить потребляемую мощность того или иного устройства вы можете, ознакомившись с техпаспортом или инструкцией по эксплуатации.

3. Уровень надежности

Выбирая стабилизатор напряжения, важно обращать внимание на частоту его отказов при тех или иных условиях, ведь именно этот показатель и говорит об уровне его надежности. В настоящее время наиболее надежными считаются 2 вида стабилизаторов:

  • Ступенчатого типа – регулировка при помощи реле, обеспечивающих высокую помехоустойчивость и значительный КПД.
  • Электромеханического типа, где основной элемент – автотрансформатор, обеспечивающий высокую перегрузочную способность, плавную коррекцию напряжения и высокую точность стабилизации.

4. Точность стабилизатора напряжения

Разным типам оборудования соответствует свой показатель рабочего напряжения, то есть напряжения, которое будет поступать от стабилизатора к технике. Диапазон изменения напряжения на выходе стабилизатора называется точностью коррекции стабилизатора и измеряется в %. Чем этот показатель меньше, тем напряжение ближе к 220 В.

  • Для точных измерительных приборов и сложной медицинской аппаратуры с особыми требованиями по безопасности и надежности подойдет высокоточный стабилизатор напряжения с точностью ±1%. На производстве такой стабилизатор необходим для защиты станков и оборудования, дома – при наличии дорогостоящей техники и аппаратуры.
  • Большая часть бытовых и офисных электроприборов успешно работает при напряжении 210-230 В, значит, для них подойдут стабилизаторы с точностью не более 5%.
Можно ли  купить дешевый стабилизатор напряжения?

Дешевый стабилизатор - в 80% случаев китайского производства, а как все мы знаем качество китайской техники оставляет желать лучшего. Если вам нужен стабилизатор только на пару лет и с весьма сомнительной гарантией защиты оборудования, то вы конечно в праве выбрать китайский. Но если вы дорожите своей техникой, вам дорого ваше время, спокойствие, и вы не хотите переплачивать за покупку новой техники, к выбору стабилизатора стоит подойти более вдумчиво.

Цель данной статьи помочь вам разобраться в основных видах стабилизаторов и выбрать наиболее подходящий для вас.

Итак: Какой же тип стабилизатора необходим именно вам?

Как мы ранее уже говорили существует несколько основных типов стабилизаторов: релейного типа, электромеханические (сервомоторные, сервоприводные), электронные (симисторные, тиристорные).
Мы обсудим два самых надежных вида стабилизаторов: электромеханические и электронные на примере стабилизаторов напряжения российского производства Сатурн и Каскад торговой марки "Полигон".

Электромеханические стабилизаторы напряжения Сатурн

Эти приборы иначе называют сервомоторными или сервоприводными. Принцип работы электромеханических стабилизаторов напряжения заключается в том, что при изменении входного напряжения по обмотке трансформатора перемещаются графитовые щетки, изменяя выходное значение. Этот процесс осуществляется при помощи регулируемого автотрансформатора (латр), который и перемещает щетку по катушке. Он является коммутационным элементом и регулирует напряжение на первичной обмотке вольтодобавочного трансформатора. Латр входит в качестве основного силового элемента в состав конструкции электромеханического трансформатора. В стабилизаторах Сатурн используется высококачественный автотрансформатор (латр) немецкой компании Thalheimer Transformatorenwerke GmbH (TTW).

Среди достоинств электромеханических стабилизаторов Сатурн нужно выделить высокую точность коррекции ±1%, которая не зависит от подключенной мощности и входного напряжения. Стабилизатор будет работать и защищать всю подключенную технику во всем диапазоне входных напряжений и нет необходимости переплачивать и брать стабилизатор с запасом по мощности. Регулировка напряжения плавная, стабилизаторы выдерживают перегрузки 200% в течение 100 секунд, 400% за 10 секунд и 1000% – 2 секунд.

Также среди плюсов присутствует минимальный износ механический частей за счет отсутствия щеточного узла трансформатора именно в цепи нагрузки и его работе с малыми токами. Низкая шумность стабилизатора достигается благодаря естественной вентиляции, отсутствию вентилятора и благодаря сервоприводу.

Рекомендуется для эксплуатации в тяжелых промышленных сетях, так как коммутационный элемент (щетка) не воспринимает помехи и искажения формы тока и напряжения.

Электронные стабилизаторы напряжения Каскад

Принцип работы электронных стабилизаторов напряжения заключается в переключении при помощи симисторов или тиристоров между обмотками. В электронном стабилизаторе напряжения при изменении параметров входного напряжения, микропроцессор посылает знак на закрытие одной и открытие другой ступени. Именно так осуществляется регулировка количества задействованных витков трансформатора, что влияет на выходные показатели напряжения.

Среди достоинств электронных стабилизаторов выделяют низкий уровень шума, так как используется естественное охлаждение, быстродействие, небольшие габариты устройства. Регулирование выходного напряжения происходит без искажения и разрыва фазы.

В преимущества электронных стабилизаторов Каскад можно включить точность коррекции +/-2,5%, которая не зависит от подключенной мощности и входного напряжения. Такие стабилизаторы работают без потери мощности во всем диапазоне входных напряжений. Плавная отработка всплесков и просадок напряжения. Регулирование выходного напряжения без искажения и разрыва фазы. Как и электромеханические стабилизаторы работают с нулевыми нагрузками, а использование естественного охлаждения избавляет от шума вентилятора. За счет использования собственных трансформаторов не требуется учитывать запас по мощности. Качественная элементная база обеспечивает долгие годы работы.

Стабилизаторы напряжения должны подходить для российских сетей, а это значит, что они должны быть изготовлены с запасом по мощности  и выдерживать большие перегрузки. «Сатурн» и «Каскад» выдерживают перегрузку в 1000%.

Ниже приведено видео, которое поможет осуществить выбор типа стабилизатора.

Стабилизаторы напряжения различных видов производства АО «ПФ «Созвездие» можно приобрести в розничных магазинах или через основной завод в Санкт-Петербурге.
Контактные данные: 8-800-333-00-68 (бесплатно по России), (812) 327-07-06 (Санкт-Петербург), 8 (495) 665-54-39 (Москва), e-mail: [email protected]

Если вы затрудняетесь при выборе стабилизатора напряжения, то специалисты нашей компании грамотно вас проконсультируют.


Какой стабилизатор напряжения для дома лучше?

Стабилизатор напряжения – однофазное устройство, нормализующее сетевое напряжение и обеспечивающее условия работы в диапазоне 220-230 Вольт. Основная функция стабилизатора заключается в нормализации подаваемого напряжения и создании условий для использования бытовой техники. Использование стабилизатора позволяет регулировать показатели подаваемого напряжения в пределах ±10% в ситуациях серьезных отклонения от установленных номинальных значений.

Виды и особенности

На современном рынке представлены три вида стабилизаторов, предназначенных для дома:

  • электромеханические устройства;
  • инверторные модели;
  • электронные ступенчатые, включая релейные, симисторные и тиристорные.

Электромеханические модели

Электромеханические устройства работают при помощи электродвигателя. При изменении величины напряжения входного тока двигатель перемещает угольные щетки вдоль обмотки. Регулировка плавная, что выделяет такой тип оборудования среди остальных. Но такой принцип работы вызывает повышенный износ медной проволоки обмотки и щеток, особенно при постоянных перепадах в сети. К минусам необходимо также отнести:

  • скорость реакции на скачки и перепады напряжения низкая;
  • эксплуатация при низких температурах окружающего воздуха требует дополнительного подогрева сервопривода;
  • все трущиеся детали необходимо регулярно обслуживать, используя для этого графитовую смазку;
  • механический износ повышенный, сроки службы оборудования ограничены.

Ступенчатые стабилизаторы электронного типа

Электронные ступенчатые устройства работают по принципу автоматического переключения обмоток. Для этого могут использоваться симисторы или тиристоры, сам стабилизатор обладает следующими преимуществами:

  • высокие показатели точности срабатывания устройства;
  • повышенные показатели надежности, эксплуатация оборудования простая;
  • скорость реакции на скачки и перепады сетевого напряжения высокие;
  • движущие части конструкции отсутствуют, что исключает их износ, расходы на обслуживание и продлевает эксплуатационные сроки.

Инверторные стабилизаторы

Такой тип оборудования, как инверторные стабилизаторы, состоит из входных фильтров, корректора мощности, выпрямителя, конденсатора, преобразователи и микроконтроллера. Для регулировки используются принцип преобразования входного тока в постоянный с его прохождением через фильтр частот и выравниванием напряжения, после чего ток проходит повторное преобразование уже в переменный. Автоматический трансформатор в процессе не участвует, степень эффективности такого двойного преобразования намного выше, чем у других вариантов стабилизаторов.

Что выбрать?

Выбирая стабилизатор для дома, в первую очередь рекомендуется обратить внимание на производителя. К сожалению, на рынке множество недобросовестных брендов, которые намеренно завышают указанную мощность или используют при сборке некачественные комплектующие. Проверенные компании поставляют качественное и надежное оборудование, но стоимость его обычно выше.

Кроме того, надо обратить внимание на вес устройства. Если при указанной одинаковой мощности масса двух устройств отличается, следует задуматься о качестве и соответствии характеристик заявленным. Чаще всего это касается стабилизаторов трансформаторного типа.

Какой вариант выбрать для дома? Этот вопрос решается индивидуально, учитывая необходимые свойства, функциональность и простоту эксплуатации устройства. Отличные показатели наблюдаются у ступенчатых стабилизаторов. Они долговечные, скорость реакции на перепады напряжения очень высокая. Но и стоимость такого оборудования будет выше, что необходимо учитывать. Наиболее эффективным является инверторный стабилизатор без автоматического трансформатора и с высокой скоростью реагирования.

Как правильно выбрать регулятор (ы) напряжения для вашей конструкции

В этой статье показано, как выбрать лучший тип стабилизатора напряжения для вашего конкретного электронного продукта.

Вероятно, более 90% продукции требуют регулятора напряжения того или иного типа, что делает их одними из наиболее часто используемых электрических компонентов.

Если у вас нет возможности работать напрямую от напряжения батареи или внешнего адаптера постоянного / переменного тока, требуется стабилизатор напряжения.Скорее всего, потребуется несколько регуляторов напряжения.

Эта статья - ваше руководство по выбору регулятора (ов) напряжения для вашей конструкции. Мы расскажем обо всем, от определения того, какой тип регулятора напряжения вам нужен, до выбора того, который соответствует вашим конкретным требованиям.

Выбор необходимого регулятора

Первым шагом в выборе правильного регулятора напряжения является определение входного напряжения, выходного напряжения и максимального тока нагрузки.

Хотя существует множество других спецификаций, эти три помогут вам начать работу и помогут сузить круг необходимого вам регулятора.

Регуляторы напряжения

можно разделить на две широкие классификации:

  • Понижающий : Выходное напряжение ниже входного
  • Повышающий : Выходное напряжение больше входного

Знание входного и выходного напряжения поможет вам легко решить, к какой группе относится ваш регулятор.

Регуляторы напряжения, которым требуется выходное напряжение меньше входного, являются наиболее распространенным типом регуляторов напряжения. Например, вы вводите 5 В и выдает 3,3 В, или вы вводите 12 В и выдает 5 В.

Вам необходимо рассмотреть два типа регуляторов:

  • Линейные регуляторы : простые, дешевые и бесшумные, но могут иметь низкую энергоэффективность. Линейные регуляторы способны только понижать напряжение.
  • Импульсные регуляторы : Высокая энергоэффективность, но более сложная и дорогая, и с большим шумом на выходе.Импульсные регуляторы могут использоваться как для понижения, так и для повышения напряжения.

Если вам требуется выходное напряжение ниже входного, начните с линейного регулятора, а не импульсного регулятора.

Рисунок 1. В линейном стабилизаторе используется транзистор и контур управления с обратной связью для регулирования выходного напряжения. Линейный регулятор может производить только выходное напряжение ниже входного.

Линейные регуляторы

намного дешевле и проще в использовании, чем импульсные регуляторы, поэтому они, как правило, должны быть вашим первым выбором.

Единственный случай, когда вы не хотите использовать линейный стабилизатор, - это если рассеиваемая мощность слишком велика или вам нужно повысить напряжение.

Определение рассеиваемой мощности

Хотя линейные регуляторы дешевы и просты в использовании, основным недостатком является то, что они могут тратить много энергии. Это может вызвать чрезмерный разряд батареи, перегрев или повреждение продукта.

Если у вас есть аккумулятор, мощность которого расходуется на тепло, аккумулятор разряжается быстрее.Если это не аккумулятор, но он по-прежнему выделяет значительное количество тепла, это может вызвать другие проблемы с вашей конструкцией.

Фактически, при определенных условиях линейный регулятор может выделять столько тепла, что фактически разрушает себя. Очевидно, вы этого не хотите.

При использовании линейного регулятора начните с определения того, сколько мощности будет рассеиваться регулятором.

Для линейных регуляторов используйте уравнение:

Мощность = (Входное напряжение - Выходное напряжение) x Ток (Уравнение 1)

Можно предположить, что выходной ток (также называемый током нагрузки) примерно такой же, как входной ток для линейных регуляторов.

На самом деле, входной ток равен выходному току плюс ток покоя, который потребляет линейный регулятор для выполнения функции регулирования.

Однако для большинства регуляторов ток покоя чрезвычайно мал по сравнению с током нагрузки, поэтому достаточно предположить, что выходной ток равен входному току.

Как видно из уравнения 1, если у вас большой перепад напряжения (Vin - Vout) на регуляторе и / или большой ток нагрузки, то ваш регулятор будет рассеивать большое количество энергии.

Например, если на входе 12 В, а на выходе 3,3 В, разность напряжений будет рассчитана как 12 В - 3,3 В = 8,7 В.

Если ток нагрузки составляет 1 ампер, это означает, что регулятор должен рассеивать 8,7 Вт мощности. Это огромная потеря мощности, с которой не справится любой линейный регулятор.

Если, с другой стороны, у вас есть высокий перепад напряжения, но вы используете ток нагрузки всего в несколько миллиампер, тогда мощность будет небольшой.

Например, в случае, приведенном выше, если вы сейчас используете ток нагрузки только 100 мА, тогда рассеиваемая мощность упадет до 0,87 Вт, что гораздо более приемлемо для большинства линейных регуляторов.

При выборе линейного регулятора недостаточно просто убедиться, что входное напряжение, выходное напряжение и ток нагрузки соответствуют спецификациям регулятора.

Например, у вас есть линейный регулятор, рассчитанный на 15 В и ток 1 А. Вы думаете: «Хорошо, если это так, я могу подать на вход 12 В, взять 3.3 В на выходе и запустить его при 1 А, не так ли? "

Неправильно! Вы должны убедиться, что линейный регулятор может выдерживать даже такое количество мощности. Способ сделать это - определить, насколько сильно нагреется регулятор, в зависимости от мощности, которую он должен рассеять.

Для этого сначала рассчитайте, сколько мощности будет рассеивать линейный регулятор, используя уравнение 1 выше.

Во-вторых, посмотрите в таблице данных регулятора в разделе «тепловые характеристики» параметр под названием «Theta-JA», выраженный в единицах ° C / Вт (° C на ватт).

Theta-JA указывает на количество градусов, на которое микросхема будет нагреваться выше температуры окружающего воздуха, на каждый ватт мощности, которую он должен рассеять.

Просто умножьте расчетную рассеиваемую мощность на Theta-JA, и вы узнаете, насколько сильно линейный регулятор будет нагреваться при такой мощности:

Мощность x Theta-JA = Температура выше окружающей (Уравнение 2)

Допустим, ваш регулятор соответствует спецификации Theta-JA 50 ° C на ватт.Это означает, что если ваш продукт рассеивает:

  • 1 ватт, он нагреется до 50 ° C.
  • 2 Вт нагреется до 100 ° С.
  • ½ ватта нагреется до 25 ° C.

Важно отметить, что рассчитанная выше температура представляет собой разницу температур выше температуры окружающего воздуха.

Допустим, вы подсчитали, что при ваших условиях питания регулятор будет рассеивать 2 Вт мощности. Вы умножаете это на Theta-JA, и вы определяете, что он нагреется до 100 ° C.

Здесь важно не забыть добавить температуру окружающего воздуха. Комнатная температура обычно составляет 25 ° C. Следовательно, вы должны добавить 25 ° C к 100 ° C. Теперь у вас температура 125 ° C.

125 ° C - это максимальная температура, на которую рассчитано большинство электронных компонентов, поэтому вы никогда не захотите намеренно превышать 125 ° C.

Обычно вы не повредите свой продукт, пока не достигнете температуры примерно от 170 ° C до 200 ° C. К счастью, у большинства регуляторов также есть тепловое отключение, которое срабатывает при температуре около 150 ° C, поэтому они отключатся до того, как вызовут какие-либо повреждения.

Однако некоторые регуляторы не имеют теплового отключения, поэтому вы можете повредить их, если они рассеивают слишком много энергии.

В любом случае, вы не хотите, чтобы ваш продукт постоянно перегревался и ему приходилось отключаться, чтобы остыть.

Также следует учитывать, что температура воздуха не всегда может быть 25 ° C.

Допустим, ваш регулятор все еще нагревается до 100 ° C под нагрузкой, но теперь температура окружающей среды составляет 50 ° C (например, в закрытой машине в жаркий летний день).

Теперь у вас 50 ° C плюс 100 ° C и температура до 150 ° C при загрузке. Вы превысили указанную максимальную температуру и находитесь на грани срабатывания теплового отключения.

Очевидно, этого следует избегать. Эксплуатация регулятора таким образом, чтобы он регулярно превышал заданную температуру 125 ° C, может не вызвать немедленного повреждения, но может сократить срок службы компонента.

Регуляторы с малым падением напряжения (LDO)

В некоторых случаях линейные регуляторы могут быть чрезвычайно эффективными, потребляя очень мало энергии.Это происходит, когда они работают с очень низким входным напряжением к выходному напряжению.

Например, если Vin - Vout составляет всего 300 мВ, то даже при токе нагрузки 3 А рассеиваемая мощность составляет всего 0,9 Вт, что является достаточно низкой мощностью, чтобы выдерживать нагрузку большинством регуляторов.

Минимальный дифференциал Vin-Vout, с которым может работать линейный регулятор, называется падением напряжения. Если разница между Vin и Vout падает ниже напряжения отключения, то регулятор находится в режиме отключения.

Регулятор в режиме отпускания просто выглядит как небольшой резистор от входа к выходу. Это означает, что выход, по сути, просто соответствует входному питанию, и на самом деле регулирование не выполняется.

В большинстве случаев вы не хотите использовать линейный регулятор в режиме отключения. Это ни в коем случае не повредит чему-либо, но вы потеряете многие преимущества регулятора.

Например, если у вас много шума на входе, он обычно будет отфильтрован линейным регулятором.Однако эта фильтрация не будет происходить в режиме отключения, поэтому весь шум входного источника питания проходит прямо через выходное напряжение.

Причина, по которой стабилизаторы с малым падением напряжения так полезны, заключается в том, что они позволяют управлять регулятором с очень малой рассеиваемой мощностью. Это связано с тем, что линейный регулятор наиболее эффективен, когда разница между Vin и Vout небольшая.

Многие старые линейные регуляторы имели очень высокое падение напряжения. Например, у популярных регуляторов серии 7800 значение падения напряжения составляет 2 В.Это означает, что входное напряжение должно быть как минимум на 2 В выше выходного напряжения.

Рисунок 2 - Старые трехконтактные линейные регуляторы требуют большего перепада напряжения Vin-Vout и, следовательно, расходуют больше энергии, чем более новые регуляторы LDO.

Хотя 2 В - это не так уж и много, если вы пропускаете через этот регулятор ток в 1 ампер и у вас есть разница в 2 В, то это 2 Вт энергии, теряемой зря.

Регуляторы LDO нового поколения могут иметь очень низкое падение напряжения менее 200 мВ при полной нагрузке.

LDO, работающий только с перепадом напряжения 200 мВ, может пропускать в 10 раз больше тока при той же рассеиваемой мощности, что и линейный стабилизатор, работающий с перепадом напряжения 2 В. Таким образом, 1 ампер тока с дифференциалом Vin-Vout 200 мВ соответствует лишь 0,2 Вт рассеиваемой мощности.

Краткое описание линейных регуляторов

Линейные регуляторы полезны, если:

  • Разница между входным и выходным напряжением мала
  • У вас низкий ток нагрузки
  • Требуется исключительно чистое выходное напряжение
  • Дизайн должен быть максимально простым и дешевым

Как мы обсудим дальше, импульсные стабилизаторы создают много шума на выходе и могут создавать нечеткое выходное напряжение.

Это может быть приемлемо для некоторых приложений, но во многих случаях требуется очень чистое напряжение питания. Например, при генерации напряжения питания для аналого-цифрового преобразователя или какой-либо звуковой схемы.

Таким образом, линейные регуляторы не только проще в использовании, но и обеспечивают гораздо более чистое выходное напряжение по сравнению с импульсными регуляторами, без пульсаций, всплесков или шума любого типа.

Таким образом, если рассеиваемая мощность не слишком велика или вам не требуется повышающий регулятор, линейный регулятор будет вашим лучшим вариантом.

Импульсные регуляторы

Импульсные регуляторы намного сложнее для понимания, чем линейные регуляторы. Линейный регулятор основан на силовом транзисторе, который регулирует величину тока, разрешенного для подачи на выход.

ПРИМЕЧАНИЕ: Обязательно загрузите бесплатное руководство в формате PDF 15 шагов для разработки нового электронного оборудования .

Если система управления линейного регулятора определяет, что выходное напряжение ниже, чем должно быть, то от входа к выходу может проходить больший ток.И наоборот, если обнаруживается, что выходное напряжение выше, чем должно быть, регулятор позволит меньшему току течь от входа к выходу, действуя таким образом, чтобы снизить выходное напряжение.

С другой стороны, импульсные регуляторы используют катушки индуктивности и конденсаторы для временного хранения энергии перед передачей ее на выход.

В этом уроке я проектирую печатную плату с использованием простого линейного регулятора, а в этом более глубоком курсе я проектирую индивидуальную плату с использованием более сложного импульсного регулятора.

Существует два основных типа импульсных регуляторов: повышающий и понижающий.

Понижающий импульсный стабилизатор также называется понижающим стабилизатором и, как линейный регулятор, выдает выходное напряжение ниже входного.

Рис. 3. Понижающий импульсный стабилизатор использует катушку индуктивности в качестве временного накопителя энергии для эффективного создания выходного напряжения ниже входного.

Если вы начали планировать использование линейного регулятора (понижающего), но определили, что рассеиваемая мощность слишком велика, тогда вам следует использовать понижающий импульсный стабилизатор.

В то время как повышающий импульсный стабилизатор создает выходное напряжение, превышающее входное, и называется повышающим регулятором.

Импульсные регуляторы очень эффективны, даже при очень больших разностях между входом и выходом.

КПД равен выходной мощности, деленной на входную. Это соотношение того, какая часть мощности от входа поступает на выход.

КПД = Pout / Pin = (Vout x Iout) / (Vin x Iin) (Уравнение 3)

Уравнение эффективности то же самое для линейного регулятора.Однако, поскольку выходной ток равен входному току для линейного регулятора, уравнение 3 упрощается до простого:

КПД (линейный регулятор) = Vout / Vin (уравнение 4)

Например, предположим, что у вас на входе 24 В, а на выходе необходимо 3 В при токе нагрузки 1 А. Если бы это был линейный регулятор, он работал бы с чрезвычайно низким КПД, и почти вся мощность рассеивалась бы в виде тепла.

КПД линейного регулятора будет только 3 В / 24 В = 12.5%. Это означает, что только 12,5% мощности от входа поступает на выход. Остальные 87,5% передаваемой мощности теряются в виде тепла!

С другой стороны, импульсные регуляторы обычно имеют КПД 90% или больше, независимо от разницы между входным и выходным напряжениями. Для импульсного регулятора около 90% мощности передается на выход и только 10% тратится впустую.

Только когда Vin и Vout близки друг к другу, линейный регулятор может сравниться по эффективности с импульсным регулятором.

Например, если у вас входное напряжение 3,6 В (напряжение литий-полимерной батареи), а на выходе выдается 3,3 В, то линейный регулятор будет иметь КПД 3,3 В / 3,6 В = 91,7%.

Повышающие регуляторы напряжения

В большинстве случаев выходное напряжение будет ниже входного. В этом случае следует использовать линейный регулятор или понижающий импульсный стабилизатор, как обсуждалось.

Однако есть и другие случаи, когда вам может потребоваться выходное напряжение выше входного.Например, если у вас аккумулятор на 3,6 В и вам нужно питание 5 В.

Рис. 4. В повышающем импульсном стабилизаторе катушка индуктивности используется в качестве временного накопительного элемента для эффективного создания выходного напряжения, превышающего входное.

Многие новички в электронике удивляются, узнав, что можно генерировать более высокое напряжение из более низкого напряжения. Для выполнения этой функции необходим импульсный регулятор, называемый повышающим регулятором.

В отличие от линейных регуляторов выходной ток импульсного регулятора не равен входному току. Вместо этого вы должны смотреть на входную мощность, выходную мощность и эффективность.

Рассчитаем входной ток для повышающего регулятора. Предположим, что входное напряжение - 3 В, выходное напряжение - 5 В, выходной ток - 1 А, а энергоэффективность - 90% (как указано в таблице данных).

Чтобы выяснить это, нам нужно использовать небольшую базовую алгебру для уравнения 3, чтобы найти входную мощность:

Pin = Pout / КПД (Уравнение 5)

Мы знаем, что эффективность составляет 90% (или 0.90), и мы знаем, что выходная мощность составляет 5 В x 1 А = 5 Вт. Мы можем рассчитать, что входная мощность составляет 5 Вт / 0,9 = 5,56 Вт.

Поскольку входная мощность составляет 5,56 Вт, а выходная мощность 5 Вт, это означает, что регулятор рассеивает только 0,56 Вт.

Далее, поскольку мы знаем, что мощность равна напряжению, умноженному на ток, это означает, что входной ток равен:

Входной ток = 5,56 Вт / Vin = 5,56 Вт / 3 В = 1,85 A (Уравнение 6)

Для повышающего регулятора входной ток всегда будет выше, чем выходной ток.С другой стороны, входной ток понижающего регулятора всегда будет меньше выходного тока.

Понижающие регуляторы

Допустим, вы питаете свой продукт от двух последовательно соединенных батареек AA. При полной зарядке две батареи AA могут выдавать около 3,2 В, но когда они почти полностью разряжены, они выдают только 2,4 В.

В этом случае напряжение вашего источника питания может находиться в диапазоне от 2,4 В до 3,2 В.

Теперь предположим, что вам нужно выходное напряжение ровно 3 В независимо от состояния батарей.Когда батареи полностью заряжены (выходное напряжение 3,2 В), вам необходимо понизить напряжение батареи с 3,2 В до 3 В.

Однако, когда батареи близки к разряду (выходное напряжение 2,4 В), вам необходимо увеличить напряжение батареи с 2,4 В до 3 В.

В этом сценарии вы должны использовать так называемый повышающий-понижающий импульсный стабилизатор, который представляет собой просто комбинацию повышающего и понижающего регуляторов.

Для решения этой проблемы потенциально можно использовать отдельный понижающий регулятор, за которым следует повышающий регулятор (или наоборот).Но обычно лучше использовать одинарный понижающе-повышающий регулятор.

Импульсный регулятор + линейные регуляторы

Помните о трех преимуществах линейных регуляторов: дешевизне, простоте и чистоте выходного напряжения.

Может быть много случаев, когда вы хотите использовать линейный стабилизатор, потому что вам нужно чистое выходное напряжение, но вы не можете, потому что они тратят слишком много энергии.

В этой ситуации вы можете использовать импульсный регулятор, за которым следует линейный регулятор.

Допустим, у вас есть входное напряжение от литий-полимерной батареи, равное 3.6 В, но вам понадобится источник clean 5 В.

Для этого вы должны использовать повышающий стабилизатор, чтобы поднять напряжение до значения чуть выше целевого выходного напряжения. Например, вы можете использовать повышающий регулятор для повышения напряжения с 3,6 В до 5,5 В.

Затем вы следуете этому с помощью линейного регулятора, который берет 5,5 В и понижает его до 5 В, а также очищает шум и пульсации для получения чистого сигнала.

Это очень распространенный метод получения КПД импульсного регулятора и бесшумного выходного напряжения линейного регулятора.

Если вы выбрали эту опцию и специально пытаетесь отфильтровать коммутационные шумы, обязательно обратите внимание на коэффициент отклонения источника питания (PSRR) линейного регулятора.

PSSR данного линейного регулятора изменяется в зависимости от частоты. Следовательно, PSSR обычно представляется в виде графика, который показывает, как линейный регулятор подавляет любые пульсации на входном питании на различных частотах.

Рисунок 5 - Коэффициент подавления помех от источника питания (PSRR) в зависимости от частоты для TPS799 от Texas Instruments.

Чтобы использовать этот график, посмотрите на частоту переключения вашего импульсного стабилизатора (или любых других источников шума в вашей цепи). Затем посмотрите на PSSR линейного регулятора на этой конкретной частоте.

Затем вы можете рассчитать, какая часть шума импульсного регулятора будет удалена линейным регулятором.

Сводка

Чтобы выбрать регулятор напряжения для вашей системы, начните с предположения, что линейный регулятор может использоваться, если входное напряжение выше, чем выходное.

Только если при этом расходуется слишком много энергии, используйте понижающий импульсный стабилизатор.

Если вам нужно выходное напряжение выше, чем входное, используйте импульсный импульсный стабилизатор.

Если у вас есть ситуация, когда входное напряжение может быть выше или ниже выходного напряжения, вам нужен импульсный импульсный стабилизатор.

Наконец, если вам нужен чистый выходной сигнал, но требуется энергоэффективность импульсного регулятора, то используйте импульсный регулятор, а затем линейный регулятор для очистки напряжения питания.

Наконец, не забудьте загрузить бесплатно PDF : Окончательное руководство по разработке и продаже нового электронного оборудования . Вы также будете получать мой еженедельный информационный бюллетень, в котором я делюсь премиальным контентом, недоступным в моем блоге.

Другой контент, который может вам понравиться:

Типы регуляторов напряжения

и принцип работы | Статья

.

СТАТЬЯ

Получайте ценные ресурсы прямо на свой почтовый ящик - рассылается раз в месяц

Мы ценим вашу конфиденциальность


Как работает регулятор напряжения?

Стабилизатор напряжения - это схема, которая создает и поддерживает фиксированное выходное напряжение независимо от изменений входного напряжения или условий нагрузки.

Регуляторы напряжения (VR) поддерживают напряжение источника питания в диапазоне, совместимом с другими электрическими компонентами. Хотя регуляторы напряжения чаще всего используются для преобразования мощности постоянного / постоянного тока, некоторые из них также могут выполнять преобразование мощности переменного / переменного или переменного / постоянного тока. В этой статье речь пойдет о регуляторах постоянного / постоянного напряжения.

Типы регуляторов напряжения: линейные и импульсные

Существует два основных типа регуляторов напряжения: линейные и импульсные. Оба типа регулируют напряжение в системе, но линейные регуляторы работают с низким КПД, а импульсные регуляторы работают с высоким КПД.В высокоэффективных импульсных регуляторах большая часть входной мощности передается на выход без рассеивания.

Линейные регуляторы

В линейном стабилизаторе напряжения используется устройство активного прохода (например, BJT или MOSFET), которое управляется операционным усилителем с высоким коэффициентом усиления. Чтобы поддерживать постоянное выходное напряжение, линейный регулятор регулирует сопротивление проходного устройства, сравнивая внутреннее опорное напряжение с дискретизированным выходным напряжением, а затем сбрасывая ошибку до нуля.

Линейные регуляторы - это понижающие преобразователи, поэтому по определению выходное напряжение всегда ниже входного. Однако у этих регуляторов есть несколько преимуществ: они, как правило, просты в конструкции, надежны, экономичны и обладают низким уровнем шума, а также малыми колебаниями выходного напряжения.

Линейные регуляторы, такие как MP2018, требуют только входной и выходной конденсаторы для работы (см. Рисунок 1) . Их простота и надежность делают их интуитивно понятными и простыми устройствами для инженеров, а зачастую и очень рентабельными.

Рисунок 1: Линейный регулятор MP2018

Импульсные регуляторы

Схема импульсного регулятора обычно более сложна в разработке, чем линейный регулятор, и требует выбора значений внешних компонентов, настройки контуров управления для обеспечения стабильности и тщательного проектирования компоновки.

Импульсные регуляторы

могут быть понижающими преобразователями, повышающими преобразователями или их комбинацией, что делает их более универсальными, чем линейный регулятор.

Преимущества импульсных регуляторов включают то, что они высокоэффективны, имеют лучшие тепловые характеристики и могут поддерживать более высокие токи и более широкие приложения VIN / VOUT.Они могут достичь эффективности более 95% в зависимости от требований приложения. В отличие от линейных регуляторов, для импульсной системы питания могут потребоваться дополнительные внешние компоненты, такие как катушки индуктивности, конденсаторы, полевые транзисторы или резисторы обратной связи. HF920 является примером импульсного стабилизатора, который обеспечивает высокую надежность и эффективное регулирование мощности (см. Рисунок 2) .

Рисунок 2: Импульсный регулятор HF920

Ограничения регуляторов напряжения

Одним из основных недостатков линейных регуляторов является то, что они могут быть неэффективными, поскольку в определенных случаях использования они рассеивают большое количество энергии.Падение напряжения линейного регулятора сравнимо с падением напряжения на резисторе. Например, при входном напряжении 5 В и выходном напряжении 3 В между клеммами возникает падение 2 В, а эффективность ограничивается 3 В / 5 В (60%). Это означает, что линейные регуляторы лучше всего подходят для приложений с более низкими дифференциалами VIN / VOUT.

Важно учитывать расчетную рассеиваемую мощность линейного регулятора в приложении, поскольку использование более высоких входных напряжений приводит к высокому рассеянию мощности, которое может привести к перегреву и повреждению компонентов.

Еще одним ограничением линейных регуляторов напряжения является то, что они способны только к понижающему (понижающему) преобразованию, в отличие от импульсных регуляторов, которые также предлагают повышающее (повышающее) и понижающее-повышающее преобразование.

Импульсные регуляторы

очень эффективны, но некоторые недостатки включают то, что они, как правило, менее рентабельны, чем линейные регуляторы, больше по размеру, более сложны и могут создавать больше шума, если их внешние компоненты не выбраны тщательно. Шум может быть очень важным для конкретного приложения, поскольку шум может повлиять на работу и производительность схемы, а также на характеристики электромагнитных помех.

Топологии импульсного регулятора

: понижающий, повышающий, линейный, LDO и регулируемый

Существуют различные топологии линейных и импульсных регуляторов. Линейные регуляторы часто используют топологию с малым падением напряжения (LDO). Для импульсных регуляторов существует три распространенных топологии: понижающие преобразователи, повышающие преобразователи и понижающие-повышающие преобразователи. Каждая топология описана ниже:

Регуляторы LDO

Одной из популярных топологий линейных регуляторов является стабилизатор с малым падением напряжения (LDO).Линейные регуляторы обычно требуют, чтобы входное напряжение было как минимум на 2 В выше выходного напряжения. Тем не менее, стабилизатор LDO разработан для работы с очень небольшой разницей напряжения между входными и выходными клеммами, иногда до 100 мВ.

Понижающие и повышающие преобразователи

Понижающие преобразователи

(также называемые понижающими преобразователями) принимают большее входное напряжение и производят более низкое выходное напряжение. И наоборот, повышающие преобразователи (также называемые повышающими преобразователями) принимают более низкое входное напряжение и производят более высокое выходное напряжение.

Пониженно-повышающие преобразователи

Понижающий-повышающий преобразователь - это одноступенчатый преобразователь, который сочетает в себе функции понижающего и повышающего преобразователя для регулирования выхода в широком диапазоне входных напряжений, которые могут быть больше или меньше выходного напряжения.

Управление регулятором напряжения

Четыре основных компонента линейного регулятора - это проходной транзистор, усилитель ошибки, опорное напряжение и цепь обратной связи резистора. Один из входов усилителя ошибки установлен двумя резисторами (R1 и R2) для контроля процентного значения выходного напряжения.Другой вход - это стабильное опорное напряжение (VREF). Если дискретизированное выходное напряжение изменяется относительно VREF, усилитель ошибки изменяет сопротивление проходного транзистора для поддержания постоянного выходного напряжения (VOUT).

Для работы линейных регуляторов

обычно требуется только внешний входной и выходной конденсатор, что упрощает их внедрение.

С другой стороны, импульсный стабилизатор требует большего количества компонентов для создания цепи. Силовой каскад переключается между VIN и землей для создания пакетов заряда для доставки на выход.Подобно линейному регулятору, есть операционный усилитель, который производит выборку выходного постоянного напряжения из цепи обратной связи и сравнивает его с внутренним опорным напряжением. Затем сигнал ошибки усиливается, компенсируется и фильтруется. Этот сигнал используется для модуляции рабочего цикла ШИМ, чтобы вернуть выход в режим регулирования. Например, если ток нагрузки быстро увеличивается и вызывает падение выходного напряжения, контур управления увеличивает рабочий цикл ШИМ, чтобы обеспечить больший заряд нагрузки и вернуть шину в режим регулирования.

Применение линейного регулятора и импульсного регулятора

Линейные регуляторы часто используются в приложениях, которые чувствительны к затратам, чувствительны к шуму, слаботочны или ограничены в пространстве. Некоторые примеры включают бытовую электронику, такую ​​как наушники, носимые устройства и устройства Интернета вещей (IoT). Например, в таких приложениях, как слуховой аппарат, можно использовать линейный регулятор, поскольку в них нет переключающего элемента, который мог бы создавать нежелательный шум и влиять на работу устройства.

Более того, если проектировщики в основном заинтересованы в создании недорогого приложения, им не нужно так беспокоиться о рассеивании мощности, и они могут полагаться на линейный регулятор.

Импульсные регуляторы полезны для более общих приложений и особенно полезны в приложениях, требующих эффективности и производительности, таких как потребительские, промышленные, корпоративные и автомобильные приложения (см. Рисунок 3) . Например, если приложение требует большого понижающего решения, лучше подходит импульсный стабилизатор, так как линейный регулятор может создавать большое рассеивание мощности, которое может повредить другие электрические компоненты.

Рисунок 3: Понижающий регулятор MPQ4430-AEC1

Каковы основные параметры микросхемы регулятора напряжения?

Некоторые из основных параметров, которые следует учитывать при использовании регулятора напряжения, - это входное напряжение, выходное напряжение и выходной ток. Эти параметры используются для определения того, какая топология VR совместима с ИС пользователя.

Другие параметры, включая ток покоя, частоту переключения, тепловое сопротивление и напряжение обратной связи, могут иметь значение в зависимости от приложения.

Ток покоя важен, когда приоритетом является эффективность в режимах малой нагрузки или ожидания. Если рассматривать частоту коммутации как параметр, максимальное увеличение частоты коммутации приводит к меньшим системным решениям.

Кроме того, термическое сопротивление имеет решающее значение для отвода тепла от устройства и его рассеивания по системе. Если контроллер включает в себя внутренний полевой МОП-транзистор, то все потери (проводящие и динамические) рассеиваются в корпусе и должны учитываться при расчете максимальной температуры ИС.

Напряжение обратной связи - еще один важный параметр, который необходимо изучить, поскольку он определяет минимальное выходное напряжение, которое может поддерживать регулятор напряжения. Стандартно смотреть на параметры опорного напряжения. Это ограничивает более низкое выходное напряжение, точность которого влияет на точность регулирования выходного напряжения.

Как правильно выбрать регулятор напряжения

Чтобы выбрать подходящий регулятор напряжения, разработчик должен сначала понять их ключевые параметры, такие как V IN , V OUT , I OUT , системные приоритеты (например, V IN , V OUT , I OUT ).грамм. эффективность, производительность, стоимость), а также любые дополнительные ключевые функции, такие как индикация хорошего энергопотребления (PG) или включение управления.

После того, как разработчик определил эти требования, используйте таблицу параметрического поиска, чтобы найти лучшее устройство, отвечающее желаемым требованиям. Таблица параметрического поиска - ценный инструмент для дизайнеров, поскольку она предлагает различные функции и пакеты, доступные для удовлетворения требуемых параметров для вашего приложения.

Каждое устройство MPS поставляется с таблицей данных, в которой подробно описано, какие внешние компоненты необходимы и как рассчитать их значения для достижения эффективной, стабильной и высокопроизводительной конструкции.Таблицу данных можно использовать для расчета таких значений компонентов, как выходная емкость, выходная индуктивность, сопротивление обратной связи и другие ключевые компоненты системы. Кроме того, вы можете использовать инструменты моделирования, такие как программное обеспечение DC / DC Designer или MPSmart, ознакомиться с примечаниями к применению или задать вопросы в местном FAE.

MPS предлагает множество эффективных, компактных линейных и импульсных стабилизаторов напряжения, включая семейство HF500-x, семейство MP171x, MP20056, MP28310, MPQ4572-AEC1 и MPQ2013-AEC1.

Список литературы

Глоссарий по электронной инженерии

_________________________

Вам это показалось интересным? Получайте ценные ресурсы прямо на свой почтовый ящик - рассылайте их раз в месяц!

Получить техническую поддержку

Типы регуляторов напряжения

Стабилизаторы напряжения принимают входное напряжение и создают регулируемое выходное напряжение на фиксированном или регулируемом уровне.Это автоматическое регулирование уровня выходного напряжения по-разному осуществляется различными типами регуляторов напряжения.

Типы регуляторов напряжения

Самый доступный и часто самый простой в использовании тип регуляторов напряжения - это линейные регуляторы напряжения. Линейные регуляторы компактны и часто используются в низковольтных маломощных системах. Импульсные регуляторы более эффективны, чем линейные регуляторы напряжения, но с ними сложнее работать и они дороже. Стабилитроны недороги и просты в использовании, но менее эффективны, чем линейные регуляторы.

Hemera Technologies / Getty Images

Линейные регуляторы

Одним из основных способов обеспечения стабильного напряжения для электроники является использование стандартного 3-контактного линейного регулятора напряжения, такого как LM7805, который обеспечивает выход 5 В, 1 А с входным напряжением до 36 В. (в зависимости от модели).

Линейные регуляторы работают, регулируя эквивалентное последовательное сопротивление (ESR) регулятора на основе напряжения обратной связи, по сути становясь схемой делителя напряжения.Это позволяет стабилизатору выдавать постоянное напряжение независимо от токовой нагрузки, установленной на нем, вплоть до его текущей допустимой нагрузки.

Одним из больших недостатков линейных регуляторов напряжения является большое минимальное падение напряжения, которое составляет 2,0 В на стандартном линейном стабилизаторе напряжения LM7805. Это означает, что для получения стабильного выходного напряжения 5 вольт требуется как минимум входное напряжение 7 вольт. Это падение напряжения играет большую роль в мощности, рассеиваемой линейным регулятором, который должен рассеивать не менее 2 Вт, если он обеспечивает нагрузку 1 А (падение напряжения 2 В умноженное на 1 А).

Рассеивание мощности ухудшается по мере увеличения разницы между входным и выходным напряжением. Например, в то время как источник 7 В, регулируемый до 5 В, дающий 1 А, рассеивает 2 Вт через линейный регулятор, источник 10 В, регулируемый до 5 В, дающий такой же ток, рассеивает 5 Вт, что делает регулятор эффективным только на 50%.

Импульсные регуляторы

Линейные регуляторы - отличное решение для маломощных и недорогих приложений, где разница напряжений между входом и выходом мала и не требуется много энергии.Самым большим недостатком линейных регуляторов является их неэффективность, поэтому в игру вступают импульсные регуляторы .

Когда требуется высокий КПД или ожидается широкий диапазон входного напряжения, импульсный стабилизатор становится лучшим вариантом. Импульсные регуляторы напряжения имеют КПД 85% или выше по сравнению с КПД линейных регуляторов напряжения, которые часто ниже 50%.

Регуляторы переключения обычно требуют дополнительных компонентов по сравнению с линейными регуляторами.Значения компонентов в большей степени влияют на общую производительность импульсных регуляторов, чем линейные регуляторы. Существуют также проблемы проектирования при эффективном использовании импульсных регуляторов без ухудшения характеристик схемы из-за электронного шума, который генерирует регулятор.

Стабилитроны

Один из самых простых способов регулирования напряжения - стабилитрон. В то время как линейные регуляторы обычно имеют базовую конструкцию, стабилитрон обеспечивает адекватное регулирование напряжения в одном компоненте.

Поскольку стабилитроны шунтируют все дополнительное напряжение, превышающее пороговое значение напряжения пробоя, на землю, его можно использовать в качестве простого регулятора напряжения с выходным напряжением, подаваемым на выводы стабилитрона.

Однако стабилитроны часто имеют ограниченную способность обрабатывать мощность, что ограничивает их применение только в маломощных приложениях. При использовании стабилитронов таким образом лучше всего ограничить доступную мощность, которая может протекать через стабилитрон, стратегически выбрав резистор подходящего размера.

Спасибо, что сообщили нам об этом!

Расскажите, почему!

Другой Недостаточно подробностей Сложно понять

Назад к основам: выбор идеального регулятора

Регулятор напряжения выполняет две функции: изменение входного напряжения на другой уровень на выходе и регулирование (поддержание постоянного выходного напряжения, несмотря на изменение условий нагрузки). Регуляторы постоянного / постоянного тока являются ключевым компонентом любой энергосистемы, поэтому выбор правильного регулятора имеет решающее значение для разработки оптимального решения.

Хотя инженеры понимают функции регулятора, менее опытным инженерам часто бывает трудно выбрать лучший регулятор для своего применения. В этом сообщении в блоге определены критерии, которые может использовать любой, кто не является опытным разработчиком электроэнергии, чтобы выбрать идеальный регулятор.

Понижающий, повышающий или понижающий-повышающий регулятор?

Есть три основных категории:

  • Buck - регуляторы с выходным напряжением ниже, чем на входе
  • Boost - регуляторы с выходным напряжением выше, чем на входе
  • Понижающий-повышающий - регуляторы, которые могут обеспечивать выходное напряжение, которое выше, ниже или такое же, как входное

В большинстве приложений напряжение понижается от шины к нагрузке, поэтому обычно используются понижающие стабилизаторы.Другие приложения требуют увеличения напряжения с помощью повышающего регулятора: например, если мощность постоянного тока должна передаваться по длинному кабелю, потери I 2 R можно уменьшить, повысив напряжение перед передачей, а затем снова понизив его на Загрузка. В аккумуляторных батареях пониженно-повышающие регуляторы часто используются для обеспечения постоянного стабильного напряжения, преодолевая изменение выходного напряжения, которое проявляется в процессе заряда и разряда батареи.

Номинальные входы и выходы

Многие системы предъявляют четкие требования к входному и выходному напряжению - например, вам может потребоваться понизить шину 12 В до 3.3В. Для многих приложений в наличии будет подходящий регулятор, отвечающий требованиям к напряжению.

Очевидно, что регулятор должен обеспечивать мощность, требуемую нагрузкой. Мощность регулятора обычно определяется максимальным выходным током.

Диапазоны ввода и вывода

Хотя приложениям часто требуется определенное напряжение, для других требуется регулируемый выход. Это может быть связано с изменением нагрузки - например, в части испытательного оборудования - или может быть, что нагрузка питается по длинному кабелю, и напряжение необходимо подрезать немного выше, чем требуется нагрузке, чтобы компенсировать падение напряжения на кабеле.

Диапазоны входного напряжения особенно важны для таких приложений, как системы с батарейным питанием. В автомобильном применении аккумулятор с номинальным напряжением 12 В может выдавать 12,5 В при полной зарядке и падать до 10 В или меньше по мере разряда аккумулятора. Регулятор с узким входным диапазоном может больше не работать при падении напряжения батареи, а это означает, что полная емкость батареи не может быть использована. Поэтому обеспечение достаточно широкого диапазона входных сигналов является важным критерием при выборе регулятора.

Выбор регуляторов с широким входом также имеет еще одно преимущество: они также могут снизить затраты на складские запасы, поскольку один регулятор может использоваться в различных ситуациях.

Эффективность

КПД - один из критериев для большинства проектируемых сегодня энергосистем. Выбор регулятора с высокими потерями мощности может сделать почти невозможным достижение целей эффективности. Также важно помнить, что эффективность регулятора не является постоянной: обычно эффективность регулятора резко падает по мере увеличения коэффициента понижения или повышения и уменьшения тока, потребляемого на выходе.

Современные регуляторы, например, на основе топологии переключения при нулевом напряжении (ZVS) от Vicor, по своей сути обладают высокой эффективностью и более стабильны во всем рабочем диапазоне.

Шум

Импульсные регуляторы обеспечивают высокий КПД, но схема переключения генерирует шум. В некоторых системах, особенно с чувствительными аналоговыми компонентами, шум источника питания может ограничивать общую производительность. Излишний электронный шум также может затруднить получение сертификата ЭМС.

Как и в случае с эффективностью, топология регулятора является ключом к достижению низкого уровня шума: гораздо проще использовать компонент, который не генерирует шум, чем пытаться отфильтровать этот шум. ZVS, например, представляет собой топологию с мягким переключением, которая по своей сути является малошумной, что упрощает разработку высокопроизводительных систем.

Размер и упаковка

Сегодня электронные системы часто ограничены пространством. Даже если цель не состоит в том, чтобы сделать систему настолько маленькой, насколько это возможно, например, продукты, размещенные в стандартизированных 19-дюймовых стойках, уменьшение размера системы питания позволяет использовать сэкономленное пространство для добавления дополнительных функций.

При любом расчете размера следует также учитывать периферийные компоненты, необходимые для регулятора. За счет более высокого уровня интеграции и высокой частоты переключения размер и количество периферийных компонентов могут быть уменьшены, что потенциально может обеспечить большую экономию места, чем простой выбор регулятора в меньшем корпусе.

Доступные типы пакетов не только определяют необходимое пространство: часто пакеты меньшего размера могут быть расположены ближе к нагрузке, что обеспечивает более точное регулирование нагрузки и более быструю реакцию на переходные процессы.

Помимо размера, важным фактором может быть вес, особенно в тех случаях, когда оборудование может перемещаться. Примеры таких систем варьируются от переносного портативного оборудования до автомобильной электроники и дронов.

Рабочая температура и тепловые характеристики

Регуляторы

не могут быть эффективными на 100%, поэтому они всегда будут рассеивать тепло, которое необходимо отводить. Если требуется радиатор, это может значительно увеличить как размер, так и вес системы питания.Неспособность рассеять тепло также может повлиять на производительность системы и другими способами: например, в системах освещения или отображения, если регулятор вызывает повышение температуры светодиодов, это снизит интенсивность и изменит длину волны и, следовательно, оттенок светодиода. генерируемый свет.

Регулятор должен надежно работать во всем диапазоне температур, которым он может подвергаться. В целом, более эффективные регуляторы смогут работать при более высоких температурах, поскольку им не нужно рассеивать так много тепла, но продукты от разных поставщиков могут сильно различаться, поэтому важно проверять технические характеристики.

Дополнительные возможности

В дополнение к критериям, описанным выше, вашему приложению может потребоваться определенная функциональность, которая может ограничить выбор. Примеры этих дополнительных функций:

  • Возможность параллельного подключения: если регуляторы могут быть подключены параллельно, то могут быть получены более высокие выходные токи. Не все регуляторы могут иметь параллельные выходы, поскольку во многих топологиях это вызывает нестабильность.
  • Постоянный выходной ток: в аккумуляторных батареях требуется постоянное напряжение для питания нагрузки, но для зарядки требуется постоянный ток.Некоторые регуляторы предлагают выходы, которые можно настроить как на постоянный ток, так и на постоянное напряжение, что делает их идеальными для этих систем.
  • Плавный запуск: возможность медленного увеличения напряжения помогает обеспечить стабильность системы питания, даже когда к выходу регулятора подключена большая емкость.
  • Защита от перенапряжения: регуляторы, которые имеют защиту, гарантирующую, что они не могут выдавать напряжение, превышающее заданное выходное напряжение, гарантируют, что нагрузка не будет повреждена даже во время неисправности.Другая схема защиты может отключить регулятор, если входное напряжение выходит за пределы допустимого диапазона.
  • Переходный отклик: некоторые нагрузки быстро изменяют требуемый им ток. Быстрый переходный отклик гарантирует, что регулятор может выдавать необходимую мощность без больших выходных конденсаторов для хранения энергии.

Заключение

Хотя регуляторы концептуально являются простыми компонентами - они принимают напряжение на входе и подают другое напряжение на выходе, - существует множество факторов, которые определяют лучший регулятор для вашего приложения.Тщательное рассмотрение критериев, изложенных выше, поможет выбрать идеальный регулятор для вашей системы.

Коммутация

или линейный стабилизатор напряжения: что лучше? | Блог

Altium Designer

| & nbsp Создано: 22 июля 2017 г. & nbsp | & nbsp Обновлено: 18 января 2021 г.

У вас когда-нибудь взрывался конденсатор перед вами? Так я начал свою карьеру в дизайне электроники.Я также испортил расчет бюджета мощности для того, что изначально было представлено как «простой» проект. Конечным результатом стал прототип печатной платы с раскаленным докрасна стабилизатором напряжения, способным поджарить яйцо ... или того хуже.

С тех пор я пришел к выводу, что элегантность и изысканность дизайна мало что значат. Если вы сделаете ошибку при настройке схем управления питанием, ваша конструкция окажется практически бесполезной. Расчет бюджета мощности, температура окружающей среды и, в моем случае, выбор основного компонента управления питанием, такого как регулятор напряжения, могут сделать или сломать ваш проект печатной платы.

Функция цепи управления источником питания во встроенной системе

За более чем десять лет разработки встраиваемых систем я видел, как микроконтроллеры развиваются семимильными шагами. Они перешли от исторического Zilog к современному процессору Cortex M4. Такие технологии, как Bluetooth LE и ZigBee, совершили дальнейшую революцию в индустрии встроенных систем. Однако вам всегда понадобится хорошо спроектированная силовая схема. Без него эти крутые технологии просто ждут, чтобы растаять.

Конденсаторы в сторону, у вас есть регулятор напряжения, который лежит в основе всех хорошо спроектированных силовых схем. Как следует из названия, он обеспечивает стабильный источник напряжения, который позволяет встроенной системе стабильно работать. Стабилизаторы напряжения работают, получая входное высокое напряжение перед понижением и стабилизацией напряжения до уровня, необходимого для работы электронного устройства.

До того, как компоненты 3,3 В стали популярными, мы ограничивались микроконтроллерами (MCU) с питанием от 5 В и интегральными схемами (IC).LM7805 был популярным в то время артикулом, так как это был простой линейный стабилизатор напряжения 5 В. На самом деле, его простота довольно элегантна, что делает его популярным и сегодня. Когда 3,3 В стали основным рабочим напряжением, LM1117-33 стал довольно эффективным линейным стабилизатором напряжения.

Ограничения линейных регуляторов напряжения

Был период, когда интегральные схемы перешли на работу с напряжением 3,3 В, и за это время микроконтроллеры пережили этап быстрой эволюции.Раньше дизайнеры ориентировались на количество входов / выходов микроконтроллера. Затем они стали больше интересоваться количеством интегрированных функций, таких как UARTS, Ethernet, USB, и быстро растущей вычислительной мощностью. В конце концов, линейный регулятор напряжения был доведен до предела.

Эти удобные радиаторы для охлаждения линейных регуляторов.

Многие люди совершили ошибку новичков, имея дело с линейным регулятором напряжения, и приняли номинальный ток как абсолютный.Это было серьезной проблемой, потому что стабилизатор напряжения LM7805 рассчитан на 5 В, 1,5 А. Но это не означает, что линейный регулятор может выдерживать это напряжение, в лучшем случае не изнашиваясь или не выгорая при этом. Перед выбором линейного регулятора напряжения необходимо учесть еще как минимум три параметра.

Уровень рассеиваемой мощности рассчитывается с учетом разницы между входным и выходным напряжением; затем вы умножаете это число на ток нагрузки. Если вы регулируете напряжение с 12 В до 5 В, а ваша встроенная система потребляет 100 мА, то рассеиваемая мощность будет равна 0.7Вт. Имея это в виду, отметим, что линейный регулятор LM7805 может работать при температурах до 125 ° C. После этого вы начнете видеть нежелательные явления, такие как таяние и горение.

Но типичный LM7805 в корпусе TO-220 имеет термостойкость 65 ° C / Вт. Это означает, что на каждые 1 Вт вы увидите увеличение на 65 ° C сверх температуры окружающей среды. В некоторых регионах средняя температура составляет около 35 ° C, поэтому LM7805 будет работать при 100 ° C, что немного ниже допустимой максимальной температуры, но у вас меньше 10% номинального максимального тока, равного 1.5А.

Почему переключение регулятора напряжения - лучший выбор, буквально

Характеристики линейного регулятора напряжения сделали его неидеальным кандидатом в систему питания с высокими требованиями к мощности, поскольку выделяемое тепло могло повредить регулятор или снизить срок службы соседних компонентов. Это повысило интерес к импульсному регулятору. Как следует из названия, импульсный стабилизатор очень быстро включает и выключает источник питания для изменения выходного напряжения, обеспечивая стабильный и эффективный источник питания.Импульсный регулятор может довольно эффективно рассеивать тепло, снижая температуру и сводя к минимуму риск буквально расплавления.


Импульсные регуляторы - это эффективность.

Деталь, которую я использовал, - это LM2576, популярный импульсный стабилизатор, который работает с КПД 75% при регулировании при напряжении 3,3 В. Это выделяет часть тепла, которое вы можете увидеть от сопоставимого линейного регулятора, что делает его идеальным для приложений, в которых требуется регулирование от высокого напряжения к низкому.Он также подходит для встроенных систем, в которых вы обычно работаете с высокой производительностью.

Коммутация и линейные регуляторы напряжения

При всей эффективности, которую обеспечивает импульсный стабилизатор напряжения, два критерия по-прежнему не позволяют использовать его по умолчанию. Стоимость импульсного регулятора и обязательных пассивных компонентов. Они могут быть значительными и в 30 раз выше, чем затраты на линейный стабилизатор напряжения и пару конденсаторов.

Кроме того, для импульсного регулятора требуется больше пассивных компонентов. Когда у вас больше пассивных компонентов, обслуживание становится намного сложнее. Вы должны убедиться, что вы тщательно выбираете номиналы катушек индуктивности и конденсаторов, и это также автоматически приводит к потребности в большем пространстве на печатной плате.

Короче говоря, если вы работаете над простым приложением, которое не потребляет много энергии, линейный стабилизатор напряжения - это логичный выбор. Но если вы работаете над мощным проектом или пытаетесь перейти с промышленного напряжения 24 В постоянного тока на 3.3 В, тогда вы можете рассмотреть возможность использования импульсного регулятора напряжения для вашего источника питания и выходного напряжения.

Есть вопросы по схемам управления питанием? Вам нужны советы и рекомендации по проектированию импульсных регуляторов напряжения? Свяжитесь с опытным дизайнером печатных плат в Altium Designer прямо сейчас.

Ознакомьтесь с Altium Designer

® в действии ...

Мощный дизайн печатной платы

, основная часть линейного и импульсного стабилизатора напряжения 1

% PDF-1.4 % 1 0 obj> поток application / pdf Фундаментальная часть линейного и импульсного регулятора напряжения 1

  • Замечания по применению
  • Texas Instruments, Incorporated [SNVA558,0]
  • iText 2.1.7 by 1T3XTSNVA5582011-12-07T21: 56: 09.000Z2011-12-07T21: 56: 09.000Z конечный поток эндобдж 2 0 obj> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] / Font >>> / MediaBox [0 0 540 720] / Contents [7 0 R 8 0 R 9 0 R 10 0 R] / Type / Страница / Родитель 11 0 R >> эндобдж 3 0 obj> поток

    Регулятор напряжения LM7805: характеристики, сравнение и многое другое

    Что такое регулятор напряжения LM7805?

    LM7805 - стабилизатор напряжения, который выдает +5 вольт.

    Как и большинство других регуляторов на рынке, это трехконтактная ИС; входной контакт для приема входящего постоянного напряжения, контакт заземления для заземления регулятора и выходной контакт, который подает положительные 5 вольт.

    Характеристики продукта:

    • 3-контактные регуляторы
    • Выходной ток до 1,5 А
    • Внутренняя защита от тепловой перегрузки
    • Высокая мощность рассеивания
    • Внутреннее ограничение тока короткого замыкания
    • Компенсация зоны безопасности выходного транзистора

    Интересный факт !

    Вы заметили, что последние две цифры LM7805 совпадают с выходным напряжением? На самом деле это не совпадение, а способ легко запомнить выходное напряжение.LM7805 является частью серии регуляторов напряжения LM78XX, где XX указывает напряжение, которое выводит каждый регулятор.

    Что нужно знать при использовании LM7805

    Абсолютное максимальное входное напряжение

    Рекомендуемые условия эксплуатации

    • Входное напряжение: минимум 7 В, максимум 25 В
    • Рабочая температура виртуального перехода: минимум 0, максимум 125 ° C

    Возможные высокие температуры

    • Если разницы между входным и выходным напряжениями не регулировать должным образом, LM7805 может перегреться, что может привести к неисправности.Решения включают:
      • Ограничение входного напряжения на 2-3 В выше выходного регулируемого напряжения
      • Размещение радиатора в цепи для отвода тепла.

    LM7805: линейный или импульсный регулятор напряжения?

    Что касается регуляторов напряжения, то оно делится на два типа:

    1. Линейный регулятор напряжения
    2. Импульсный регулятор напряжения

    LM7805 - линейный регулятор напряжения, но знаете ли вы, что каждый из них?

    Ниже суммируется:

    Линейные регуляторы Импульсные регуляторы
    Какие они Регуляторы, использующие линейные, не переключаемые методы регулирования выходного напряжения от источника питания Регуляторы, обеспечивающие высокий КПД за счет быстрого включения и выключения последовательного элемента
    Гибкость конструкции Бак Buck, Boost, Buck-Boost
    КПД От низкого до среднего-высокого для небольшой разницы между напряжениями Высокая
    Сложность Низкий от среднего до высокого
    Стоимость Низкий, дешевый от среднего до высокого
    Создаваемый шум Низкий от среднего до высокого
    Назначение Питание устройств с низким энергопотреблением
    Приложения, в которых разница между входным и выходным напряжениями минимальна
    Высокоэффективные проекты с высокой мощностью
    Приложения с более высоким диапазоном входного напряжения
    Примеры LM7805, LM317 LM3671

    LM7805 Применение продукта

    LM7805 применяется в широком спектре схем:

    • Регулятор с фиксированным выходом
    • Положительный регулятор в отрицательной конфигурации
    • Регулируемый выходной регулятор
    • Регулятор тока
    • Регулируемый двойной источник питания
    • Схема защиты от переполюсовки выходной полярности
    • Схема проецирования обратного смещения

    LM7805 также может быть используется в электрических цепях для измерителя индуктивности, зарядных устройств для телефонов, портативных проигрывателей компакт-дисков и т. д.

    LM7805 лучше, чем LM317?

    Возможность регулировки напряжения:

    • LM317 может выдавать регулируемое выходное напряжение в диапазоне от 1,5 В до 37 В, тогда как LM7805 может выдавать только выходное напряжение 5 В

    Возможности выходного тока:

    • LM317 может выдавать выходной ток более 1,5 А, тогда как LM7805 может выдавать выходной ток только до 1,5 А

    Необходимые компоненты:

    • LM317 требует дополнительных внешних компонентов (потенциометра или прецизионных резисторов для установки делителя напряжения и т. Д.) по сравнению с LM7805

    Вердикт: LM317 обеспечивает большую универсальность, но если вы просто ищете
    с регулируемым источником питания 5 В, LM7805 отлично подойдет
    .

    Альтернативные варианты регуляторов напряжения

    Lipo Rider v1.3


    Если использование LM7805 или любого другого регулятора напряжения не в ваших интересах, Lipo Rider v1.3 может обеспечить постоянный выход 5 В, который также похож. Мало того, внутренняя микросхема зарядного устройства также обрабатывает поток энергии за вас.

    Характеристики

    • Разъем Jst 2.0
    • Стабильный источник питания USB 5 В независимо от источника
    • Алгоритмы зарядки / перезарядки, встроенные в микросхему
    • Зарядка литий-полимерной батареи от солнечной энергии или USB
    • Стабильное напряжение питания через литиевую батарею или USB
    • 2 x USB-порты позволяют программировать свой комплект во время зарядки литиевой батареи
    • Светодиодные индикаторы для полной зарядки аккумулятора или состояния зарядки
    • Простой дизайн означает чрезвычайно доступный
    • Масштабируемость до нескольких литиевых батарей и больших / нескольких солнечных панелей за счет простой модификации конечным пользователем

    Сводка

    В общем, если вы ищете вариант с выходом 5 В без суеты и соотношением цены и качества, LM7805 от texas instruments - это то, что вам нужно.

    About Author


    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *