Конденсатор как отличить пусковой от рабочего: Как отличить пусковой конденсатор от рабочего?

Как отличить пусковой конденсатор от рабочего?

Смотрите также обзоры и статьи:

В целом конденсаторы необходимы для того, чтобы, например, к электросети однофазной подключить двух- и трёхфазный асинхронный двигатель.

Научиться отличать пусковой конденсатор от рабочего, зная некоторые их особенности и характеристики, не так уж и сложно. Давайте попробуем в этом разобраться.

Чем именно отличаются конденсаторы?

Рабочий и пусковой конденсаторы отличаются как емкостью, так условиями применения, способом установки и закрепления. А кроме того – самим предназначением.

Так, собственно первый необходим для того, чтобы качественно сдвигать фазу в цепи. Таким образом он способствует тому, что между обмотками двигателя вырабатывается магнитное поле, которое и приводит мотор к движению. Для этого не приходится прикладывать механику. Примером этому может служить любой электродвигатель в инструментах или установках.

А вот пусковой предназначен для того, чтобы усилить старт двигателя, на который воздействуют механически. Он как бы добавляет мотору оборотов, чтобы тот начал крутиться на нужной скорости с нужным режимом. Такие конденсаторы активно применяются в схемах тяжелых подъемочных механизмов, в наносах и т.п.

По емкости также можно легко отличать рабочий конденсатор от пускового, ведь данная величина обычно раза в два минимум больше у второго. Это объясняется тем, что емкость напрямую зависит от мощности электромотора и обратно пропорциональна величине напряжения в электросети.

Отличия по способу присоединения

Первый подключается обычно во вспомогательную обмотку двигателя, а именно в ее разрыв. При этом вторая обмотка напрямую подключается к сети, а третья – остается свободной. Так получается схема под названием звезда или треугольник.

А пусковой конденсатор присоединяется после рабочего параллельно ему. Для подключения понадобится кнопка (если управление будет вручную) или переключатель (если управлять будет привод).

По условиям эксплуатации

Рабочий конденсатор не зря получил такое свое название – ему приходится постоянно быть задействованным в схеме и держать высокие нагрузки напряжения, ведь он работает в самой обмотке электродвигателя. Из-за этого на концах обмотки рабочего может образоваться в определенные моменты напряжение в 500 и даже 600 вольт, а это в два-три раза выше входящего значения. Словом, рабочие более выносливые, чем пусковые.

Пусковые же не берут на себя нагрузку, превышающую входящие 220 вольт, задействуются только время от времени и ненадолго. Поэтому напряжение максимально допустимое не превышает 1,15 раз. Пусковые могут оставаться работоспособными обычно намного дольше рабочих.

Словом, первый конденсатор – настоящая рабочая «лошадка», благодаря которой происходит сдвиг фаз и собственно трехфазные моторы могут работать от однофазной электросети. А второй – носит скорее вспомогательный характер и имеет кратковременный период занятости. Крайне важно не перепутать эти два элемента, ведь пусковой не сможет выдержать нагрузку рабочего, что может привести к печальным последствиям.

Опубликовано: 2020-11-13 Обновлено: 2021-08-30

Автор: Магазин Electronoff

ПОДХОДЯЩИЕ ТОВАРЫ

Поделиться в соцсетях

отличия от рабочего и подключение электродвигателей

Асинхронный трехфазный двигатель можно подключить без особого ущерба к обычной однофазной электрической сети через конденсаторы. С их помощью обеспечивается запуск и достижение нужных режимов функционирования при такой системе питания. Различают рабочий и пусковой конденсаторы.

Отличия между ними

Они заключаются в их предназначении, ёмкости, способе присоединения, а также в условиях работы. Первое различие заключается в том, что рабочий (первый) конденсатор служит для сдвига фаз. В результате между обмотками появляется вращающееся магнитное поле, необходимое для приведения в движение мотора, находящегося без механической нагрузки. Такой электродвигатель стоит, например, в точильном станке.

Пусковой (второй) обеспечивает повышение стартового момента мотора, находящегося под механической нагрузкой, благодаря чему он более легко выходит на нужный режим. Ресурсов одного рабочего может не хватить, из-за чего ротор двигателя просто не начнёт вращаться. Применение оправдано вместе со станками, подъёмными механизмами, насосами и подобными тяжёлыми приспособлениями. А также можно использовать с более мощным трехфазным мотором, если рабочего не хватает для его надёжного запуска.

Ёмкость обоих конденсаторов также будет отличаться. Она прямо пропорциональна мощности электродвигателя и обратно — напряжению сети. В зависимости от схемы соединения обмоток вводится поправочный коэффициент. Ёмкость пускового может быть в два раза больше, чем у рабочего.

Способы присоединения

Первый конденсатор в самом распространённом случае подключается в разрыв одной из обмоток асинхронного электродвигателя, которая также часто называется «вспомогательной». Другая присоединяется напрямую к электрической сети, а третья остаётся незадействованной. Тип этой схемы носит название «звезда». Есть также подключение в «треугольник». Оно различается и по способу соединения, и по сложности.

Второй ёмкостный элемент, в отличие от рабочего, присоединяется параллельно последнему через кнопку или центробежный выключатель. В первом случае управление осуществляется человеком, а во втором — самим приводом. Оба этих коммутатора кратковременно замыкают эту цепь на момент запуска электрического мотора, а после того, как он выйдет на рабочий режим — размыкают.

Условия работы

Они различаются для каждого из конденсаторов. Поскольку первый из них постоянно присоединён к обмотке мотора, эта цепь образует собой элементарный колебательный контур. Из-за этого в определённые моменты на её выводах образуется напряжение, превышающее входящее в два с половиной — три раза. Это обстоятельство стоит учитывать при подборе, необходимо ориентироваться на детали, рассчитанные на 500—600 вольт.

Пусковые конденсаторы для электродвигателей — 220 В работают в других, менее жёстких условиях, в отличие от рабочих. Прикладываемое к этому ёмкостному элементу напряжение превышает основное примерно в 1,15 раза. Он присоединяется к цепям время от времени, что также положительно сказывается на условиях его работы, и значительно продлевает срок службы.

Наиболее часто применяются отечественные бумажные или маслонаполненные конденсаторы марок МБГО или МБГЧ.

Их преимущество — это стойкость к высоким напряжениям переменного тока. Но есть и недостаток — большой размер. В качестве альтернативного решения допускается использование оксидных конденсаторов. Они подключаются не напрямую, а через диоды, по определённым схемам.

Обычные электролитические конденсаторы, применяемые в различных приборах, и рассчитанные на немалые рабочие напряжения, подойдут для асинхронных двигателей только в роли пусковых. Связано это с тем, что через них проходит большая реактивная мощность ввиду малого сопротивления обмоток. Подключение ёмкостных элементов с нарушениями или отклонениями от схемы приведёт к повреждению или закипанию электролита, способному причинить вред мотору и персоналу.

Таким образом, можно вывести из этого несколько советов, как отличить пусковой конденсатор от рабочего:

  • Первый из них играет вспомогательную роль. Он подключается параллельно рабочему на время запуска мотора — в течение нескольких секунд, чтобы облегчить старт.
  • Второй из них присоединён постоянно, обеспечивая необходимый сдвиг фаз, в результате которого трехфазный двигатель может работать от однофазной сети.

Если перепутать конденсаторы, то возникнут серьёзные проблемы. Ёмкость рабочего также не должна быть слишком большой, иначе мотор будет греться, а рост мощности и крутящего момента от этого повысится незначительно.

Чем пусковой конденсатор отличается от рабочего | Энергофиксик

Конденсаторы относятся к пассивным электронным компонентам и служат для накопления и быстрой отдачи накопленного заряда.

Они бывают полярными, когда при подключении следует строго соблюдать полярность и если такой конденсатор включить в сеть с переменным напряжением, то полярный конденсатор быстро разогреется и взорвется. И не полярными, которые можно подключать в цепь, как с переменным напряжением, так и с постоянным.

Так же конденсаторы активно используются для запуска асинхронных двигателей в однофазной сети и там они бывают пусковые и рабочие. А в чем различие между ними давайте разберемся.

Пусковой конденсатор

Итак, начнем с пускового конденсатора и как видно уже из самого названия, такой конденсатор используется лишь в момент запуска электродвигателя. После того, как запущенный двигатель вышел на заданную мощность и частоту, пусковой конденсатор отключают от работы.

Пусковые конденсаторы используются в определенных типах двигателей и в том случае, когда необходимо запустить двигатель, на валу которого присутствует какая-либо нагрузка, мешающая свободному вращению вала.

Как видно из схемы выше, для того, чтобы двигатель запустился, нам нужно нажать на кнопку Кн1, которая подключает конденсатор С1 на время, которое нужно двигателю, чтобы выйти на рабочие параметры.

После этого конденсатор отключается и двигатель продолжает вращаться за счет сдвига фаз в рабочих обмотках. Важно учесть, что рабочее напряжение конденсатора С1 должно быть больше напряжения сети в 1,15 раза.

То есть, например, для домашней однофазной сети нормальное напряжение равно 230 Вольт, что значит у конденсатора рабочее напряжение должно быть не менее 250 Вольт.

Рабочий конденсатор

Теперь давайте перейдем к рассмотрению рабочего конденсатора. Итак, рабочий конденсатор включен в цепь на постоянной основе, и он предназначен для сдвига фаз обмоток электродвигателя.

Для того, чтобы двигатель работал стабильно, параметры конденсатора должны быть подобранны очень тщательно.

Во время работы на рабочем конденсаторе возникает повышенное напряжение, которое превышает рабочее. Поэтому для обеспечения надежной и безаварийной работы нужно использовать конденсатор с рабочим напряжением больше в 2,5-3 раза. То есть 500-600 вольт. Тем самым будет гарантирован необходимый запас по напряжению во время работы.

Так же для рабочего конденсатора крайне важно правильно выбрать емкость и в зависимости от типа соединения обмоток (треугольник или звезда) производится расчет.

Итак, например, у вас есть двигатель с соединенными обмотками в звезду. Формула расчета будет такова:

Если двигатель мощностью 1 кВт с током потребления в 5 Ампер при напряжении 220 Вольт, то конденсатор потребуется емкостью:

4800*5/220 = 109 мФ;

А это значит, что ближайший подходящий конденсатор будет иметь емкость 110 мФ.

При соединении треугольником формула имеет следующий вид:

А это значит, что при тех же параметрах сети и двигателя при таком соединении обмоток потребуется конденсатор емкостью 65 мФ.

Сравниваем пусковой и рабочий конденсаторы

Теперь давайте произведем сравнение пускового и рабочего конденсаторов и запишем это все в форме таблицы.

Это все, что я хотел вам рассказать о том, чем отличается пусковой конденсатор от рабочего.

Если статья оказалась вам полезна или интересна, тогда оцените ее лайком и спасибо, что уделили свое драгоценное внимание!

Как подобрать конденсатор для однофазного электродвигателя или трехфазного

Содержание

  1. Что такое конденсатор
  2. Как подобрать конденсатор для трехфазного электродвигателя
  3. Как подобрать конденсатор для однофазного электродвигателя
  4. Заключение

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр. ). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

  • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
  • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
  • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т. к. имеют максимально возможную емкость (до 100000 мкФ).

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т.е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.


Чем пусковой конденсатор отличается от рабочего: описание и сравнение

Конденсатор – электронный компонент, предназначенный для накопления электрической энергии. По характеру работы он относится к пассивным элементам. В зависимости от режима работы, в которой работает элемент, различают конденсаторы постоянной емкости и переменной (как вариант — подстроечные). По виду рабочего напряжения: полярные – для работы при определенной полярности подключения, неполярные – могут использоваться как в цепи переменного, так и постоянного тока. При параллельном соединении результирующая емкость суммируется. Это важно знать при подборе необходимой емкости для электрической цепи.

Для  запуска и работы асинхронных двигателей в однофазной цепи переменного тока используют конденсаторы:

  • Пусковые.
  • Рабочие.

Пусковой конденсатор предназначен для кратковременной работы – запуск двигателя. После выхода двигателя на рабочую частоту и мощность пусковой конденсатор отключают. Далее работа происходит без участия данного элемента. Это необходимо для определенных двигателей, схема работы которого предусматривает режим запуска, а так же для обычных двигателей, у которых в момент запуска присутствует нагрузка на валу, препятствующая свободному вращению ротора.

Схема подключения пускового конденсатора  к асинхронному двигателю

Для запуска двигателя используют кнопку Кн1, которая коммутирует пусковой конденсатор С1 на время, необходимое для выхода электродвигателя на необходимую мощность и обороты. После этого конденсатор С1 отключают и мотор работает за счет сдвига фаз в рабочих обмотках. Рабочее напряжение такого конденсатора необходимо выбирать с учетом коофициента 1,15, т. е. для сети 220 В рабочее напряжение конденсатора должно быть 220*1,15= 250 В. Емкость пускового конденсатора можно рассчитать по исходным параметрам электродвигателя.

Рабочий конденсатор

Рабочий конденсатор подключен к цепи все время и выполняет функцию фазосдвигающей цепи для обмоток электродвигателя. Для уверенной работы такого двигателя необходимо рассчитать параметры рабочего конденсатора. В связи с тем, что конденсатор и обмотка электродвигателя создают колебательный контур, в момент перехода из одной фазы цикла в другую на конденсаторе возникает повышенное напряжение, превышающее напряжение питания.

Под действием этого напряжения конденсатор находится постоянно и при выборе его номинала необходимо учесть этот фактор. В расчетах напряжения рабочего конденсатора берут коофициент 2,5-3. Для сети 220 В напряжение рабочего конденсатора должно быть 550-600 В. Это обеспечит необходимый запас по напряжению в процессе работы.

При определении емкости этого элемента в расчет берут мощность двигателя и схему соединения обмоток.

Различают два вида соединения обмоток трехфазного двигателя:

  1. Треугольник.
  2. Звезда.

Для каждого из этих способов соединения свой расчет.

Треугольник: Ср=4800*Ip/Up.

Пример: для двигателя мощностью 1 кВт – ток составляет примерно 5А, напряжение 220 В. Ср = 4800*5/220. Емкость рабочего конденсатора составит 109 мФ. Округлить до ближайшего целого – 110 мФ.

Звезда: Ср=2800*Ip/Up.

Пример: двигатель 1000 Вт – ток составляет  примерно 5 А, напряжение 220 В. Ср=2800*5/220. Емкость рабочего конденсатора составит 63,6 мФ. Округлить до ближайшего целого – 65 мФ.

Из расчетов видно, что способ соединения обмоток очень сильно влияет на величину рабочего конденсатора.

Сравнение рабочего и пускового конденсатора

Сравнительная таблица применения конденсаторов для асинхронных двигателей, включенных на напряжение 220 В.

РАБОЧИЙПУСКОВОЙ
Где применяетсяВ цепи рабочих обмоток асинхронного двигателяВ пусковой цепи
Выполняемые функцииСоздание вращающегося электромагнитного поля для работы электромотораСдвиг фаз между пусковой и рабочей обмоткой, запуск двигателя под нагрузкой
Время работыОт включения до окончания работыВо время запуска до выхода на нужный режим.
Тип конденсатораМБГО, МБГЧ и подобные нужного номинала и напряжения 1,15 выше питающегоМБГО, МБГЧ и подобные нужного номинала и на рабочее напряжение в 2-3 раза превышающее напряжение питания

В связи с тем, что указанные типы конденсаторов имеют относительно большие габариты и стоимость, в качестве рабочего и пускового конденсатора можно использовать полярные (оксидные) конденсаторы.

Они обладают следующим достоинством: при малых габаритах они имеют намного большую емкость, чем бумажные.

Наряду с этим существует весомый недостаток: включать в сеть переменного тока напрямую их нельзя. Для использования совместно с двигателем, нужно применить полупроводниковые диоды. Схема включения несложная, но в ней есть недостаток: диоды должны быть подобраны в соответствии с токами нагрузки. При больших токах диоды необходимо устанавливать на радиаторы. Если расчет будет неверным, или теплоотвод меньшей площади, чем требуется, диод может выйти из строя и пропустит в цепь переменное напряжение. Полярные конденсаторы рассчитаны на постоянное напряжение и при попадании на них напряжения переменного они перегреваются, электролит внутри них закипает и они выходят из строя, что может принести вред не только электромотору, но и человеку, обслуживающему данное устройство.

Напряжение 220 В – является напряжением опасным для жизни. В целях соблюдения правил безопасной эксплуатации электроустановок потребителей, сохранения жизни и здоровья лиц, эксплуатирующих данные устройства, применение данных схем включения должен проводить специалист.

пусковой, рабочий и смешанный варианты включения. Отличия между ними

Самый простой способ включения трехфазного электродвигателя в однофазную сеть, это с помощью одного фазосдвигающего конденсатора. В качестве такого конденсатора нужно использовать только неполярные конденсаторы, а не полевые (электролитические).

Фазосдвигающий конденсатор.

При подключении трехфазного электродвигателя к трехфазной сети пуск обеспечивается за счет переменного магнитного поля. А при подключении двигателя к однофазной сети достаточный сдвиг магнитного поля не создается, поэтому нужно использовать фазосдвигающий конденсатор.

Емкость фазосдвигающего конденсатора нужно рассчитать так:

  • для соединения «треугольником» : Сф=4800 I/U;
  • для соединения «звездой» : Сф=2800 I/U.

Об этих типах соединения можно подробнее ознакомиться :

В этих формулах: Сф – емкость фазосдвигающего конденсатора, мкФ; I– номинальный ток, А; U– напряжение сети, В.

В этой формуле такие сокращения: P – мощность электродвигателя, обязательно в кВт; cosф – коэффициент мощности; n – КПД двигателя.

Коэффициент мощности или смещения тока к напряжению, а также КПД электродвигателя указывается в паспорте или в табличке (шильдике) на двигателе. Значения эти двух показателей часто бывают одинаковыми и чаще всего равны 0,8-0,9.

Грубо можно определить емкость фазосдвигающего конденсатора так: Сф=70 P. Получается так, что на каждые 100 Вт нужно по 7мкФ емкости конденсатора, но это не точно.

В конечном итоге правильность определения емкости конденсатора покажет работа электродвигателя. Если двигатель не будет запускаться, значит, емкости мало. В случае, когда двигатель при работе сильно нагревается, значит, емкости много.

Рабочий конденсатор.

Найденной по предложенным формулам емкости фазосдвигающего конденсатора достаточно только для пуска трехфазного электродвигателя, не нагруженного. То есть, когда на валу двигателя нет никаких механических передач.

Рассчитанный конденсатор будет обеспечивать работу электродвигателя и когда он выйдет на рабочие обороты, поэтому такой конденсатор еще называется рабочим.

Пусковой конденсатор.

Ранее было сказано, что ненагруженный электродвигатель, то есть небольшой вентилятор, шлифовальный станок можно запустить от одного фазосдвигающего конденсатора. А вот, запустить сверлильный станок, циркулярную пилу, водяной насос уже не получиться запустить от одного конденсатора.

Чтобы запустить нагруженный электродвигатель нужно к имеющемуся фазосдвигающему конденсатору кратковременно добавить емкости. А конкретно, нужно уже к подсоединенному рабочему конденсатору подключить параллельно еще один фазосдвигающий конденсатор. Но только на короткое время на 2 – 3 секунды. Потому что когда электродвигатель наберет высокие обороты, через обмотку, к торой подключены два фазосдвигающих конденсатора, будет протекать завышенный ток. Большой ток нагреет обмотку электродвигателя, и разрушит ее изоляцию.

Подключенный дополнительно и параллельно конденсатор к уже имеющемуся фазосдвигающему (рабочему) конденсатору называется пусковым.

Для слабонагруженных электродвигателей вентиляторов, циркулярных пил, сверлильных станков емкость пускового конденсатора выбирается равной емкости рабочего конденсатора.

Для нагруженных двигателей водяных насосов, циркулярных пил нужно выбирать емкость пускового конденсатора в два раза больше, чем у рабочего.

Очень удобно, для точного подбора нужных емкостей фазосдвигающих конденсаторов (рабочего и пускового) собрать батарею параллельно соединенных конденсаторов. Конденсаторы соединенные вместе нужно взять небольшими емкостями 2, 4, 10, 15 мкФ.

При выборе по напряжению любого конденсатора нужно пользоваться универсальным правилом. Напряжение, на которое конденсатор рассчитан должно быть в 1,5 раз выше того напряжения, куда он будет подключен.

Как самому установить люстру в доме УЗО – ошибки при подключении

Хорошо, если можно подключить двигатель к необходимому типу напряжения. А, если такой возможности нет? Это становится головной болью, поскольку не все знают, как использовать трехфазную версию двигателя на основе однофазных сетей. Такая проблема появляется в различных случаях, может быть, необходимо использовать двигатель для наждачного или сверлильного станка — помогут конденсаторы. Но они бывают множества видов, и не каждый сможет в них разобраться.

Чтобы вы получили представление об их функциональности далее разберемся, как выбрать конденсатор для электродвигателя. В первую очередь рекомендуем определиться с правильной емкостью этого вспомогательного устройства, и способами ее точного расчета.

А, что такое конденсатор?

Его устройство отличается простотой и надежностью — внутри две параллельные пластины в пространстве между ними установлен диэлектрик необходимый для защиты от поляризации в виде заряда, создающегося проводниками. Но различные виды конденсаторов для электродвигателей отличаются поэтому легко ошибиться в момент приобретения.

Рассмотрим их по отдельности:

Полярные версии не подходят для подключения на основе переменного напряжения, поскольку увеличивается опасность исчезновения диэлектрика, что неминуемо приведет к перегреву и возникновению аварийной ситуации — возгоранию либо появлению короткого замыкания.

Версии неполярного типа отличаются качественным взаимодействием с любым напряжением, что обусловлено универсальным вариантом обкладки — она успешно сочетается с повышенной мощностью тока и различными видами диэлектриков.

Электролитические часто называются оксидными считаются лучшими для работы с электродвигателями на основе низкой частоты, поскольку их максимальная емкость, может, достигать 100000 МКФ. Это возможно за счет тонкого вида оксидной пленки, входящей в конструкцию в качестве электрода.

Теперь ознакомьтесь с фото конденсаторов для электродвигателя — это поможет отличить их по внешнему виду. Такая информация пригодится во время покупки, и поможет приобрести необходимое устройство, поскольку все они похожи. Но помощь продавца тоже, может, оказаться полезной — стоит воспользоваться его знаниями, если не хватает своих.

Если необходим конденсатор для работы с трехфазным электродвигателем

Необходимо правильно рассчитать емкость конденсатора электродвигателя, что можно сделать по сложной формуле или с помощью упрощенного способа. Для этого уточняется мощность электродвигателя на каждые 100 Ватт потребуется около 7-8 мкФ от емкости конденсатора.

Но во время расчетов необходимо учитывать уровень воздействия напряжения на обмоточную часть статора. Нельзя чтобы он превысил номинальный уровень.

Если запуск двигателя, может, происходить лишь на основе максимальной нагрузки придется добавить пусковой конденсатор. Он отличается кратковременностью работы, поскольку используется примерно 3 секунды до момента выхода на пик оборотов ротора.

Необходимо учитывать, что для него потребуется мощность увеличенная в 1,5, а емкость примерно в 2,5 — 3 раза, чем у сетевой версии конденсатора.


Если необходим конденсатор для работы с однофазным электродвигателем

Обычно различные конденсаторы для асинхронных электродвигателей используются для работы с напряжением в 220 В с учетом установки в однофазную сеть.

Но процесс их использования немного сложнее, поскольку трехфазные электродвигатели работают с помощью конструктивного подключения, а для однофазных версий потребуется обеспечить смещенный вращательный момент у ротора. Это обеспечивается с помощью увеличенного количества обмотки для запуска, а фаза смещается усилиями конденсатора.

В чем сложность выбора такого конденсатора?

В принципе большего отличия нет, но различные конденсаторы для асинхронных электродвигателей потребует другого расчета допустимого напряжения. Потребуется около 100 ватт для каждого мкФ емкости устройства. И они отличаются доступными режимами работы электродвигателей:

  • Используется пусковой конденсатор и слой дополнительной обмотки (только для процесса пуска) тогда расчет емкости конденсатора — 70 мкФ для 1 кВт от мощности электродвигателя;
  • Используется рабочий вариант конденсатора с емкостью в 25 — 35 мкФ на основе дополнительной обмотки с постоянным подключением в процессе всей длительности работы устройства;
  • Применяется рабочий вариант конденсатора на основе параллельного подключения пусковой версии.

Но в любом случае необходимо отслеживать уровень разогревания элементов двигателя в процессе его эксплуатации. Если замечено перегревание тогда необходимо принять меры.

В случае с рабочим вариантом конденсатора рекомендуем уменьшить его емкость. Рекомендуем использовать конденсаторы, работающие на основе мощности в 450 или больше В, поскольку они считаются оптимальным вариантом.

Чтобы избежать неприятных моментов до подключения к электродвигателю рекомендуем убедится в работоспособности конденсатора с помощью мультиметра. В процессе создания необходимой связки с электродвигателем пользователь, может, создать полностью работоспособную схему.

Почти всегда выводы обмоток и конденсаторов находятся в клеммной части корпуса электродвигателя. За счет этого можно создать фактически любую модернизацию.

Важно: Пусковая версия конденсатора должна обладать рабочим напряжением не менее 400 В, что связано с появлением всплеска увеличенной мощности до 300 — 600 В, происходящего в процессе пуска либо завершения работы двигателя.

Так, чем отличается однофазный асинхронный вариант электродвигателя? Разберемся в этом подробно:

  • Его часто применяют для бытовых приборов;
  • Для его запуска используется дополнительная обмотка и потребуется элемент для сдвигания фазы — конденсатор;
  • Подключается на основе множества схем с помощью конденсатора;
  • Для улучшения пускового момента применяется пусковая версия конденсатора, а рабочие характеристики увеличиваются с помощью рабочего варианта конденсатора.

Теперь вы получили необходимую информацию и знаете, как подключить конденсатор к асинхронному двигателю чтобы обеспечить максимальную эффективность. А также у вас появились знания о конденсаторах и способах их применения.

Фото конденсаторов для электродвигателя

Добрый день, уважаемые читатели блога сайт

В рубрике «Принадлежности» рассмотрим конденсаторы для однофазных . У трехфазных двигателей при подключении к сети питания возникает вращающееся магнитное поле, за счет которого и происходит запуск двигателя. В отличие от трехфазных двигателей, у однофазных в статоре имеется две обмотки рабочая и пусковая. Рабочая обмотка подключена к однофазной сети питания напрямую, а пусковая последовательно с конденсатором. Конденсатор необходим для создания сдвига фаз между токами рабочей и пусковой обмоток. Самый большой вращающий момент в двигателе возникает тогда, когда сдвиг фаз токов обмоток достигает 90°, а их амплитуды создают круговое вращающееся поле. Конденсатор является элементом электрической цепи и предназначен для использования его ёмкости. Он состоит из двух электродов или правильней обкладок, которые разделёны диэлектриком. Конденсаторы имеют возможность накапливать электрическую энергию. В Международной системе единиц СИ за единицу ёмкости принимается ёмкость конденсатора, у которого на один вольт возрастает разность потенциалов при сообщении ему заряда в один кулон (Кл). Емкость конденсаторов измеряется в фарадах (Ф). Емкость в одну фараду очень большая. На практике используются более мелкие единицы измерения микрофарады (мкФ) одна мкФ равняется 10 -6 Ф, пикофарады (пФ) одна пФ равняется 10 -12 мкФ. В однофазных асинхронных двигателях в зависимости от мощности используются конденсаторы емкостью от нескольких до сотен мкФ.

Основные электрические параметры и характеристики

К основным электрическим параметрам относятся: номинальная емкость конденсатора и номинальное рабочее напряжение. Кроме этих параметров существует еще температурный коэффициент емкости (ТКЕ), тангенс угла потерь (tgd), электрическое сопротивление изоляции.

Емкость конденсатора. Свойство конденсатора накапливать и удерживать электрический заряд характеризуется его емкостью. Емкость (С) определяется как отношение накопленного в конденсаторе заряда (q), к разности потенциалов на его электродах или приложенному напряжению (U). Емкость конденсаторов зависит от размеров и формы электродов, их расположения друг относительно друга, а также материала диэлектрика который разделяет электроды. Чем емкость конденсатора больше, тем и накопленный им заряд больше Удельная ёмкость конденсатора – выражает отношение его ёмкости к объёму. Номинальная ёмкость конденсатора – это ёмкость, которую имеет конденсатор согласно нормативной документации. Фактическая же ёмкость каждого отдельного конденсатора отличается от номинальной, но она должна быть в пределах допускаемых отклонений. Значения номинальной ёмкости и ее допустимое отклонение в различных типах конденсаторов постоянной ёмкости установлена стандартом.

Номинальное напряжение – это то значение напряжения обозначенное на конденсаторе, при котором он работает в заданных условиях длительное время и при этом сохраняет свои параметры в допустимых пределах. Значение номинального напряжения зависит от свойств используемых материалов и конструкции конденсаторов. В процессе эксплуатации рабочее напряжение на конденсаторе не должно превышать номинальное. У многих типов конденсаторов при увеличении температуры допустимое номинальное напряжение снижается.

Температурный коэффициент емкости (ТКЕ) – это параметр выражающий линейную зависимостью емкости конденсатора от температуры внешней среды. На практике ТКЕ определятся как относительное изменение емкости при изменении температуры на 1°С. Если эта зависимость нелинейная, тоТКЕконденсатора характеризуется относительным изменением емкости припереходе от нормальной температуры(20±5°С) к допустимомузначению рабочей температуры. Для конденсаторов используемых в однофазных двигателях этот параметр важный и должен быть как можно меньше. Ведь в процессе эксплуатации двигателя его температура повышается, а конденсатор находится непосредственно на двигателе в конденсаторной коробке.

Тангенс угла потерь (tg d ). Потеря накопленной энергии в конденсаторе обусловлена потерями в диэлектрике и его обкладках. Когда через конденсатор протекает переменный ток, то векторы тока и напряжения сдвинуты относительно друг друга на угол (d). Этот угол (d) и называют углом диэлектрических потерь. Если потери отсутствуют, то d=0. Тангенс угла потерь это отношение активной мощности (Pа) к реактивной (Pр) при напряжении синусоидальной формы определённой частоты.

Электрическое сопротивление изоляции – электрическое сопротивление постоянному току, определяется как отношение приложенного к конденсатору напряжения (U) , к току утечки (I ут ), или проводимости. Качество применяемого диэлектрика и характеризует сопротивление изоляции. Для конденсатора с большой емкостью сопротивление изоляции обратно пропорционально его площади обкладок, или его ёмкости.

На конденсаторы оказывает очень сильное воздействие влага. Асинхронные электродвигатели используемые в насосном оборудовании перекачивают воду, и высока вероятность попадания влаги на двигатель и в конденсаторную коробку. Воздействие влаги приводит к снижению сопротивления изоляции (возрастает вероятность пробоя), увеличению тангенса угла потерь, коррозии металлических элементов конденсатора.

Кроме всего при эксплуатации двигателя на конденсаторы воздействует различного вида механические нагрузки: вибрация, удары, ускорение и т.д. Как следствие могут появится обрыв выводов, трещины и уменьшение электрической прочности.

Рабочий и пусковой конденсаторы

В качестве рабочих и пусковых используются конденсаторы с оксидным диэлектриком (ранее они назвались электролитическими) Рабочие и пусковые конденсаторы для асинхронных двигателей включаются в сеть переменного тока, и они должны быть неполярными. Они имеют сравнительно большое 450 вольт для оксидных конденсаторов рабочее напряжение, которое в два раза превышает напряжение промышленной сети. На практике применяются конденсаторы с емкостью порядка десятков и сотен микрофарад. Как мы говорили выше, рабочий конденсатор используется для получения вращающего магнитного поля. Пусковая же емкость используется для получения магнитного поля, необходимого для повышения пускового момента электродвигателя. Пусковой конденсатор подключается параллельно рабочему через центробежный выключатель. Когда есть пусковая емкость вращающееся магнитное поле асинхронного двигателя в момент пуска приближается к круговому, а магнитный поток увеличивается. Это повышает пусковой момент и улучшает характеристики двигателя. При достижении асинхронным двигателем оборотов достаточных для отключения центробежного выключателя, пусковая емкость отключается и двигатель остается в работе только с рабочим конденсатором. Схема включения рабочего и пускового конденсаторов приведены на (Рис. 1).

Схема с рабочим и пусковым конденсаторами

В таблице приведены обособленные характеристики рабочих и пусковых конденсаторов для асинхронных двигателей .

РАБОЧИЙ

ПУСКОВОЙ

НазначениеДля асинхронных электродвигателей
Схема подключенияПоследовательно с пусковой обмоткой электродвигателяПараллельно рабочему конденсатору
В качествеФазосмещающего элементаФазосмещающего элемента
Для чегоДля получения кругового вращающееся магнитного поля, необходимого для работы электродвигателяДля получения магнитного поля, необходимого для повышения пускового момента электродвигателя
Время включенияВ процессе эксплуатации электродвигателяВ момент пуска электродвигателя

Эксплуатация, обслуживание и ремонт

В процессе эксплуатации насосного оборудования с однофазным асинхронным двигателем особое внимание следует обращать на питающее напряжение электрической сети. В случае пониженного напряжения сети, как известно, снижается пусковой момент и частота вращения ротора, из-за увеличения скольжения. При низком напряжении увеличивается также нагрузка на рабочий конденсатор и возрастает время запуска двигателя. В случае значительного провала напряжения питания более 15% высока вероятность того, что асинхронный двигатель не запустится. Очень часто при низком напряжении выходит из строя рабочий конденсатор из-за повышенных токов и перегрева. Он расплавляется и из него вытекает электролит. Для ремонта необходимо приобрести и установить новый конденсатор соответствующей емкости. Очень часто случается, что нужного конденсатора под рукой нет. В этом случае можно подобрать требуемую емкость из двух или даже трех и четырех конденсаторов, подключив их параллельно. Здесь следует обратить внимание на рабочее напряжение, оно должно быть не ниже, чем напряжение на заводском конденсаторе. Общая емкость конденсатора(ов) должна отличаться от номинала не более чем 5%. Если установить емкость большего номинала, то двигатель запустится в работу и будет работать, но при этом начнет греться. Если с помощью клещей измерить номинальный ток двигателя, то ток будет завышен. Так как полное электрическое сопротивление цепи в обмотках двигателя состоит из активного сопротивления цепи и реактивного сопротивления обмоток двигателя и емкости, то с увеличением емкости общее сопротивление возрастает. Сдвиг фаз токов в обмотках из-за увеличения полного сопротивления электрической цепи обмоток после запуска двигателя сильно уменьшится, магнитное поле из синусоидального превратится в эллиптическое, и рабочие характеристики асинхронного двигателя очень сильно ухудшаются, снижается КПД и возрастают тепловые потери.

Иногда бывает, что вместе с конденсатором выходит из строя и пусковая обмотка однофазного двигателя. В такой ситуации стоимость ремонта резко возрастает, ибо надо не только заменить конденсатор, но еще и перемотать статор. Как известно, перемотка статора одна из самых дорогих операций при ремонте двигателя. Очень редко, но бывает и такая ситуация когда при низком напряжении выходит из строя только пусковая обмотка, а конденсатор при этом остается рабочим. Для ремонта двигателя нужно перематывать статор. Все эти ситуации с двигателем случаются при низком напряжении однофазной питающей сети. Для решения этой проблемы в идеальном случае необходим стабилизатор напряжения.

Спасибо за оказанное внимание

Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

  • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
  • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
  • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Схема подключения трёхфазного двигателя через конденсатор

Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В . Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

Онлайн расчет емкости конденсатора мотора

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.


Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Реверс направления движения двигателя

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

Асинхронный трехфазный двигатель можно подключить без особого ущерба к обычной однофазной электрической сети через конденсаторы. С их помощью обеспечивается запуск и достижение нужных режимов функционирования при такой системе питания. Различают рабочий и пусковой конденсаторы.

Отличия между ними

Они заключаются в их предназначении, ёмкости, способе присоединения, а также в условиях работы. Первое различие заключается в том, что рабочий (первый) конденсатор служит для сдвига фаз . В результате между обмотками появляется вращающееся магнитное поле, необходимое для приведения в движение мотора, находящегося без механической нагрузки. Такой электродвигатель стоит, например, в точильном станке.

Пусковой (второй) обеспечивает повышение стартового момента мотора , находящегося под механической нагрузкой, благодаря чему он более легко выходит на нужный режим. Ресурсов одного рабочего может не хватить, из-за чего ротор двигателя просто не начнёт вращаться. Применение оправдано вместе со станками, подъёмными механизмами, насосами и подобными тяжёлыми приспособлениями. А также можно использовать с более мощным трехфазным мотором, если рабочего не хватает для его надёжного запуска.

Ёмкость обоих конденсаторов также будет отличаться. Она прямо пропорциональна мощности электродвигателя и обратно — напряжению сети. В зависимости от схемы соединения обмоток вводится поправочный коэффициент. Ёмкость пускового может быть в два раза больше, чем у рабочего.

Способы присоединения

Первый конденсатор в самом распространённом случае подключается в разрыв одной из обмоток асинхронного электродвигателя, которая также часто называется «вспомогательной». Другая присоединяется напрямую к электрической сети, а третья остаётся незадействованной. Тип этой схемы носит название «звезда». Есть также подключение в «треугольник». Оно различается и по способу соединения, и по сложности.

Второй ёмкостный элемент, в отличие от рабочего, присоединяется параллельно последнему через кнопку или центробежный выключатель. В первом случае управление осуществляется человеком, а во втором — самим приводом. Оба этих коммутатора кратковременно замыкают эту цепь на момент запуска электрического мотора, а после того, как он выйдет на рабочий режим — размыкают.

Условия работы

Они различаются для каждого из конденсаторов. Поскольку первый из них постоянно присоединён к обмотке мотора, эта цепь образует собой элементарный колебательный контур. Из-за этого в определённые моменты на её выводах образуется напряжение, превышающее входящее в два с половиной — три раза. Это обстоятельство стоит учитывать при подборе, необходимо ориентироваться на детали, рассчитанные на 500-600 вольт.

Пусковые конденсаторы для электродвигателей — 220 В работают в других, менее жёстких условиях, в отличие от рабочих. Прикладываемое к этому ёмкостному элементу напряжение превышает основное примерно в 1,15 раза. Он присоединяется к цепям время от времени, что также положительно сказывается на условиях его работы, и значительно продлевает срок службы.

Наиболее часто применяются отечественные бумажные или маслонаполненные конденсаторы марок МБГО или МБГЧ. Их преимущество — это стойкость к высоким напряжениям переменного тока. Но есть и недостаток — большой размер. В качестве альтернативного решения допускается использование оксидных конденсаторов. Они подключаются не напрямую, а через диоды, по определённым схемам.

Обычные электролитические конденсаторы, применяемые в различных приборах , и рассчитанные на немалые рабочие напряжения, подойдут для асинхронных двигателей только в роли пусковых. Связано это с тем, что через них проходит большая реактивная мощность ввиду малого сопротивления обмоток. Подключение ёмкостных элементов с нарушениями или отклонениями от схемы приведёт к повреждению или закипанию электролита, способному причинить вред мотору и персоналу.

Таким образом, можно вывести из этого несколько советов, как отличить пусковой конденсатор от рабочего:

  • Первый из них играет вспомогательную роль. Он подключается параллельно рабочему на время запуска мотора — в течение нескольких секунд, чтобы облегчить старт.
  • Второй из них присоединён постоянно, обеспечивая необходимый сдвиг фаз, в результате которого трехфазный двигатель может работать от однофазной сети.

Если перепутать конденсаторы, то возникнут серьёзные проблемы. Ёмкость рабочего также не должна быть слишком большой, иначе мотор будет греться, а рост мощности и крутящего момента от этого повысится незначительно.

Проверка и замена пускового конденсатора

 

Для чего нужен пусковой конденсатор?

Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.

Поэтому их ещё называют фазосдвигающими.

Место установки — между линией питания и пусковой обмоткой электродвигателя. 

Условное обозначение конденсаторов на схемах

 

Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С  и порядковый номер по схеме.

 

Основные параметры конденсаторов

 

Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).

Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.

Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:

  • 400 В — 10000 часов
  • 450 В —  5000 часов
  • 500 В —  1000 часов

 

Проверка пускового и рабочего конденсаторов

 

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.

  • обесточиваем кондиционер
  • разряжаем конденсатор, закоротив еговыводы
  • снимаем одну из клемм (любую)
  • выставляем прибор на измерение ёмкости конденсаторов
  • прислоняем щупы к выводам конденсатора
  • считываем с экрана значение ёмкости

 

У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.

 

В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.

Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.

 

У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.

 

Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.

   

 

Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)

К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).

После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором — менее одной секунды, вторым — более одной минуты, так что следует ждать.

Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.

 

Замена и подбор пускового/рабочего конденсатора

 

Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс «+» и минус «-» и их можно подключить как угодно.

Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:

Собщ12+…Сп

То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.

Такая замена абсолютно равноценна одному конденсатору большей ёмкости.

Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору

Типы конденсаторов

Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.

Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый. 

Самые доступные конденсаторы такого типа CBB65.

 

Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.

Наиболее распространённые конденсаторы   этого типа CBB60, CBB61.

Клеммы для удобства соединения сдвоенные или счетверённые.

 

Объяснение пускового и рабочего конденсатора

— HVAC How To


Что такое пусковые конденсаторы?
Двигатели, используемые в системах отопления, вентиляции и кондиционирования воздуха, такие как двигатели вентиляторов конденсатора или двигатели нагнетательных вентиляторов, иногда нуждаются в помощи, чтобы начать движение и продолжать работать в стабильном темпе, без резких скачков вверх и вниз.

Для этого в установках HVAC используются так называемые пусковые и пусковые конденсаторы.

  • Пусковой конденсатор имеет дополнительную плату для запуска двигателя.
  • Рабочий конденсатор обеспечивает плавную работу двигателя без скачков вверх и вниз.
  • Не все двигатели имеют пусковой или рабочий конденсатор, некоторые могут запускаться и работать сами по себе.




    Конденсаторы в HVAC могут быть разделены двумя конденсаторами или могут быть в одном корпусе.

    Когда они разделены, они просто называются «одиночными», а когда они объединены в один пакет, они называются «двойными раундами».

    Вот двойной круглый конденсатор



    Вот одинарный конденсатор

    Двойные круглые конденсаторы — это просто способ, которым инженеры пытаются сэкономить место и затраты.

    Они могли бы разместить два отдельных конденсатора в блоке HVAC, но объединить их в один корпус.

    Двойной конденсатор чаще всего имеет одну сторону для запуска компрессора (Herm), а другую — для запуска двигателя вентилятора конденсации. Третья одиночная ветвь сдвоенного конденсатора является общей общей ветвью.

    Как они работают в системе HVAC?
    Пусковой или рабочий конденсатор можно объединить в один конденсатор, называемый двойным конденсатором, с тремя выводами, но его можно разделить между двумя отдельными конденсаторами.Пусковой конденсатор дает двигателю вентилятора крутящий момент, необходимый для начала вращения, а затем останавливается; в то время как рабочий конденсатор продолжает давать двигателю дополнительный крутящий момент, когда это необходимо.




    При выходе из строя пускового конденсатора двигатель, скорее всего, не включится. Если рабочий конденсатор выходит из строя, двигатель может включиться, но рабочая сила тока будет выше, чем обычно, что приведет к перегреву двигателя и короткому сроку службы.

    После замены неисправного двигателя вентилятора конденсатора необходимо всегда устанавливать новый пусковой конденсатор.

    Двойной конденсатор имеет три подключения: HERM, FAN и COM.

  • HERM, подключается к герметичному компрессору.
  • FAN, подключается к двигателю вентилятора конденсатора.
  • COM, подключается к контактору и обеспечивает питание конденсатора.
  • Если устройство имеет два конденсатора, то один из них является рабочим конденсатором, а другой — пусковым. Имейте в виду, что компрессору также часто требуется конденсатор, который будет HERM (компрессор).

    Покупка нового конденсатора HVAC
    Новый конденсатор всегда следует устанавливать вместе с новым двигателем. Конденсатор можно купить в компании, занимающейся поставкой систем отопления, вентиляции и кондиционирования воздуха, обычно их по крайней мере несколько даже в небольшом городке, также хорошее место для поиска — онлайн-магазин Amazon.

    Вот два обычных конденсатора, один слева — это двойной круглый конденсатор, а тот, что справа, — это конденсатор Run Oval.

    Двойной конденсатор — это не что иное, как два конденсатора в одном корпусе; в то время как овал хода представляет собой один конденсатор, а в системе отопления, вентиляции и кондиционирования воздуха обычно их два.

    Конденсаторы измеряются микрофарадами, иногда обозначаемыми буквами uf и Voltage. В любом блоке HVAC конденсатор должен соответствовать двигателю.

    Напряжение может быть выше, если необходимо, но никогда не понижаться, в то время как MFD (uf) всегда должен быть одинаковым. На картинке это двойной рабочий конденсатор, показывающий 55 + 5 MFD (мкФ) 440 В переменного тока. Большее число 55 MFD соответствует компрессору, а меньшее число 5 MFD (uf) соответствует двигателю вентилятора. Меньшее число всегда будет для двигателя вентилятора.Затем напряжение 440 Вольт переменного тока.

    (+ -5 после MFD показывает, насколько допустимый допуск конденсатора будет повышаться или понижаться.)

    Чтобы заказать замену для этого конденсатора, это будет 55 + 5 MFD (мкФ) и двойной рабочий конденсатор переменного тока на 440 Вольт.

    Пример сдвоенного конденсатора HVAC на Amazon
    MAXRUN 55 + 5 MFD uf 370 или 440 VAC Конденсатор двойного действия с круглым двигателем для конденсатора кондиционера переменного тока — 55/5 uf MFD 440V с прямым охлаждением или тепловым насосом — будет работать с двигателем переменного тока и вентилятором — 1 год гарантии


    Тестирование конденсатора HVAC
    Тестирование конденсатора HVAC выполняется с помощью мультиметра HVAC, мультиметр должен иметь кабель для считывания диапазона, который может иметь конденсатор HVAC.Многие небольшие электронные счетчики не имеют этого диапазона.

    Здесь я использую мультиметр Fieldpeice HS36 с зажимом усилителя.

    Этот тест проводится на двойном рабочем конденсаторе 55 + 5 MFD (мкФ). Мультиметр находится на Фарадах, а провода на C и FAN (положительный и отрицательный не имеют значения). Нижнее число соответствует двигателю вентилятора, который рассчитан на 5 MFD (мкФ), и он читается как 5,3 MFD (мкФ), так что это хорошо. Также можно прочитать выводы C к Herm, которые предназначены для компрессора.

    Чтобы проверить рабочий овальный конденсатор, просто коснитесь двух выводов.Он показывает 4,5 MFD (мкФ) и рассчитан на 5 MFD (мкФ), так что он плохой и требует замены.



    Как заменить пусковой конденсатор
    При установке нового двигателя всегда следует устанавливать новый конденсатор вентилятора. Всегда полезно сфотографировать или записать расцветку проводов и соединения.

    1. Выключите питание блока HVAC и убедитесь, что оно отключено с помощью измерителя.
    2. Найдите боковую панель, где электричество подводится к устройству, и снимите панель.
    3. Найдите конденсатор статического хода, если это конденсатор двойного хода, то он будет только один. Если их два, то нужно будет заменить только конденсатор двигателя вентилятора.
    4. Проверьте MFD и напряжения, затем подключите новые соединения от старого конденсатора к новому конденсатору по одной ножке за раз, чтобы убедиться, что соединения правильные.
    5. (Если у вас два конденсатора, один предназначен для компрессора, а другой — для двигателя вентилятора.)





    Конденсатор пробега

    vs.Пусковой конденсатор

    Все конденсаторы предназначены для хранения энергии. Различия заключается в том, для чего эта энергия хранится и используется.

    Если у вас возникла проблема с системой кондиционирования воздуха, конденсатор может быть причиной, но какой из них вам нужен для ремонта?

    Когда дело доходит до кондиционирования воздуха, существует два основных типа конденсаторов, рабочих конденсаторов и пусковых конденсаторов. Различия между рабочий конденсатор и пусковой конденсатор могут сбить с толку.Однако с четким понимание того, что такое каждый тип конденсатора, эта путаница может быть легко устранена. решено.

    Рабочие конденсаторы

    Рабочие конденсаторы чаще используются в системах кондиционирования воздуха. систем, чем пусковые конденсаторы. Рабочий конденсатор в вашем AC используется для хранения энергии, которая используется для вращения двигателя вентилятора, важный компонент вашего рабочего переменного тока. Без рабочего конденсатора вентилятор не может повернуться.

    Пусковые конденсаторы

    Пусковые конденсаторы — вторые по распространенности конденсатор в системе переменного тока.Без начала конденсатор, ваш переменный ток вообще не запустится, так как это пусковой конденсатор который обеспечивает начальную энергию, необходимую для запуска. Большой крутящий момент необходимо для запуска системы переменного тока, поэтому пусковой конденсатор будет иметь большую емкость, чем рабочий конденсатор.

    Конденсаторы переменного тока

    Термин «AC конденсатор »обычно относится к конденсатору запуска вашего кондиционера, просто потому что рабочие конденсаторы чаще встречаются в системах кондиционирования воздуха. Если у вас неисправный рабочий конденсатор, ваша система переменного тока не сможет охлаждать ваш дом правильно или эффективно, что приводит к потере энергии и денег.Если у тебя есть неисправный пусковой конденсатор, ваш переменный ток может вообще не работать.

    Есть несколько ключевых признаков, на которые следует обратить внимание, Укажите, что ваш конденсатор переменного тока неисправен.

    • Ваш кондиционер больше не дует холодным воздухом
    • Ваш кондиционер издает тихий гудящий звук, которого не было. там до
    • Ваши счета за электроэнергию увеличиваются
    • Ваш кондиционер иногда не включается или не включается включается вообще
    • Ваш переменный ток неожиданно отключается

    Помните, если вы не уверены, нужен ли ваш конденсатор переменного тока заменив, вы можете использовать мультиметр для проверки конденсатора переменного тока.

    Конденсатор генератора

    Аналогично всем описанным конденсаторам выше, генератор конденсатор также сохраняет электрический заряд. Конденсатор генератора обеспечивает напряжение и регулирует напряжение внутри генератора. Показания низкого напряжения может указывать на неисправность конденсатора генератора.

    Вы можете проверить свой генератор конденсатор с помощью мультиметра.

    Конденсатор холодильника

    Холодильник конденсатор чаще всего относится к более распространенному рабочему конденсатору в холодильнике.

    Скорее всего, рабочий конденсатор в вашем холодильнике находится рядом с компрессором, поэтому признаки того, что рабочий конденсатор в вашем холодильнике может быть К неисправным относятся:

    • Слышен щелчок при включении холодильника компрессор работает
    • Кажется, что компрессор холодильника работает слишком часто (несколько раз в час нормально, чаще при частом использовании)
    • Компрессор холодильника не работает работает достаточно часто

    Замените рабочий конденсатор в ремонтной мастерской

    В ремонтной мастерской

    есть инструкции и детали, необходимые для простой замены рабочего конденсатора или пускового конденсатора переменного тока, генератора или холодильника.

    МАГАЗИН РАБОЧИХ КОНДЕНСАТОРОВ МАГАЗИН ПУСКОВЫХ КОНДЕНСАТОРОВ

    Часто задаваемые вопросы о конденсаторах двигателя

    Часто задаваемые вопросы о конденсаторах двигателя
    Обзор

    Напряжение
    Емкость
    Частота (Гц)
    Тип соединительной клеммы
    Форма корпуса
    Размер корпуса
    Пусковые и рабочие конденсаторы

    Пусковые конденсаторы

    Приложения
    Технические характеристики
    Как узнать, неисправен ли мой пусковой конденсатор?
    Мой мотор медленно заводится.Мой пусковой конденсатор плохой?
    На моем пусковом конденсаторе есть резистор. Нужен ли мне конденсатор на замену?
    Могу ли я использовать конденсатор с более высоким номинальным напряжением, чем оригинальный?

    Рабочие конденсаторы

    Как заменить пробку в кондиционере? Приложения

    Технические характеристики
    Когда заменять
    Почему вышел из строя рабочий конденсатор?
    Как долго должен работать мой рабочий конденсатор?
    Двойные рабочие конденсаторы
    Если я не могу найти замену своему двойному рабочему конденсатору, могу ли я использовать две отдельные рабочие крышки?

    Обзор

    Напряжение

    Конденсатор будет иметь обозначенное напряжение, указывающее его допустимое пиковое напряжение, а не рабочее напряжение.Следовательно, вы можете выбрать конденсатор с номинальным напряжением, равным или выше исходного конденсатора. Если вы используете конденсатор на 370 вольт, подойдет конденсатор на 370 или 440 вольт, хотя на самом деле блок на 440 вольт прослужит дольше. Однако вы не можете заменить конденсатор на 440 В на конденсатор на 370 В без значительного сокращения срока его службы.

    Емкость

    Выберите конденсатор со значением емкости (указанным в MFD, мкФ или микрофарадах), равным исходному конденсатору. Не отклоняйтесь от исходного значения, так как оно задает рабочие характеристики мотора.

    Частота (Гц)

    Выберите конденсатор с номинальной частотой Гц оригинала. Почти все конденсаторы будут иметь маркировку 50/60.

    Тип соединительной клеммы

    Почти каждый конденсатор будет использовать вставной соединитель типа флажка ¼ «. При замене конденсатора вам необходимо знать, сколько клемм на клеммную колодку требуется для вашего двигателя. Большинство пусковых конденсаторов имеют две клеммы на клемму, и большинство из них работают Конденсаторы будут иметь 3 или 4 клеммы на стойку.Убедитесь, что заменяемая имеет, по крайней мере, количество клемм на клемму подключения, как у оригинального конденсатора двигателя.

    Форма корпуса (круглая или овальная)

    Практически все пусковые конденсаторы имеют круглый корпус. Круглые корпуса являются наиболее распространенными, но многие двигатели по-прежнему имеют овальную конструкцию. С точки зрения электричества разницы нет. Если пространство в монтажной коробке не ограничено, стиль корпуса значения не имеет.

    Размер корпуса

    Как и форма корпуса, электрические габариты не имеют значения. Выберите конденсатор, который поместится в отведенном для этого месте.

    Старт vs.Рабочие конденсаторы

    Пусковые конденсаторы дают большое значение емкости, необходимое для пуска двигателя в течение очень короткого периода времени (обычно секунд). Они предназначены только для прерывистой работы и катастрофически выйдут из строя, если будут слишком долго находиться под напряжением. Рабочие конденсаторы используются для непрерывного управления напряжением и током обмоток двигателя и поэтому работают в непрерывном режиме. Как правило, они имеют гораздо меньшее значение емкости.

    В необычных обстоятельствах рабочий конденсатор может использоваться в качестве пускового конденсатора, но доступные значения намного ниже, чем значения, обычно доступные для специальных пусковых конденсаторов.Номинальные значения емкости и напряжения должны соответствовать оригинальной спецификации пускового конденсатора. Пусковой конденсатор нельзя использовать в качестве рабочего конденсатора, потому что он не может выдерживать ток непрерывно.

    Просмотрите наш видеоурок ниже, чтобы узнать больше о различиях между пусковыми и рабочими конденсаторами.


    Пусковые конденсаторы

    Приложения

    Пусковые конденсаторы

    используются для кратковременного сдвига фазных пусковых обмоток в однофазных электродвигателях с целью увеличения крутящего момента.Они обладают очень большими значениями емкости для своего размера и номинального напряжения. В результате они предназначены только для периодического использования. По этой причине пусковые конденсаторы выйдут из строя после того, как будут слишком долго оставаться под напряжением из-за неисправной пусковой цепи двигателя.


    Технические характеристики

    Большинство пусковых конденсаторов рассчитаны на 50–1200 мкФ и 110/125, 165, 220/250 или 330 В переменного тока. Обычно они рассчитаны на 50/60 Гц. Корпуса обычно имеют круглую форму и отлиты из черного фенольного или бакелитового материалов.Концевые заделки обычно представляют собой нажимные клеммы ¼ «с двумя клеммами на каждый соединительный столб.


    Как узнать, неисправен ли мой пусковой конденсатор?

    Большинство отказов пускового конденсатора бывает одного из двух типов. Катастрофический отказ обычно возникает из-за того, что цепь запуска электродвигателя задействована слишком долго для номинальной кратковременной работы пускового ограничения. Верхняя часть стартовой крышки буквально сорвана, а внутренности частично или полностью выброшены. Точно так же на стартовой крышке может быть только разорванного блистера сброса давления .В любом случае легко сказать, что стартовый колпачок нуждается в замене.


    Мой мотор медленно заводится. Мой пусковой конденсатор плохой?

    Возможно, ваш пусковой конденсатор потерял свою номинальную емкость из-за износа и старения, или у вас могут быть другие проблемы, не связанные с конденсатором, которые связаны с другими компонентами двигателя. Чтобы выяснить это, вам нужно измерить емкость пускового конденсатора.


    На моем пусковом конденсаторе есть резистор. Нужен ли мне конденсатор на замену?

    В большинстве сменных пусковых крышек резистор отсутствует. Вы можете проверить состояние старого, проверив значение сопротивления, или просто заменить его новым. Это должно быть где-то около 10-20 кОм и около 2 Вт. Резисторы обычно либо припаяны, либо обжаты на выводах. Назначение резистора — сбросить остаточное напряжение в конденсаторе после того, как он был отключен от цепи после запуска двигателя.Не все пусковые конденсаторы будут использовать один, поскольку есть другие способы сделать это. Важная часть заключается в том, что если в вашем оригинальном конденсаторе он был, вам необходимо заменить его на новый.


    Могу ли я использовать конденсатор с более высоким номинальным напряжением, чем оригинальный?

    Да. Щелкните здесь для получения более подробной информации.


    Рабочие конденсаторы

    Приложения

    Рабочие конденсаторы используются для непрерывной регулировки тока или фазового сдвига обмоток двигателя с целью оптимизации крутящего момента двигателя и эффективности.Они предназначены для непрерывного режима работы и, как следствие, имеют гораздо меньшую частоту отказов, чем пусковые конденсаторы. Они обычно используются в установках HVAC.


    Технические характеристики

    Большинство рабочих конденсаторов рассчитаны на 2,5–100 мкФ (микрофарад) при номинальном напряжении 370 или 440 В переменного тока. Обычно они рассчитаны на 50/60 Гц. Корпуса имеют круглую или овальную форму, чаще всего используются стальной или алюминиевый корпус и крышка. Концевые заделки обычно представляют собой нажимные-дюймовые клеммы с 2–4 клеммами на каждую клемму подключения.


    Когда заменять

    Как правило, рабочий конденсатор намного дольше, чем пусковой конденсатор того же двигателя. Пробка также выйдет из строя или изнашивается иначе, чем стартовая, что немного усложняет поиск и устранение неисправностей.

    Когда рабочий конденсатор начинает работать за пределами допустимого диапазона, это чаще всего обозначается падением значения номинальной емкости (значение микрофарад уменьшилось). Для большинства стандартных двигателей рабочий конденсатор будет иметь «допуск», описывающий, насколько близко к номинальному значению емкости может быть фактическое значение.Обычно это от +/- 5 до 10%. Для большинства двигателей, пока фактическое значение находится в пределах 10% от номинального значения, вы в хорошей форме. Если он выходит за пределы этого диапазона, вам необходимо заменить его.

    В некоторых случаях из-за дефекта в конструкции конденсатора или иногда из-за неисправности двигателя, не связанной с конденсатором, рабочий конденсатор выпирает из-за внутреннего давления. Для большинства современных конструкций рабочих конденсаторов это приведет к размыканию цепи и отключению внутренней спиральной мембраны в качестве защитной меры, чтобы предотвратить вскрытие конденсатора.

    Если она вздулась, пора заменить. Если вы не измерили целостность клемм, пришло время заменить.


    Почему вышел из строя рабочий конденсатор?

    Ниже приведены некоторые распространенные причины выхода из строя рабочих конденсаторов, но в зависимости от того, насколько близок рабочий конденсатор к его расчетному сроку службы, может быть трудно определить причину по одному фактору.

    Время — Все конденсаторы имеют расчетный срок службы. Несколько факторов можно поменять местами или объединить, чтобы увеличить или уменьшить срок службы рабочего конденсатора, но после того, как расчетный срок службы превышен, внутренние компоненты могут начать более быстро разрушаться и снижаться производительность.Проще говоря, отказ можно отнести к тому, что он «просто старый».

    Heat — Превышение расчетного предела рабочей температуры может иметь большое влияние на ожидаемый срок службы рабочего конденсатора. Как правило, у двигателей, которые работают в жарких условиях или с недостаточной вентиляцией, срок службы конденсаторов значительно сокращается. То же самое может быть вызвано излучением тепла от обычно горячего двигателя, которое приводит к перегреву конденсатора. В общем, если вы можете поддерживать рабочий конденсатор в холодном состоянии, он прослужит намного дольше.

    Ток — Когда двигатель перегружен или имеет сбой в обмотках, это вызывает нарастание тока, что может привести к перегрузке конденсаторов. Этот сценарий встречается реже, поскольку обычно сопровождается частичным или полным отказом двигателя.

    Напряжение — Напряжение может иметь экспоненциальный эффект, сокращая расчетный срок службы конденсатора. Рабочий конденсатор должен иметь указанное номинальное напряжение, которое нельзя превышать. Например, конденсатор рассчитан на 440 вольт.При 450 вольт срок службы может сократиться на 20%. При 460 вольт срок службы может сократиться на 50%. При 470 вольт срок службы сокращается на 75%. То же самое можно применить и в обратном порядке, чтобы увеличить расчетный срок службы за счет использования конденсатора с номинальным напряжением, значительно превышающим необходимое, хотя эффект будет менее драматичным.


    Как долго должен работать рабочий конденсатор?

    Срок службы послепродажного рабочего конденсатора хорошего качества (который не входит в комплект поставки вашего двигателя) составляет от 30 000 до 60 000 часов работы.Установленные на заводе рабочие конденсаторы иногда имеют гораздо меньший расчетный срок службы. В отраслях с высокой конкуренцией, где каждая деталь может иметь значительное влияние на стоимость или где предполагаемое использование двигателя, вероятно, будет прерывистым и нечастым, можно выбрать рабочий конденсатор более низкого класса с расчетным сроком службы всего 1000 часов. Кроме того, все факторы из раздела выше («Почему мой рабочий конденсатор вышел из строя?») Могут резко изменить разумный ожидаемый срок службы рабочего конденсатора.


    Конденсаторы двойного действия

    Двойные рабочие конденсаторы — это два рабочих конденсатора в одном корпусе. У них нет ничего, что делало бы их электрически особенными. Обычно они имеют соединения, отмеченные буквой «C» для «общего», «H» или «Herm» для «герметичного компрессора» и «F» для «вентилятора». У них также будет два разных номинала конденсатора для двух разных частей. Вы можете увидеть 40/5 MFD, что означает, что одна сторона составляет 40 микрофарад (измерение емкости), а другая сторона — 5 микрофарад. Меньшее значение всегда будет подключено к вентилятору.Соединение большего размера всегда будет подключено к компрессору.


    Если я не могу найти замену своему двойному рабочему конденсатору, могу ли я использовать две отдельные рабочие крышки?

    Единственное преимущество конструкции двойного рабочего конденсатора состоит в том, что он поставляется в небольшом корпусе всего с 3 подключениями. Другой разницы нет. Если места для монтажа достаточно, использование двух отдельных рабочих конденсаторов вместо исходного двойного рабочего конденсатора является приемлемой практикой.

    Как определить, что конденсатор вашего двигателя выходит из строя

    Если вы читаете это, то, вероятно, подозреваете, что что-то не так с конденсатором вашего двигателя.

    Вам интересно, как определить, что ваш конденсатор вышел из строя?

    В этой полезной статье вы узнаете:

    — Что такое конденсатор

    — Что конденсатор делает для вашего двигателя

    — Два основных типа конденсаторов двигателя

    — Как определить, неисправен ли ваш конденсатор

    Во-первых, давайте поговорим о том, что такое конденсатор и что он делает для вашего двигателя.

    Что такое конденсатор?

    Конденсатор — это устройство, накапливающее электричество.Он может быть большим или маленьким, в зависимости от его использования. Конденсаторы можно найти в чем угодно, от электронной схемы до силовой установки.

    Для чего нужен конденсатор двигателя?

    В однофазных двигателях конденсаторы используются для облегчения их запуска и для экономии энергии.

    Существует два основных типа моторных конденсаторов:

    1. Пусковые конденсаторы

    2. Рабочие конденсаторы

    Теперь, когда вы знаете два основных типа моторных конденсаторов, давайте поговорим о том, что делает каждый тип конденсатора и как он влияет ваш мотор.

    Пусковые конденсаторы

    Пусковой конденсатор используется для придания двигателю дополнительного электрического толчка для запуска его вращения. Пусковой конденсатор используется в цепи двигателя только на секунду или две, когда он впервые начинает вращаться.

    Когда двигатель набирает скорость, пусковой конденсатор отключается и не используется снова до следующего запуска двигателя. Если пусковой конденсатор выйдет из строя, двигатель не сможет начать вращаться.

    Рабочие конденсаторы

    Рабочие конденсаторы — это энергосберегающее устройство, которое постоянно находится в цепи двигателя.

    Если рабочий конденсатор выходит из строя, двигатель может отображать различные проблемы, включая отсутствие запуска, перегрев и вибрацию. Плохой рабочий конденсатор лишает двигатель полного напряжения, необходимого для правильной работы.

    Разница между пусковыми и рабочими конденсаторами

    Пусковые и рабочие конденсаторы сделаны одинаково, но рабочие конденсаторы намного более надежны, чем пусковые конденсаторы, поскольку рабочий конденсатор всегда используется при работающем двигателе.

    По этой причине нельзя использовать пусковой конденсатор для замены рабочего конденсатора.В двигателях могут использоваться конденсаторы одного или обоих типов в зависимости от того, для чего они предназначены.

    Отказ конденсатора: неисправен ли ваш конденсатор?

    Если вы подозреваете, что у вас неисправный конденсатор, есть несколько признаков неисправности конденсатора двигателя, на которые следует обратить внимание.

    Признаки неисправности конденсатора

    — Ваш двигатель запускается медленно

    — Ваш двигатель не перестанет гудеть

    Это не ваш конденсатор, когда …

    Если ваш двигатель полностью мертв (не двигается и вообще не шумит) то проблема больше, чем конденсатор.

    Как проверить конденсатор

    Хотите определить, правильно ли работает конденсатор?

    Вы можете проверить свой конденсатор с помощью высококачественного электросчетчика.

    Единица измерения емкости — микрофарада. На конденсаторах указано, какое значение микрофарад (сокращенно mfd или uf) должно быть.

    Если ваш электросчетчик показывает слишком высокое или слишком низкое значение в микрофарадах, это признак того, что ваш конденсатор неисправен.

    Перед проверкой конденсатора обязательно закоротите клеммы с помощью отвертки с изолированной ручкой. Это поможет вам удалить всю накопленную мощность.

    Емкость конденсатора должна быть в пределах указанного диапазона, чтобы она была хорошей.

    Имейте в виду, что у конденсаторов нет полярности, поэтому не имеет значения, с какой стороны идут провода.

    Однако, если у вас было более двух проводов, идущих к конденсатору, провода, спаренные вместе с одной стороны, всегда должны быть спарены вместе.

    Напоминание о безопасности конденсаторов

    Как и в случае любого электрического устройства, отключите питание двигателя перед его обслуживанием и разрядите конденсаторы перед тем, как обращаться с ними.

    Все еще испытываете проблемы с конденсатором?

    Pumps Plus компании Cape Coral — ведущий поставщик услуг для электродвигателей на юго-западе Флориды.

    Если у вас все еще возникают проблемы с конденсатором двигателя, позвоните нам сейчас по телефону 239-574-4499 или посетите наш магазин по адресу 958 Country Club Blvd.в Кейп-Корал, Флорида.

    Конденсаторы 101 — iFixit

    Вот немного сухого материала, просто чтобы помочь понять, что такое конденсатор и что он обычно делает. Конденсатор — это небольшой (в большинстве случаев) электрический / электронный компонент на большинстве печатных плат, который может выполнять различные функции. Когда конденсатор помещается в цепь с активным током, электроны с отрицательной стороны накапливаются на ближайшей пластине. Отрицательный течет к положительному, поэтому отрицательный является активным проводом, хотя многие конденсаторы не поляризованы.Как только пластина больше не может удерживать их, они выталкиваются через диэлектрик на другую пластину, тем самым вытесняя электроны обратно в цепь. Это называется разрядом. Электрические компоненты очень чувствительны к колебаниям напряжения, и поэтому скачок мощности может убить эти дорогостоящие детали. Конденсаторы создают постоянное напряжение для других компонентов и, таким образом, обеспечивают стабильное питание. Переменный ток выпрямляется диодами, поэтому вместо переменного тока есть импульсы постоянного тока от нуля до пика. Когда конденсатор от линии питания подключен к земле, и постоянный ток не проходит, но по мере того, как импульс заполняет конденсатор, он снижает ток и эффективное напряжение.Когда напряжение питания падает до нуля, конденсатор начинает вытекать свое содержимое, это сглаживает выходное напряжение и ток. Таким образом, конденсатор размещается на одной линии с компонентом, что позволяет поглощать выбросы и дополнять впадины, что, в свою очередь, поддерживает постоянное питание компонента.

    Существует множество различных типов конденсаторов. Часто они по-разному используются в схемах. Все слишком знакомые конденсаторы в виде круглой жестяной банки обычно представляют собой электролитические конденсаторы.Они сделаны из одного или двух листов металла, разделенных диэлектриком. Диэлектрик может быть воздухом (простейший конденсатор) или другими непроводящими материалами. Металлические пластины из фольги, разделенные диэлектриком, затем скручиваются, как Fruit Roll-up, и помещаются в банку. Они отлично подходят для объемной фильтрации, но не очень эффективны на высоких частотах.

    Вот конденсатор, который некоторые, возможно, еще помнят со времен старых радио. Это многосекционный баночный конденсатор. Этот конкретный конденсатор представляет собой четырехсекционный конденсатор.Все это означает, что в одной емкости содержится четыре отдельных конденсатора с разными номиналами.

    Керамические дисковые конденсаторы идеальны для более высоких частот, но не подходят для объемной фильтрации, поскольку керамические дисковые конденсаторы становятся слишком большими по размеру для более высоких значений емкости. В схемах, где жизненно важно поддерживать стабильность источника напряжения, обычно имеется большой электролитический конденсатор, подключенный параллельно керамическому дисковому конденсатору. Электролитический конденсатор будет делать большую часть работы, тогда как небольшой керамический дисковый конденсатор будет отфильтровывать высокую частоту, которую пропускает большой электролитический конденсатор.

    Еще есть танталовые конденсаторы. Они маленькие, но имеют большую емкость по сравнению с керамическими дисковыми конденсаторами. Они более дорогие, но находят широкое применение на печатных платах небольших электронных устройств.

    Старые бумажные конденсаторы, хотя и неполярные, имели черные полосы на одном конце. Черная полоса показывала, на каком конце бумажного конденсатора была металлическая фольга (которая действовала как экран). Конец с металлической фольгой был подключен к земле (или к самому низкому напряжению).Основное назначение экрана из фольги — продлить срок службы бумажного конденсатора.

    Вот тот, который нас, скорее всего, интересует больше всего, когда речь идет об iDevices. Они очень маленькие по сравнению с перечисленными выше конденсаторами. Это крышки для устройств поверхностного монтажа (SMD). Несмотря на то, что они миниатюрны по размеру по сравнению с предыдущими конденсаторами, функция остается той же. Одной из важных особенностей этих конденсаторов, помимо номинальных характеристик, является их «упаковка». Существует стандартизация размеров этих компонентов, т.е.е. упаковка 0201 — 0,6 мм x 0,3 мм (0,02 дюйма x 0,01 дюйма). Размер корпуса керамических конденсаторов SMD соответствует размеру корпуса резисторов SMD. Это делает практически невозможным определить, конденсатор это или резистор, с помощью визуализации. Вот хорошее описание индивидуальных размеров на основе номеров пакетов.

    Определить значение конденсатора можно несколькими способами. Номер один, конечно же, это маркировка на самом конденсаторе.

    Этот конкретный конденсатор имеет емкость 220 мкФ (микрофарад) с допуском 20%.Это означает, что он может находиться в диапазоне от 176 мкФ до 264 мкФ. Он имеет номинальное напряжение 160 В. Расположение выводов показывает, что это радиальный конденсатор. Оба вывода выходят с одной стороны, в отличие от осевого расположения, когда один вывод выходит с обеих сторон корпуса конденсатора. Также полоса со стрелками на стороне конденсатора указывает полярность, стрелки указывают на отрицательный вывод .

    Теперь главный вопрос — как проверить конденсатор на предмет необходимости его замены.

    Для проверки конденсатора, когда он все еще установлен в цепи, потребуется измеритель ESR. Если конденсатор удален из схемы, то можно использовать мультиметр, установленный в качестве омметра, , но только для выполнения теста по принципу «все или ничего». Этот тест покажет только, полностью ли разряжен конденсатор. Это , а не , будет определять, в хорошем или плохом состоянии конденсатор. Чтобы определить, работает ли конденсатор при правильном значении (емкости), потребуется тестер конденсатора.Конечно, это также верно для определения номинала неизвестного конденсатора.

    Счетчик, используемый в этой Wiki, является самым дешевым из всех доступных в любом универмаге. Для этого теста также рекомендуется использовать аналоговый мультиметр. Он покажет движение более наглядно, чем цифровой мультиметр, отображающий только быстро меняющиеся числа. Это должно позволить любому выполнять эти тесты, не тратя целое состояние на что-то вроде глюкометра Fluke.

    Всегда разряжайте конденсатор перед тестированием, если этого не сделать, будет шокирующим сюрпризом.Конденсаторы очень маленькой емкости можно разрядить, переставив оба вывода отверткой. Лучше всего это сделать, разрядив конденсатор через нагрузку. В этом случае это выполнят кабели из крокодиловой кожи и резистор. Вот отличный сайт, показывающий, как построить инструменты для разряда.

    Чтобы проверить конденсатор с помощью мультиметра, установите показание измерителя в диапазоне высоких сопротивлений, где-то выше 10 кОм и 1 м Ом. Прикоснитесь к выводам измерителя к соответствующим выводам на конденсаторе, красный к плюсу и черный к минусу.Измеритель должен начинать с нуля, а затем медленно приближаться к бесконечности. Это означает, что конденсатор находится в рабочем состоянии. Если счетчик остается на нуле, конденсатор не заряжается через батарею счетчика, что означает, что он не работает.

    Это также будет работать с заглушками SMD. Тот же тест, когда стрелка мультиметра медленно движется в том же направлении.

    Еще одно испытание конденсатора — это испытание напряжением. Мы знаем, что конденсаторы накапливают на своей пластине разность потенциалов зарядов, это напряжения.Конденсатор имеет анод с положительным напряжением и катод с отрицательным напряжением. Один из способов проверить, работает ли конденсатор, — это зарядить его напряжением, а затем измерить напряжение на аноде и катоде. Для этого необходимо зарядить конденсатор напряжением и подать напряжение постоянного тока на выводы конденсатора. В этом случае очень важна полярность. Если у этого конденсатора есть положительный и отрицательный вывод, это поляризованные конденсаторы (электролитические конденсаторы). Положительное напряжение пойдет на анод, а отрицательное — на катод конденсатора.Не забудьте проверить маркировку на тестируемом конденсаторе. Затем на несколько секунд подайте напряжение, которое должно быть меньше номинального напряжения конденсатора. В этом примере конденсатор 160 В будет заряжаться от батареи постоянного тока 9 В в течение нескольких секунд.

    По окончании заряда отсоедините аккумулятор от конденсатора. Воспользуйтесь мультиметром и снимите напряжение на выводах конденсатора. Напряжение должно быть около 9 вольт. Напряжение будет быстро уменьшаться до 0 В, потому что конденсатор разряжается через мультиметр.Если конденсатор не сохраняет это напряжение, он неисправен и его следует заменить.

    Проще всего конечно будет проверить конденсатор емкостным измерителем. Вот осевой GPF 1000 мкФ 40 В FRAKO с допуском 5%. Проверить этот конденсатор с помощью измерителя емкости очень просто. На этих конденсаторах отмечен положительный вывод. Подключите положительный (красный) провод от мультиметра к нему, а отрицательный (черный) — к противоположному. Этот конденсатор показывает 1038 мкФ, что явно в пределах допуска.

    Для проверки конденсатора SMD может быть сложно сделать с громоздкими пробниками. Можно либо припаять иглы к концам этих зондов, либо купить умный пинцет. Лучше всего использовать умный пинцет.

    Некоторые конденсаторы не требуют проверки для определения неисправности. Если визуальный осмотр конденсаторов обнаруживает какие-либо признаки вздутия верхних частей, их необходимо заменить. Это наиболее частая неисправность блоков питания. При замене конденсатора крайне важно заменить его конденсатором того же или более высокого номинала.Никогда не субсидируйте конденсатор меньшей стоимости.

    Если конденсатор, который собираются заменить или проверить, не имеет маркировки, потребуется схема. На изображении ниже показано несколько символов конденсаторов, которые используются на схеме.

    В этом отрывке из схемы iPhone указаны символы конденсаторов, а также их значения.

    Эта Wiki — это в значительной степени только основы того, что искать в конденсаторах, она никоим образом не является полной.Чтобы узнать больше о любых распространенных электронных компонентах, существует множество хороших онлайн-курсов и офлайн-курсов.

    Eaton Electronics

    Максвелл

    Digikey

    Конденсаторы Mouser

    — learn.sparkfun.com

    Добавлено в избранное Любимый 76

    Введение

    Конденсатор — это двухконтактный электрический компонент. Наряду с резисторами и катушками индуктивности, они являются одними из самых фундаментальных пассивных компонентов , которые мы используем.Вам придется очень внимательно поискать схему, в которой не содержит конденсатора.

    Особенностью конденсаторов является их способность накапливать энергию ; они похожи на полностью заряженную электрическую батарею. Колпачки , как мы их обычно называем, имеют самые разные критические применения в схемах. Общие приложения включают локальное накопление энергии, подавление скачков напряжения и комплексную фильтрацию сигналов.

    рассматривается в этом учебном пособии

    В этом руководстве мы рассмотрим всевозможные темы, связанные с конденсаторами, в том числе:

    • Как делается конденсатор
    • Как работает конденсатор
    • Единицы емкости
    • Типы конденсаторов
    • Как распознать конденсаторы
    • Как емкость сочетается последовательно и параллельно
    • Применение конденсаторов общего назначения

    Рекомендуемая литература

    Некоторые концепции в этом руководстве основаны на предыдущих знаниях в области электроники.Прежде чем переходить к этому руководству, подумайте о том, чтобы сначала прочитать (хотя бы бегло просмотр) эти:


    Обозначения и единицы

    Условные обозначения цепей

    Есть два распространенных способа изобразить конденсатор на схеме. У них всегда есть две клеммы, которые подключаются к остальной цепи. Символ конденсаторов состоит из двух параллельных линий, которые могут быть плоскими или изогнутыми; обе линии должны быть параллельны друг другу, близко друг к другу, но не соприкасаться (это фактически показывает, как сделан конденсатор.Сложно описать, проще показать:

    (1) и (2) — стандартные обозначения цепи конденсатора. (3) представляет собой пример символов конденсаторов в действии в цепи регулятора напряжения.

    Символ с изогнутой линией (№2 на фото выше) указывает на то, что конденсатор поляризован, что означает, что это, вероятно, электролитический конденсатор. Подробнее об этом в разделе о типах конденсаторов этого руководства.

    Каждый конденсатор должен сопровождаться названием — C1, C2 и т. Д.. — и стоимость. Значение должно указывать на емкость конденсатора; сколько там фарадов. Кстати о фарадах …

    Единицы измерения емкости

    Не все конденсаторы одинаковы. Каждый конденсатор имеет определенную емкость. Емкость конденсатора говорит вам, сколько заряда он может хранить , большая емкость означает большую емкость для хранения заряда. Стандартная единица измерения емкости называется фарад , сокращенно F .

    Получается, что фарад — это лот емкости, даже 0,001Ф (1 миллифарад — 1мФ) — это большой конденсатор. Обычно вы увидите конденсаторы с номиналом от пико- (10 -12 ) до микрофарад (10 -6 ).

    903
    Имя префикса Аббревиатура Вес Эквивалентные фарады
    Пикофарад pF 10 -12 0.000000000006 N0307 0.000000001 F
    Микрофарад мкФ 10 -6 0.000001 F
    Милифарад mF 10 -3 10 3 1000 Ф.

    Когда вы переходите к диапазону емкости от фарада до килофарада, вы начинаете говорить о специальных конденсаторах, называемых конденсаторами super или ultra .


    Теория конденсаторов

    Примечание : Материал на этой странице не совсем критичен для понимания новичками в электронике … и к концу все становится немного сложнее. Мы рекомендуем прочитать раздел Как делается конденсатор , остальные, вероятно, можно было бы пропустить, если они вызывают у вас головную боль.

    Как делается конденсатор

    Схематический символ конденсатора на самом деле очень похож на то, как он сделан.Конденсатор состоит из двух металлических пластин и изоляционного материала, называемого диэлектриком . Металлические пластины расположены очень близко друг к другу, параллельно, но между ними находится диэлектрик, чтобы они не соприкасались.

    Ваш стандартный конденсаторный сэндвич: две металлические пластины, разделенные изолирующим диэлектриком.

    Диэлектрик может быть изготовлен из любых изоляционных материалов: бумаги, стекла, резины, керамики, пластика или всего, что препятствует прохождению тока.

    Пластины изготовлены из проводящего материала: алюминия, тантала, серебра или других металлов. Каждый из них подключен к клеммному проводу, который в конечном итоге подключается к остальной части схемы.

    Емкость конденсатора — сколько в нем фарад — зависит от того, как он устроен. Для большей емкости требуется конденсатор большего размера. Пластины с большей площадью перекрытия поверхности обеспечивают большую емкость, в то время как большее расстояние между пластинами означает меньшую емкость. Материал диэлектрика даже влияет на то, сколько фарад имеет колпачок.Полная емкость конденсатора может быть рассчитана по формуле:

    Где ε r — относительная диэлектрическая проницаемость диэлектрика (постоянное значение, определяемое материалом диэлектрика), A — это площадь, на которой пластины перекрывают друг друга, а d — расстояние между пластинами.

    Как работает конденсатор

    Электрический ток — это поток электрического заряда, который электрические компоненты используют, чтобы загораться, вращаться или делать то, что они делают.Когда ток течет в конденсатор, заряды «застревают» на пластинах, потому что они не могут пройти через изолирующий диэлектрик. Электроны — отрицательно заряженные частицы — засасываются одной из пластин, и она становится в целом отрицательно заряженной. Большая масса отрицательных зарядов на одной пластине отталкивает, как заряды, на другой пластине, делая ее заряженной положительно.

    Положительный и отрицательный заряды на каждой из этих пластин притягиваются друг к другу, потому что это то, что делают противоположные заряды.Но с диэлектриком, сидящим между ними, как бы они ни хотели соединиться, заряды навсегда останутся на пластине (до тех пор, пока им не будет куда-то идти). Стационарные заряды на этих пластинах создают электрическое поле, которое влияет на электрическую потенциальную энергию и напряжение. Когда заряды группируются на конденсаторе таким образом, крышка накапливает электрическую энергию так же, как батарея может накапливать химическую энергию.

    Зарядка и разрядка

    Когда положительный и отрицательный заряды сливаются на пластинах конденсатора, конденсатор становится заряженным .Конденсатор может сохранять свое электрическое поле — удерживать свой заряд — потому что положительный и отрицательный заряды на каждой из пластин притягиваются друг к другу, но никогда не достигают друг друга.

    В какой-то момент обкладки конденсатора будут настолько заряжены, что просто не смогут принимать больше. На одной пластине достаточно отрицательных зарядов, чтобы они могли отразить любые другие, которые попытаются присоединиться. Здесь вступает в игру емкость конденсатора ( фарад), которая говорит вам о максимальном количестве заряда, которое может хранить конденсатор.

    Если в цепи создается путь, который позволяет зарядам найти другой путь друг к другу, они покинут конденсатор, и разрядит .

    Например, в схеме ниже можно использовать батарею для создания электрического потенциала на конденсаторе. Это вызовет нарастание одинаковых, но противоположных зарядов на каждой из пластин, пока они не станут настолько полными, что оттолкнут ток от протекания. Светодиод, расположенный последовательно с крышкой, может обеспечивать путь для тока, а энергия, запасенная в конденсаторе, может использоваться для кратковременного освещения светодиода.

    Расчет заряда, напряжения и тока

    Емкость конденсатора — сколько в нем фарад — говорит вам, сколько заряда он может хранить. Сколько заряда конденсатор хранит в настоящее время , зависит от разности потенциалов (напряжения) между его пластинами. Это соотношение между зарядом, емкостью и напряжением можно смоделировать с помощью следующего уравнения:

    Заряд (Q), накопленный в конденсаторе, является произведением его емкости (C) и приложенного к нему напряжения (V).

    Емкость конденсатора всегда должна быть постоянной известной величиной. Таким образом, мы можем регулировать напряжение, чтобы увеличивать или уменьшать заряд крышки. Больше напряжения означает больше заряда, меньше напряжения … меньше заряда.

    Это уравнение также дает нам хороший способ определить значение одного фарада. Один фарад (F) — это способность хранить одну единицу энергии (кулоны) на каждый вольт.

    Расчет тока

    Мы можем пойти дальше по уравнению заряда / напряжения / емкости, чтобы выяснить, как емкость и напряжение влияют на ток, потому что ток — это скорость потока заряда.Суть отношения конденсатора к напряжению и току такова: величина тока , проходящего через конденсатор , зависит как от емкости, так и от того, как быстро напряжение растет или падает . Если напряжение на конденсаторе быстро растет, через конденсатор будет индуцироваться большой положительный ток. Более медленный рост напряжения на конденсаторе означает меньший ток через него. Если напряжение на конденсаторе стабильное и неизменное, через него не будет проходить ток.

    (Это некрасиво, и касается вычислений. Это не все, что нужно, пока вы не перейдете к анализу во временной области, разработке фильтров и прочим грубым вещам, так что переходите к следующей странице, если вам не нравится это уравнение. .) Уравнение для расчета тока через конденсатор:

    Часть dV / dt этого уравнения является производной (причудливый способ сказать мгновенная скорость ) напряжения во времени, это эквивалентно тому, как «насколько быстро напряжение растет или падает в этот самый момент».Большой вывод из этого уравнения заключается в том, что если напряжение стабильно , производная равна нулю, что означает, что ток также равен нулю . Вот почему ток не может течь через конденсатор, поддерживающий постоянное постоянное напряжение.


    Типы конденсаторов

    Существуют всевозможные типы конденсаторов, каждый из которых имеет определенные особенности и недостатки, которые делают его лучше для одних приложений, чем для других.

    При выборе типа конденсатора необходимо учитывать несколько факторов:

    • Размер — Размер как по физическому объему, так и по емкости.Конденсатор нередко является самым большим компонентом в цепи. Также они могут быть очень маленькими. Для большей емкости обычно требуется конденсатор большего размера.
    • Максимальное напряжение — Каждый конденсатор рассчитан на максимальное падение напряжения на нем. Некоторые конденсаторы могут быть рассчитаны на 1,5 В, другие — на 100 В. Превышение максимального напряжения обычно приводит к разрушению конденсатора.
    • Ток утечки — Конденсаторы не идеальны.Каждая крышка склонна пропускать небольшое количество тока через диэлектрик от одного вывода к другому. Эта крошечная потеря тока (обычно наноампер или меньше) называется утечкой. Утечка заставляет энергию, накопленную в конденсаторе, медленно, но верно истощаться.
    • Эквивалентное последовательное сопротивление (ESR) — Выводы конденсатора не на 100% проводящие, у них всегда будет небольшое сопротивление (обычно менее 0,01 Ом). Это сопротивление становится проблемой, когда через колпачок проходит большой ток, вызывая потери тепла и мощности.
    • Допуск — Конденсаторы также не могут иметь точную, точную емкость. Каждая крышка будет рассчитана на свою номинальную емкость, но, в зависимости от типа, точное значение может варьироваться от ± 1% до ± 20% от желаемого значения.

    Конденсаторы керамические

    Наиболее часто используемый и производимый конденсатор — керамический конденсатор. Название происходит от материала, из которого сделан их диэлектрик.

    Керамические конденсаторы обычно бывают физически и емкостными малыми .Трудно найти керамический конденсатор больше 10 мкФ. Керамический колпачок для поверхностного монтажа обычно находится в крошечных корпусах 0402 (0,4 мм x 0,2 мм), 0603 (0,6 мм x 0,3 мм) или 0805. Керамические колпачки со сквозными отверстиями обычно выглядят как маленькие (обычно желтые или красные) лампочки с двумя выступающими клеммами.

    Две крышки в сквозном радиальном корпусе; конденсатор 22 пФ слева и 0,1 мкФ справа. Посередине — крошечная крышка 0,1 мкФ 0603 для поверхностного монтажа.

    По сравнению с не менее популярными электролитическими крышками керамические конденсаторы являются более близкими к идеальным конденсаторам (гораздо более низкие значения ESR и токи утечки), но их малая емкость может быть ограничивающей.Как правило, они также являются наименее дорогим вариантом. Эти колпачки хорошо подходят для высокочастотной связи и развязки.

    Электролитический алюминий и тантал

    Электролитики

    хороши тем, что они могут упаковать много, емкости в относительно небольшой объем. Если вам нужен конденсатор емкостью от 1 мкФ до 1 мФ, вы, скорее всего, найдете его в электролитической форме. Они особенно хорошо подходят для высоковольтных приложений из-за их относительно высокого максимального номинального напряжения.

    Алюминиевые электролитические конденсаторы, самые популярные из семейства электролитических, обычно выглядят как маленькие жестяные банки с обоими выводами, выходящими снизу.

    Ассортимент электролитических конденсаторов сквозного и поверхностного монтажа. Обратите внимание, что у каждого из них есть метод маркировки катода (отрицательный вывод).

    К сожалению, электролитические крышки обычно поляризованы . У них есть положительный вывод — анод — и отрицательный вывод, называемый катодом.Когда напряжение подается на электролитический колпачок, анод должен иметь более высокое напряжение, чем катод. Катод электролитического конденсатора обычно обозначается знаком «-» и цветной полосой на корпусе. Ножка анода также может быть немного длиннее, как еще один признак. Если на электролитический колпачок подать обратное напряжение, они выйдут из строя (из-за чего лопнет и лопнет) и навсегда. После лопания электролитик будет вести себя как короткое замыкание.

    Эти колпачки также известны утечкой — позволяя небольшим токам (порядка нА) проходить через диэлектрик от одного вывода к другому. Это делает электролитические колпачки менее чем идеальными для хранения энергии, что, к сожалению, с учетом их высокой емкости и номинального напряжения.

    Суперконденсаторы

    Если вы ищете конденсатор, предназначенный для хранения энергии, не ищите ничего, кроме суперконденсаторов. Эти колпачки имеют уникальную конструкцию, обеспечивающую высокую емкость единиц в диапазоне фарад.

    Суперконденсатор 1Ф (!). Высокая емкость, но рассчитана только на 2,5 В. Обратите внимание, что они также поляризованы.

    Несмотря на то, что они могут хранить огромное количество заряда, суперкаперы не могут работать с очень высокими напряжениями. Этот суперконденсатор 10F рассчитан только на максимальное напряжение 2,5 В. Любое большее, чем это, разрушит его. Суперэлементы обычно устанавливаются последовательно для достижения более высокого номинального напряжения (при уменьшении общей емкости).

    Основное применение суперконденсаторов — накопление и выделение энергии , как батареи, которые являются их основным конкурентом.Хотя суперконденсаторы не могут удерживать столько энергии, сколько батарея того же размера, они могут высвобождать ее намного быстрее и обычно имеют гораздо больший срок службы.

    прочие

    Электролитические и керамические крышки покрывают около 80% типов конденсаторов (а суперкапсы только около 2%, но они супер!). Другой распространенный тип конденсатора — пленочный конденсатор , который отличается очень низкими паразитными потерями (ESR), что делает их идеальными для работы с очень высокими токами.

    Есть много других менее распространенных конденсаторов. Переменные конденсаторы могут производить различные емкости, что делает их хорошей альтернативой переменным резисторам в схемах настройки. Скрученные провода или печатные платы могут создавать емкость (иногда нежелательную), потому что каждый состоит из двух проводников, разделенных изолятором. Лейденские кувшины — стеклянная банка, наполненная проводниками и окруженная ими, — это O.G. семейства конденсаторов. Наконец, конечно, конденсаторы потока (странная комбинация катушки индуктивности и конденсатора) имеют решающее значение, если вы когда-нибудь планируете вернуться в дни славы.


    Последовательные / параллельные конденсаторы

    Подобно резисторам, несколько конденсаторов могут быть объединены последовательно или параллельно для создания комбинированной эквивалентной емкости. Конденсаторы, однако, складываются таким образом, что полностью противоположны резисторов.

    Параллельные конденсаторы

    Когда конденсаторы размещаются параллельно друг другу, общая емкость равна сумме всех емкостей .Это аналогично тому, как резисторы добавляются последовательно.

    Так, например, если у вас есть три конденсатора номиналом 10 мкФ, 1 мкФ и 0,1 мкФ, подключенные параллельно, общая емкость будет 11,1 мкФ (10 + 1 + 0,1).

    Конденсаторы серии

    Подобно тому, как резисторы сложно добавить параллельно, конденсаторы становятся странными при установке в серии . Общая емкость последовательно соединенных конденсаторов Н и является обратной суммой всех обратных емкостей.

    Если у вас есть только и два конденсатора , соединенных последовательно, вы можете использовать метод «произведение над суммой» для расчета общей емкости:

    Если продолжить это уравнение, если у вас есть двух одинаковых конденсаторов, соединенных последовательно , общая емкость составляет половину их значения.Например, два суперконденсатора по 10 Ф, соединенные последовательно, дадут общую емкость 5 Ф (это также даст возможность удвоить номинальное напряжение всего конденсатора с 2,5 В до 5 В).


    Примеры применения

    Существует множество приложений для этого изящного маленького (на самом деле, обычно они довольно большие) пассивного компонента. Чтобы дать вам представление об их широком диапазоне использования, вот несколько примеров:

    Конденсаторы развязки (байпаса)

    Многие конденсаторы, которые вы видите в схемах, особенно те, которые имеют интегральную схему, развязаны.Задача развязывающего конденсатора — подавить высокочастотный шум в сигналах источника питания. Они снимают с источника напряжения крошечные колебания напряжения, которые в противном случае могли бы нанести вред чувствительным микросхемам.

    В каком-то смысле развязывающие конденсаторы действуют как очень маленький локальный источник питания для микросхем (почти как источник бесперебойного питания для компьютеров). Если в источнике питания очень быстро падает напряжение (что на самом деле довольно часто, особенно когда цепь, которую он питает, постоянно переключает требования к нагрузке), разделительный конденсатор может кратковременно подавать питание с правильным напряжением.Вот почему эти конденсаторы также называют байпасными конденсаторами ; они могут временно действовать как источник питания, обходя источник питания.

    Разделительные конденсаторы подключаются между источником питания (5 В, 3,3 В и т. Д.) И землей. Нередко для обхода источника питания используют два или более конденсаторов с разным номиналом или даже разных типов, потому что некоторые номиналы конденсаторов будут лучше, чем другие, при фильтрации определенных частот шума.

    На этой схеме три развязывающих конденсатора используются для уменьшения шума в источнике напряжения акселерометра.Два керамических 0,1 мкФ и один танталовый электролитический 10 мкФ разделенные функции развязки.

    Хотя кажется, что это может привести к короткому замыканию между питанием и землей, только высокочастотные сигналы могут проходить через конденсатор на землю. Сигнал постоянного тока поступит на микросхему, как и нужно. Другая причина, по которой они называются шунтирующими конденсаторами, заключается в том, что высокие частоты (в диапазоне кГц-МГц) обходят ИС, а не проходят через конденсатор, чтобы добраться до земли.

    При физическом размещении развязывающих конденсаторов они всегда должны располагаться как можно ближе к ИС.Чем дальше они находятся, тем менее эффективны.

    Вот схема физической схемы из схемы выше. Крошечная черная ИС окружена двумя конденсаторами по 0,1 мкФ (коричневые крышки) и одним электролитическим танталовым конденсатором 10 мкФ (высокая прямоугольная крышка черного / серого цвета).

    В соответствии с передовой инженерной практикой всегда добавляйте хотя бы один развязывающий конденсатор к каждой ИС. Обычно хорошим выбором является 0,1 мкФ или даже дополнительные конденсаторы на 1 мкФ или 10 мкФ. Это дешевое дополнение, и они помогают убедиться, что микросхема не подвергается сильным провалам или скачкам напряжения.

    Фильтр источника питания

    Диодные выпрямители

    могут использоваться для преобразования переменного напряжения, выходящего из вашей стены, в постоянное напряжение, необходимое для большинства электронных устройств. Но сами по себе диоды не могут превратить сигнал переменного тока в чистый сигнал постоянного тока, им нужна помощь конденсаторов! При добавлении параллельного конденсатора к мостовому выпрямителю выпрямленный сигнал выглядит следующим образом:

    Может быть преобразован в сигнал постоянного тока близкого к уровню, например:

    Конденсаторы — упрямые компоненты, они всегда будут пытаться противостоять резким перепадам напряжения.Конденсатор фильтра будет заряжаться по мере увеличения выпрямленного напряжения. Когда выпрямленное напряжение, поступающее в конденсатор, начинает быстро снижаться, конденсатор получит доступ к своему банку накопленной энергии, и он будет очень медленно разряжаться, передавая энергию нагрузке. Конденсатор не должен полностью разрядиться, пока входной выпрямленный сигнал не начнет снова увеличиваться, заряжая конденсатор. Этот танец разыгрывается много раз в секунду, многократно, пока используется источник питания.

    Цепь питания переменного тока в постоянный.Крышка фильтра (C1) имеет решающее значение для сглаживания сигнала постоянного тока, посылаемого в цепь нагрузки.

    Если вы разорвите любой блок питания переменного тока в постоянный, вы обязательно найдете хотя бы один довольно большой конденсатор. Ниже показаны внутренности настенного адаптера постоянного тока на 9 В. Заметили там конденсаторы?

    Конденсаторов может быть больше, чем вы думаете! Есть четыре электролитических крышки, похожие на жестяную банку, в диапазоне от 47 мкФ до 1000 мкФ. Большой желтый прямоугольник на переднем плане — это высоковольтный 0.Крышка из полипропиленовой пленки 1 мкФ. И синяя дискообразная крышка, и маленькая зеленая посередине — керамические.

    Хранение и поставка энергии

    Кажется очевидным, что если конденсатор накапливает энергию, одно из множества его применений — подача этой энергии в цепь, как аккумулятор. Проблема в том, что конденсаторы имеют гораздо более низкую плотность энергии , чем батареи; они просто не могут вместить столько же энергии, как химическая батарея того же размера (но этот разрыв сокращается!).

    Достоинством конденсаторов является то, что они обычно служат дольше, чем батареи, что делает их лучшим выбором с экологической точки зрения. Они также способны выдавать энергию намного быстрее, чем аккумулятор, что делает их подходящими для приложений, которым требуется короткий, но большой всплеск мощности. Вспышка камеры может получать питание от конденсатора (который, в свою очередь, вероятно, заряжался от аккумулятора).

    Батарея или конденсатор ?
    3 Срок службы3 ✓
    Батарея Конденсатор
    Емкость
    Плотность энергии
    Срок службы

    Фильтрация сигналов

    Конденсаторы

    обладают уникальной реакцией на сигналы различной частоты.Они могут блокировать низкочастотные компоненты или составляющие сигнала постоянного тока, позволяя при этом проходить более высоким частотам. Они как вышибалы в очень эксклюзивном клубе только для высоких частот.

    Фильтрация сигналов может быть полезна во всех видах приложений обработки сигналов. Радиоприемники могут использовать конденсатор (среди других компонентов) для отключения нежелательных частот.

    Другой пример фильтрации сигнала конденсатора — это пассивные схемы кроссовера внутри громкоговорителей, которые разделяют один аудиосигнал на несколько.Последовательный конденсатор блокирует низкие частоты, поэтому оставшиеся высокочастотные части сигнала могут поступать на твитер динамика. При прохождении низких частот в цепи сабвуфера высокие частоты в основном могут быть шунтированы на землю через параллельный конденсатор.

    Очень простой пример схемы кроссовера аудио. Конденсатор блокирует низкие частоты, а катушка индуктивности блокирует высокие частоты. Каждый из них может использоваться для доставки нужного сигнала настроенным аудиодрайверам.

    Снижение рейтинга

    При работе с конденсаторами важно проектировать свои схемы с конденсаторами, которые имеют гораздо более высокий допуск, чем потенциально самый высокий скачок напряжения в вашей системе.

    Вот отличное видео от инженера SparkFun Шона о том, что происходит с различными типами конденсаторов, когда вы не можете снизить номинальные параметры конденсаторов и превысить их максимальное напряжение. Вы можете прочитать больше о его экспериментах здесь.


    Покупка конденсаторов

    Храните на этих маленьких компонентах накопителя энергии или используйте их в качестве начального блока питания.

    Наши рекомендации:

    Комплект конденсаторов SparkFun

    Осталось всего 13! КОМПЛЕКТ-13698

    Это комплект, который предоставляет вам базовый ассортимент конденсаторов, чтобы начать или продолжить возиться с электроникой. Нет мес…

    10

    Суперконденсатор — 10Ф / 2.5В

    В наличии COM-00746

    Да, вы правильно прочитали — конденсатор 10 Фарад. Этот маленький колпачок можно заряжать, а затем медленно рассеивать в течение…

    3

    Конденсатор керамический 0.1 мкФ

    В наличии COM-08375

    Это очень распространенный конденсатор емкостью 0,1 мкФ. Используется во всевозможных приложениях для разъединения микросхем от источников питания. 0,1 дюйма с интервалом…

    1

    Ресурсы и дальнейшее развитие

    Уф.Почувствуйте себя экспертом по конденсаторам ?! Хотите узнать больше об основах электроники? Если вы еще этого не сделали, подумайте о прочтении некоторых других распространенных электронных компонентов:

    Или, может быть, некоторые из этих руководств привлекут ваше внимание?


    Как определить неисправный конденсатор переменного тока и как его заменить

    Все мы знаем это удивительное чувство, когда вы приходите из жаркого летнего дня в свой прекрасный кондиционер.Но однажды вы можете войти и обнаружить, что ваш дом не такой крутой, как вы ожидаете.

    Некоторым людям также знакомо чувство опущения при поломке блока переменного тока. Однако знать, что вам предстоит дорогостоящий ремонт, не должно быть никому.

    Летом становится жарче и Июнь 2021 года бьет рекорды, нужен рабочий кондиционер.

    Перед тем, как пойти и заняться серьезной работой, вам, возможно, придется задать себе вопрос: «У меня плохой конденсатор переменного тока?».Если да, то есть хорошие новости — вы можете заменить его самостоятельно.

    Ознакомьтесь с симптомами и руководством по замене, чтобы узнать, действительно ли это вы.

    Предупреждения о безопасности

    Многие блоки переменного тока имеют конденсаторы, которые несут довольно высокий заряд, поэтому вы должны быть абсолютно осторожны при их замене или проверке. Однако, если вы примете разумные меры предосторожности, у вас не должно возникнуть проблем.

    • Никогда не касайтесь клемм на конце конденсатора
    • Не используйте что-либо с металлической ручкой для разряда конденсатора.Используйте отвертку с изолированной ручкой и приложите металлический стержень отвертки к C к HERM и C к FAN, чтобы разрядить конденсатор.

    При работе с высоковольтным оборудованием, таким как блок переменного тока, всегда убедитесь, что оно выключено. Если ваш блок переменного тока является съемным, убедитесь, что вилка полностью отключена. Если ваш AC подключен к автоматическому выключателю, убедитесь, что он отключен или выключен.

    Признаки неисправного или неисправного конденсатора

    Блоки переменного тока с плохими конденсаторами могут вызывать несколько интересных симптомов.Хотя это не всегда стопроцентная гарантия неисправного конденсатора переменного тока, велика вероятность того, что у вас возникнут проблемы, если вы увидите что-либо из этого.

    Вы можете заметить:

    • Гудящие шумы
    • Проблемы с включением или выключением
    • Запах гари или электрического разряда
    • Счета больше, чем обычно
    • Агрегат может отключиться случайным образом
    • Без охлаждения
    • Щелчки или жужжание

    Если что-то из этого звучит знакомо, есть большая вероятность, что с конденсатором переменного тока что-то не так, и вам следует подумать о его замене.

    Если ни один из этих симптомов не подходит, обратитесь к нашему руководству по устранению неполадок, чтобы найти проблему.

    Без охлаждения

    Как только ваш кондиционер перестанет подавать холодный воздух, это верный признак того, что что-то не так. Возможно, это не долгосрочная проблема. Вы можете проверить, включив и снова выключив устройство, чтобы увидеть, исчезнет ли проблема.

    Щелчки или жужжание

    Это снова связано с двигателем. Когда двигатель пытается запуститься, но не может, он может издавать щелкающий или гудящий звук.Это хороший признак того, что конденсатор сломан.

    Теперь, когда у вас есть хорошее представление о симптомах, которые вы можете увидеть, давайте узнаем немного о том, как работают конденсаторы. Таким образом, вы сможете понять, как их безопасно и эффективно заменить.

    Счета за высокую энергию

    Когда конденсатор переменного тока неисправен, двигатель вентилятора конденсатора должен работать больше и потреблять больше ампер. Поэтому, когда вы внезапно замечаете, что ваши счета за электроэнергию увеличиваются, у вас может быть плохой конденсатор. Чтобы понять, почему плохой конденсатор означает более высокий счет за электроэнергию, см. Раздел ниже о том, что делает конденсатор.

    Случайные отсечки

    Вы можете обнаружить, что ваш блок переменного тока отключается, и вы время от времени ничего не делаете.

    Проблема с включением или выключением

    Эта проблема почти всегда связана с плохим конденсатором. Когда система пытается сделать что-то, для чего требуется больше энергии, неисправный конденсатор может вызвать проблемы. Этот симптом также может проявляться в том, что устройству требуется много времени для начала работы после его включения. Конденсатор дает начальный заряд энергии, и когда он выходит из строя, блок переменного тока изо всех сил пытается запуститься.Обычный обходной путь, хотя иногда и опасный, — это толкать лопасть вентилятора палкой. Это может быть опасно и привести к повреждению устройства, поэтому следует делать это только в экстренных случаях.

    Запах гари или электрического разряда

    Это немного сложнее, так как может быть много причин (ни одна из них не является хорошей), по которым ваш блок переменного тока может пахнуть гари. В вашем блоке переменного тока конденсатор приводит в движение двигатель. Когда конденсатор неисправен, двигатель имеет тенденцию к перегреву, и это может вызвать запах.

    Что на самом деле делает конденсатор?

    Если вы думаете о конденсаторе как о большом хранилище энергии, вы на правильном пути. Самый простой конденсатор состоит всего из нескольких компонентов. Это два проводника, которые пропускают электричество, и промежутки, которые блокируют поток электричества. Когда электричество проходит через конденсатор, электроны накапливаются в двух проводниках. Один проводник хранит отрицательно заряженные электроны, а другой — положительно заряженные.

    Любой большой прибор, такой как блок переменного тока, требует много электроэнергии для работы. И когда компрессор и двигатель вентилятора запускаются, им требуется большое количество энергии. Вы не захотите постоянно платить за электроэнергию по высокой цене — здесь на помощь приходят конденсаторы.

    Конденсаторы используют накопленную энергию, чтобы дать большой толчок мощности вашему компрессору и двигателю вентилятора при запуске. Возможно, вы слышали шум, когда начинается этот процесс.

    После запуска устройства в конденсаторе больше нет необходимости, и он может снова накапливать энергию для следующего большого толчка.

    Что такое номинал конденсатора

    У конденсатора много разных номиналов, но для наших целей нас интересуют только два:

    1. Рабочее напряжение
    2. Значение емкости. На вашем конденсаторе переменного тока будет 2 значения емкости. Один приводит в движение компрессор, другой — двигатель вентилятора.

    Рабочее напряжение

    На самом деле это просто показатель того, какое напряжение может пройти через конденсатор. Одна из причин, по которой конденсатор может выйти из строя быстрее, чем ожидалось, — это нестабильная подача электроэнергии в вашем доме.При замене конденсатора вы можете увеличить напряжение, так как это максимальное напряжение, с которым он может работать. Как правило, вы увидите конденсаторы на 370 или 440 В, но многие производители увеличивают запасы только до 440 В.

    Значение емкости

    Измеряется в микрофарадах и показывает, сколько энергии может хранить конденсатор. Обычно это будет написано 50 + 5 MFD или 50 + 5 μ. Здесь есть и другие сложности, но все будет в порядке, если вы можете указать микрофарады.

    Примеры этикеток конденсаторов. Обратите внимание, что некоторые производители используют МФД для отображения рейтинга микрофарад, тогда как другие используют символ μ.

    Как определить, неисправен ли конденсатор

    Наиболее частым признаком неисправного конденсатора является гудение двигателя вентилятора конденсатора на внешнем блоке, или двигатель не запускается. В доме вы заметите, что холодный воздух не выходит из вентиляционных отверстий. Когда это происходит, конденсатор не работает и не может обеспечить достаточное количество накопленной энергии для работы двигателя вентилятора или компрессора.

    Помимо всех симптомов из нашего списка, могут быть визуальные признаки того, что с конденсатором что-то не так. Если вы видите конденсатор на своем блоке переменного тока, его достаточно легко проверить на предмет повреждений или других функциональных проблем.

    Визуальные признаки неисправного конденсатора

    Внимательно посмотрите на конденсатор в вашем устройстве. Он выглядит гладким и безупречным? Если есть заметный прогиб или выпуклость, конденсатор необходимо заменить.Таким же образом, если масло выходит из верхней части конденсатора, срок его службы подошел к концу, и его необходимо заменить.

    Пример неисправного конденсатора кондиционера: вздутие Пример неисправного конденсатора кондиционера: ржавчина

    Будет ли кондиционер работать с неисправным конденсатором?

    Скорее всего, вы услышите жужжащий звук, если конденсатор переменного тока неисправен и ваш переменный ток не работает. В аварийной ситуации электродвигатель вентилятора конденсатора переменного тока можно запустить с помощью джойстика до тех пор, пока не придет запасной конденсатор, однако мы не рекомендуем этого делать, поскольку вы можете вызвать дальнейшее повреждение лопасти вентилятора и / или змеевика конденсатора.Если змеевик конденсатора поврежден, тогда может потребоваться полная замена блока, поскольку стоимость ремонта будет слишком дорогостоящей.

    Как проверить рабочий конденсатор с помощью мультиметра

    Использование функции емкости на мультиметре

    Включите счетчик

    Поверните циферблат на функцию емкости (см. Ниже). В этом случае мы используем мультиметр Клейна, и мы должны нажимать кнопку выбора, пока не увидим, что это емкостной режим.

    Установка емкости на мультиметре
    Проверка секции вентилятора конденсатора конденсатора

    Поместите один щуп мультиметра на C (общий)

    Поместите другой датчик на ВЕНТИЛЯТОР.

    Считывание емкости секции двигателя вентилятора конденсатора

    Подождите несколько секунд, и вы должны увидеть значение емкости на дисплее. При хорошем чтении микрофарады будут в пределах 10% от указанной на этикетке спецификации.

    Проверка секции вентилятора компрессора конденсатора

    Поместите один щуп мультиметра на C (общий)

    Поместите другой зонд на HERM. (HERM — сокращение от герметичный, что означает герметичный компрессор)

    Считывание емкости компрессорной секции конденсатора

    Подождите несколько секунд, и вы должны увидеть значение емкости на дисплее.При хорошем чтении микрофарады будут в пределах 10% от указанной на этикетке спецификации.

    Использование функции сопротивления на мультиметре

    Конденсатор также можно проверить путем измерения сопротивления, но лучше всего это работает с аналоговым измерителем. Цифровые измерители обычно не показывают скачок вверх и вниз в омах, что указывает на исправный конденсатор.

    Включите счетчик

    Поверните циферблат на Ом. (Похоже на символ омега)

    Быстрое считывание показаний сопротивления между клеммами

    Наденьте датчик на C, а другой на ВЕНТИЛЯТОР.Вы должны увидеть значение сопротивления на стрелке прыжка и вернуться к бесконечности.

    Переверните щупы и найдите такое же поведение на стрелке мультиметра.

    Повторите это для C и HERM.

    Измерьте сопротивление между выводами и корпусом конденсатора

    Поместите один щуп на C, а другой на внешний металлический корпус конденсатора. Если вы получаете показания, указывающие на целостность цепи, то конденсатор неисправен.

    Повторите это для терминала FAN и терминала HERM.

    Проверка на короткое замыкание между выводами и корпусом конденсатора

    Как заменить конденсатор кондиционера

    Замена конденсатора переменного тока несложна и в большинстве моделей может быть сделана своими руками. Каждая модель отличается, поэтому процесс может немного отличаться в зависимости от вашей марки.

    Основные шаги:

    1. Выключите и отсоедините блок переменного тока
    2. Откройте или удалите панель, которая дает вам доступ
    3. Обычно находится на боковой стороне устройства и имеет маркировку
    4. .
    5. Проверить, какой номинал сломанного конденсатора
    6. Снимаем старый конденсатор
    7. Установить новый конденсатор
    8. Включите блок переменного тока и проверьте его.

    Хотя это относительно простая установка, мы рекомендуем прочитать инструкции до конца.У вас будет полное представление о том, что вы будете делать таким образом.

    Шаг 1: Соберите Ваши инструменты

    Вам нужна отвертка, чтобы снять панель доступа? Когда вы доберетесь до снятия конденсатора, вам могут понадобиться как отвертка 1/4 дюйма, так и отвертка 5/16.

    Шаг 2. Выключите и отсоедините блок переменного тока

    Убедитесь, что вы правильно выключили блок переменного тока. Мы рекомендуем выключить прерыватель, который идет к сети переменного тока, и извлечь блок предохранителей из коробки отключения кондиционера.

    Шаг 3. Откройте или снимите панель доступа

    Это должна быть маленькая распашная дверь. Обычно он появляется сбоку или снизу блока переменного тока. Для открытия некоторых панелей требуется отвертка, в то время как у других есть защелка. Будьте осторожны, открывая панель, чтобы у вас было безопасное место для ее хранения, если она полностью выйдет.

    Шаг 4: Найдите конденсатор

    Типичное расположение конденсатора в сплит-системе

    Конденсатор в вашем блоке переменного тока будет выглядеть как металлический цилиндр.Он будет иметь два или три контакта наверху и к нему должны быть подключены провода.

    Шаг 5: Осмотрите конденсатор

    Сделайте быстрый визуальный осмотр конденсатора. Вы видите выпуклость? Нет ли утечек масла по бокам? Если что-то в конденсаторе выглядит деформированным или странным, скорее всего, это плохо.

    Это также хорошее время для проверки остальных компонентов шкафа переменного тока. Есть ли на контакторе следы ожогов или точечной коррозии? Пробка компрессора в хорошем состоянии?

    Шаг 6. Проверьте номинал конденсатора

    Внимательно посмотрите на конденсатор.Вот пример, показывающий этикетку. Сбоку на нем должна быть этикетка, на которой будет рассказано все, что вам нужно знать о нем. Кроме того, предоставив нам вашу модель и серийный номер, мы можем помочь вам найти подходящий конденсатор для вашего кондиционера. Помните, из того, что мы видели выше; нас интересуют два рейтинга:

    1. Рабочее напряжение
    2. Емкость
    Рабочее напряжение

    Обычно это печатается в верхней части этикетки, а после нее идут буквы VAC.Вы можете увидеть текст, похожий на «370VAC» или «440VAC».

    Номинальная емкость

    Обычно он печатается под номинальным напряжением и имеет после него буквы мкФ или мкФ. Вы можете увидеть текст, похожий на «50uF» или «40 + 5MFD».

    Шаг 7. Снимите старый конденсатор

    Сначала сфотографируйте старый конденсатор на месте. Это поможет вам позже, когда вы вставите новую. Разъемов должно быть три — HERM, вентилятор и С.Важно, чтобы, когда вы снова вставляете новый конденсатор, вы подключаете его таким же образом.

    ПРЕДУПРЕЖДЕНИЕ О БЕЗОПАСНОСТИ: Не прикасайтесь к клеммам конденсатора, так как он все еще может удерживать заряд.

    После того, как вы сфотографировали разъемы, осторожно отключите их. Отсоединенные провода следует отложить в сторону, чтобы они не мешали.
    Конденсатор должен легко сниматься. Обычно для их удаления требуется всего один или два винта, а некоторые из них являются защелкивающимися.Если винты удерживают конденсатор, убедитесь, что вы храните их в безопасном месте.

    Шаг 8: Установите новый конденсатор

    Один за другим присоедините провода, как на старом конденсаторе. Убедитесь, что правильные провода идут к разъемам HERM, вентилятора и C. Перед тем, как продолжить, проверьте их правильность.

    Как только вы убедитесь, что у вас есть подходящие разъемы в нужном месте, пора снова установить конденсатор. Возьмите ранее снятые винты и установите конденсатор, приложив твердое усилие.Будьте осторожны, чтобы не повредить винты при установке.

    Если для установки конденсатора не используются винты, он должен просто снова встать на место.

    Шаг 9: Закройте и закрепите панель доступа

    Не забудьте ввернуть все винты, которые могли удерживать дверь закрытой. Панель с открытым доступом может быть опасной и должна быть закрыта должным образом.

    Шаг 10: Включите блок переменного тока и проверьте

    Пришло время вернуть все обратно.Если вы отключили прерыватель или нажали на него, подключите его снова. Если ваш блок переменного тока является вставным, снова вставьте вилку в розетку и включите ее.

    Как только все вернется на свои места, вы можете включить кондиционер, как обычно, и посмотреть, работает ли он.

    Шаг 11: Тестирование

    Тестирование так же просто, как включение блока переменного тока и установка его на охлаждение.

    Вы не должны слышать гудение или щелчки, а компрессор и двигатель вентилятора должны запускаться легко.Если эти два компонента все еще не запускаются, возможно, они были безвозвратно повреждены из-за неисправного конденсатора, который только что был заменен.

    Вы должны увидеть заметную разницу. Теперь все должно работать должным образом, и ваша комната должна начать охлаждаться.

    Простая замена конденсатора переменного тока

    Итак, теперь, когда вы получили эту новую способность ремонтировать свой собственный блок переменного тока, что еще осталось? Что ж, для начала вам нужно хорошее и надежное место для замены неисправного конденсатора переменного тока.

    К счастью, это действительно просто. Вы можете связаться с нашими специалистами по запасным частям или позвонить нам напрямую, чтобы поговорить с дружелюбным техником. Мы поможем вам определить, какой конденсатор вам нужен, исходя из вашей марки и модели или номинала конденсатора.

    .

    About Author


    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован.