Онлайн расчетное сопротивление грунта: Расчетное сопротивление грунта – Несущая способность

Расчет фундамента - презентация онлайн

1. Практика 5. Расчет фундамента

Преподаватель
Юдина Евгения Васильевна
Практика 5. Расчет фундамента
Отдельно стоящий фундамент
на естественном основании

2. Фундаменты

Виды фундаментов:
• Отдельно стоящие
– На естественном основании
– На сваях
• Общая плита/лента
– На естественном основании
– На сваях

3. Фундаменты

Для определения вида фундамента
исходим из максимального размера
фундамента под отдельно стоящую
колонну.
Зазор между фундаментами 100 мм

4. Фундаменты

Пример:

5. Фундаменты

Пример:
• Максимальные размеры сторон одного
фундамента под одну колонну должны
составлять
6 000-100 = 5 900 мм
7 000-100 = 6900 мм,
где 100 мм – зазор между фундаментами в плане
6 000 и 7 000 – шаг колонн
• Площадь подошвы фундамента будет:
Aф = 5,9 * 6,9 м = 40,71 м2

6. Фундаменты

Напряжение под подошвой
фундамента, возникающее от здания не
должно превышать расчетного
сопротивления грунта

7.

Фундаменты

8. Фундаменты

9. Фундаменты

Пример:

10. Фундаменты

Если основание фундамента не
удовлетворяет требованиям по несущей
способности грунта, то:
1. использовать сваи (сваи выполняются
буронабивные глубиной до 100 м, в
зависимости от физико-механических
характеристик грунта )
2. заглубить подошву фундамента до слоя
грунта способного нести данную нагрузку от
колонны
3. выполнить общую фундаментную плиту под
здание

11. Фундаменты

• СП 22.13330.2016 Основания зданий и
сооружений. Актуализированная редакция
СНиП 2.02.01-83*
• СП 24.13330.2011 Свайные фундаменты.
Актуализированная редакция СНиП 2.02.0385 (с Опечаткой, с Изменением N 1)
• СП 70.13330.2012 Несущие и ограждающие
конструкции. Актуализированная редакция
СНиП 3.03.01-87 (с Изменениями N 1, 3)

12. Фундаменты

13. Фундамент. Расчеты

1. Определение геометрических
размеров фундамента:
– Глубина заложения
– Размер подошвы фундамента
2.
Расчет фундамента по материалу:
– Расчет площади арматуры фундамента
– Расчет на продавливание
– Расчет прочности фундамента на
действие поперечной силы

14. Фундаменты

Итог расчета фундаментов:
– Глубина заложения фундамента (высота)
– Размер подошвы фундамента (ширина,
длина, толщина)
– Армирование фундамента
– Схемы расположения фундаментов (планы
и разрезы)

15. Фундаменты

Арматурная сетка

16. Фундаменты

Схема фундамента

17. Фундамент. Глубина заложения d1

• Минимальная глубина заложения не менее
0,5 м от поверхности планировки
• При наличии сезонного промерзания грунта и
близкого расположения грунтовых вод к
поверхности земли: не менее глубины
промерзания грунта df
• При наличии подвала, каналов и т.п.: ниже
пола не менее чем на 40 см

18. Фундамент. Глубина промерзания

Глубина промерзания грунта
определяется по формуле 5.4 СП
22.13330. 2016 :

19. Фундамент. Глубина промерзания

kh определяется по таблице 5.2
СП 22.13330.2016

20. Фундамент. Глубина промерзания

Нормативная глубина промерзания
грунта dfn определяется:
• Справочники по Основаниям и
фундаментам
• Формула 5.3 СП 22.13330.2016
• Из отчетов геологических изысканий

21. Фундамент. Размеры подошвы

22. Фундамент. Размеры подошвы

1. Определяем приближенное
значение площади подошвы
фундамента:

23. Фундамент. Размеры подошвы

Нагрузка на верхнем обрезе
фундамента от колонны Nser :
•Nser = Nn (нормативная нагрузка)
или
•Nser = N/1,2 (расчетная нагрузка)

24. Фундамент. Размеры подошвы

R – расчетное сопротивление грунта
устанавливаем по таблицам
Приложения Б СП 22.13330.2016

25. Фундамент. Размеры подошвы

2. Назначаем размеры фундамента af и bf
3. Проверяем достаточность площади
фундамента по уточненному
сопротивлению грунта:

26.

Фундамент. Размеры подошвы3.1 Определяем механические
характеристики грунтов (удельное
сцепление и угол внутреннего трения)
по таблицам Приложения А СП
22.13330.2016

27. Фундамент. Размеры подошвы

3.2 Уточняем расчетное сопротивление
грунта R по формуле 5.7

28. Фундамент. Размеры подошвы

4. Уточняем требуемые размеры
подошвы фундамента
5. Окончательно принимаем размеры
подошвы фундамента

29. Фундамент. Расчет по материалу

1. Расчет площади арматуры
фундамента
2. Расчет на продавливание
3. Расчет прочности фундамента на
действие поперечной силы

30. Фундамент. Площадь арматуры

31. Фундамент. Расчет по материалу

1.1 Задаем характеристики материалов:
– Класс бетона по прочности (Сопротивление
бетону на сжатие)
– Класс продольной арматуры
(Сопротивления растяжению и сжатию
арматуры)

32. Фундамент. Расчет по материалу

1.2 Задаемся величиной а – расстояние
от крайнего растянутого волокна бетона
до центра тяжести арматуры (3-5 см)
1. 3 Определяем рабочую высоту бетона:

33. Фундамент. Площадь арматуры

34. Фундамент. Площадь арматуры

1.4 Площадь арматуры определяется для
двух моментов и выбирается
наибольшая (ставят с шагом 100 или
200 мм)

35. Фундамент. Расчет на продавливание

36. Фундамент. Расчет на продавливание

2.1 Условие прочности на продавливание:

37. Фундамент. Расчет на продавливание

2.2 Сосредоточенная сила от внешней
нагрузки:
2.3 Давление под подошвой
фундамента:

38. Фундамент. Расчет на продавливание

- площадь подошвы фундамента
- размеры основания контура
расчетных поперечных сечений

39. Фундамент. Расчет на продавливание

2.4 Условие прочности на продавливание:
- расчетное сопротивление бетона
растяжению
- площадь боковой поверхности
расчетного поперечного сечения

40. Фундамент. Расчет на продавливание

2.5 Площадь боковой поверхности
расчетного поперечного сечения:

41.

Фундамент. Расчет на продавливание2.6 Периметр контура расчетных
поперечных сечений:
-размеры основания контура
расчетных поперечных сечений

42. Фундамент. Расчет на продавливание

2.7 Приведенная рабочая высота
сечения:
-рабочая высота сечения для
продольной арматуры в направлении
осей X и Y

43. Фундамент. Расчет на продавливание

44. Фундамент. Расчет на поперечную силу

3. Расчет прочности нижней ступени
фундамента (сечение 2-2)

45. Фундамент. Расчет на поперечную силу

4 Расчёт свайных фундаментов.

Расчет свайных фундаментов и их оснований производится по двум группам предельных состояний.

По первой группе определяют несущую способность сваи по грунту, прочность материалов свай и ростверков. По второй группе предельных состояний рассчитываются осадки оснований фундаментов.

4.1 Расчёт свайного фундамента под колонну

Определим длину сваи:

lсв=l0+∑lгр+lн.сл=0,1+9,9+1=11 м

Принимаем сваю – С-11.3, m=0,22т/м.

По таблице СНиП подбираемR при глубине погружения свай 12,4м– R=3895 кПа

Рисунок 5 – Расчетная схема к определению несущей способности сваи под фундамент стаканного типа

При погружении свай забивкой молотом

Несущую способность сваи определяется по формуле (21) как сумма расчётных сопротивлений грунтов оснований под нижним концом сваи и на её боковой поверхности:

(21)

где -коэффициент условий работы сваи в грунте, принимаемый=1

R-расчётное сопротивление грунта под нижним концом сваи, кПа.

А - площадь опирания на грунт сваи,м.

u – наружный периметр поперечного сечения сваи,м.

fi – расчётное сопротивление итого слоя грунта основания на боковой поверхности сваи, кПа.

hi – толщина итого слоя грунта соприкасающегося с боковой поверхностью сваи, м.

-коэффициенты условий работы грунта соответственно под нижним концом и на боковой поверхности сваи, учитывающие влияние способа погружения сваи на расчётные сопротивления грунта и принимаемые по [2].

Первые два слоя плохие, поэтому при расчете несущей способности мы их не учитываем. Остается 3-й слой глубиной 1м. Для данного слоя определим расчетное сопротивление по боковой поверхности сваи:

МПа; м

Несущая способность свай под колону будет равна

Расчётная нагрузка, допускаемая на одну сваю, определяется по формуле:

(22)

где - коэффициент надежности, принимаемый 1,4.

Запроектируем ростверк таким образом, чтобы размеры в плане были кратны 30см, а высота 15см. Конструктивно принимаем размеры в соответствии с размерами плиты фундамента мелкого заложения b=1,8м, l=2,4м, а высоту плиты примем равной 0,6м.

Необходимое количество свай в грунте определяется по формуле

(24)

где N1 – расчётная нагрузка по обрезу ростверка;

G – ориентировочный расчётный вес ростверка и грунта на его обрезах;

G=3,888∙25+2,592·16,25=97,2+42,12=139,32кН;

;

Принимаем количество свай под стакан – 6, и распологаем их следующим образом (см. рисунок), с шагом 0,9м.

Определяем фактическую нагрузку, приходящуюся на сваю, которая должна быть меньше допустимой

Рисунок 6 - Схема условного фундамента при расчете свайного фундамента под колонну

(25)

где - коэффициент надёжности по нагрузке, принимаем 1,1;

Давление по подошве условного фундамента от расчётных нагрузок не должно превышать расчётного давления на грунт.

Выполнение условия, для каждой сваи не означает, что основание свай будет работать надежно. С целью проверки прочности основания свайный фундамент рассматривают как условный массивный фундамент.

Осредненное расчетное значение угла внутреннего трения:

bусл=0,9+0,3+2∙0,085=1,37

аусл==2,27 м

Проверку прочности куста свай проводим по формуле:

(26)

где NII- сумма вертикальных расчётных нагрузок в уровне нижних концов свай;

NII=NdII+Gc+Gp+Gгр

Ndll=1400 – вертикальная расчётная нагрузка на фундамент, кН;

Gc=(0,22∙11+0,05)∙6∙10=148,2кН– вес свай;

Gp=3,888∙25=97,2кН– вес ростверка;

Прежде чем найти напряжение от собственного веса грунта в уровне подошвы фундамента определим удельный вес грунта третьего(суглинок тугопластичный) слоя с учетом взвешивающего веса воды:

кН/м3

А также средний удельный вес грунтов, лежащих выше уровня подошвы:

кН/м3

Gгр=(12,4·3,11 – 3,888)∙16,04=556,2кН– вес грунта;

NII=1220+148,2+97,2+556,2=2021,6кН

МII– расчётная величина момента действующего на фундамент, кН∙м;

МII=320+20∙1,5=350кНм

R – расчётное сопротивление грунта основания условного массива, кПа, определяемое как для фундамента с геометрическими размерами, равными размерам условного массива грунта.

Найдем значения коэффициентов:gс1=1,2; gс2=1; Mg=0,462; Мq=2,848; Мс=5,446, d1=12,4м, db=0.

Условие не соблюдается. Значит необходимо увеличить шаг свай. То есть запроектируем ростверк с большими размерами которые при шаге 0,4d=1,2м и минимальном свесе ростверка 0,3м будут равны b=1,8м, l=3м (см. рисунок).

Тогда:

G=4,536∙25+3,564·16,25=113,4+57,92=171,32кН;

С целью проверки прочности основания свайный фундамент рассматриваем как условный массивный фундамент.

bусл=1,2+0,3+2∙0,085=1,67

аусл==2,87 м

NII=NdII+Gc+Gp+Gгр

Gc=(0,22∙11+0,05)∙6∙10=148,2кН– вес свай;

Gp=4,536∙25=113,4кН– вес ростверка;

Gгр=(12,4·4,79 – 4,54)∙16,04=879,89кН– вес грунта;

NII=1220+148,2+113,4+879,89=2361,49кН

- условие выполняется.

Расчет нагрузки на столбчатый фундамент калькулятор. Онлайн калькулятор расчета буронабивных свайно-ростверковых и столбчатых фундаментов

Инструкция

Цель расчета - вычислить, какой величины груз будет действовать на столбы и узнать суммарную площадь опор. Общая нагрузка - это вес всего здания со всем находящимся внутри него: мебелью, бытовой техникой, жильцами. Точный вес найти довольно сложно, но это и не требуется. Достаточно вычислить приблизительную цифру, так как в расчет опорной площади закладывается коэффициент дополнительной, непредвиденной нагрузки.

Основной показатель, от которого зависят остальные выводы - это несущая способность грунта. Чем он ниже, тем большей площади должна быть основа для дома. Несущая способность грунта, в свою очередь, зависит от следующих характеристик:
- тип почвы на строительной площадке;
- степень ее плотности;
- насыщенность влагой;

Столбчатый фундамент обойдется в 1,5-2 раза дешевле монолитной ленты. Это же можно отнести к трудозатратам и расходу материалов. Опоры выставляются по всем угловым точкам и между ними на расстоянии 1,5-2,5 м друг от друга. Для устойчивости фундамента поверх столбов возводится обвязка. Большое значение для выбора сечения опоры имеет материал, из которого она изготовлена.

Для бетонных или бутобетонных столбов достаточно 40 см толщины, для каменных - 60 см, для кирпичных - 35-38 см. Такой вид столбчатого фундамента, как свайный забивной, в частном строительстве используется редко, в основном опоры либо изготавливаются самостоятельно, либо покупаются за заводах. Самодельные столбы усиливаются арматурными прутками сечением 10 мм. Опоры могут быть как прямоугольной формы, так и с уширением.

Расчет допустимого сечения столба - прерогатива специальных программ, так как в них закладывается большое количество коэффициентов. Это сопротивляемость грунта, боковое давление на опору, коэффициент максимального напряжения в почве под подошвой фундамента, максимальная ордината давления опоры и много других. Для частного застройщика проще выбрать для себя тип столба, который он будет устанавливать, и произвести расчет количества опор, которые смогут максимально эффективно выдерживать вес здания.

Допустим, выбраны параметры опоры: сечение 40/40 с уширением 80 см. Сначала требуется высчитать общую нагрузку, которая будет действовать на грунт (вес здания и всего, в нем находящегося) - М. Нагрузка на опоры должна превосходить вес здания на 1,5. Поэтому М*1,5. К этим данным следует прибавить вес одного столба. Таким образом, получим цифру, означающую нагрузку фундамента (вместе с постройкой) на грунт. Далее, высчитывается несущая способность одной опоры исходя из заданных параметров: сечение 40/40. Этот показатель определяется исходя из коэффициентов несущей способности грунта на строительной площадке. Для того, чтобы его найти, следует определиться с типом почвы.

Далее, высчитывается опорная поверхность одного столба: 80*80=6400 см2. После чего обращаем внимание на найденный ранее показатель несущей способности грунта. Если он соответствует 1,5, то расчет таков: 6400см"1,5=9600 см2. так находим предельную нагрузку основания на грунт. Эта величина должна быть больше ранее найденной цифры суммарной нагрузки. Осталось разделить эту цифру на найденный показатель несущей способности одной опоры и получить расчет точного количества требуемых к установке столбов.

» мы говорили о том, что нужно учитывать при расчете основания, независимо от того, какой конкретно объект предполагается на нем возводить. Сегодня же мы постараемся подробно описать процесс расчета столбчатого фундамента. Воспользовавшись представленной информацией, вы сможете без труда своими руками учесть все нюансы и определиться с оптимальным выбором столбчатого основания, в том числе, прикинуть предстоящие расходы на строительство дома.

Оцениваем нагрузку от дома

Если вы самостоятельно решаете вопросы строительства загородного дома, то уже на этапе проектирования постройки знаете, из каких строительных материалов будете возводить здание. А это значит, что уже сейчас можно оценить вес надземной части постройки, просуммировав нагрузки от всех конструкций здания и добавив к ним сезонные нагрузки, а также нагрузки от объектов, которые впоследствии будут размещены внутри сооружения.

Исходя из полученных данных, оцениваются размеры железобетонной обвязки – высокого ростверка, который послужит рамой, равномерно распределяющей нагрузки на все опоры. Он же будет при необходимости передавать неравномерную деформационную нагрузку от столбчатого фундамента. Рассчитывается объем обвязки и ее массу при условии, что средний объемный вес железобетона равен 2400 кг/м3.

Суммируем все вышеперечисленные нагрузки F (по сути, проводим ), и остается только определиться с характером грунта и общим количеством опор.

Оцениваем характер грунта

Если расчет столбчатого фундамента осуществляется своими силами, то проведение лабораторных исследований показателей грунта не предполагается. Поэтому пойдем по бюджетному пути – будем проводить оценку на глаз. Для этого на месте предполагаемого строительства дома выкапываем шурф (яму) глубиной ниже глубины промерзания грунта (ГПГ). ГПГ можно узнать в справочном пособии или в статье, о которой мы говорили в самом начале повествования. Предположим, что ГПГ составляет 1,5 м. Выкапываем шурф глубиной 1,8 м. и отбираем пробы грунта и пытаемся скатать из него небольшой шарик. Оцениваем характер грунта следующим образом:

  • если шарик не скатывается, и вы визуально определили песчаный слой дна шурфа, то в зависимости от крупности песка, расчетное сопротивление грунта (далее – R) принимает значение от 2 (для очень мелкого, пылеватого) до 3 (для среднего) и 4,5 (для крупного песка)*;
  • если шарик рассыпается при сдавливании, велика вероятность, что грунт – супесь (R=3)*;
  • если шарик при сдавливании не рассыпается и по краям лепешки не образуются трещины, то перед нами глина (R=3-6)*;
  • шарик из грунта не рассыпается при сдавливании, но по краям образуются трещины, грунт – суглинок (R=2-4)*

*Значение R зависит также от влажности грунта и коэффициента пористости. Ориентировочные значения расчетного сопротивления грунта представлены в таблице ниже. Следует учитывать, что представленные значения актуальны при заглублении фундамента на 1,5…2 метра. Если же вы планируете возводить мелкозаглубленный фундамент, то расчетное сопротивление грунта будет уже другим: R=0,005R0(100+h/3), где R0-табличная величина, h – глубина (см), на которую планируется закладывать фундамент.

Итак, получили значение R. Определяем параметры и количество опор-столбов.

Расчет количества опор столбчатого фундамента

Количество столбов во многом зависит от площади основания каждого из них. Предположим, что вы выбрали к установке буронабивные сваи диаметром 300 мм. с расширением в нижней части (башмаком) в 500 мм (50 см). Площадь подошвы каждой опоры S будет равна pi×D2/4= 3,14×50×50/4=1960 см2.
Предположим, что нагрузка F = 100000 кг, R=4, тогда необходимо решить простое уравнение с одной неизвестной типа: R=F/(S×n), где n – количество опор. В нашем случае получаем n = 13 шт. Но ведь сами опоры также будут оказывать воздействие на грунт, поэтому их также необходимо включить в нагрузку. Проводим поправочные вычисления. Пусть длина столба составляет 2 м, диаметр оставляем тем же – 0,3 м. Объем одной опоры составит: 2×3,14×0,3×0,3/4=0,14 м3. Принятый средний объемный вес железобетона равен 2400 кг/м3, тогда масса одной опоры составит: 0,14×2400=336 кг (340 кг). Тогда масса 13 опор составит, соответственно, 4500 кг. Умножаем эту величину на коэффициент надежности 1,3, суммируем с F и подставляем в уравнение выше: 4=105850/(1960n). n=14 – количество опор, которые потребуется установить в нашем случае. Перед строительством столбчатого основания советуем ознакомиться с информацией по армированию железобетонных опор, которая представлена в

Онлайн калькулятор монолитного буронабивного свайного и столбчатого ростверкого фундамента предназначен для расчетов размеров, опалубки, количества и диаметра арматуры и объема бетона, необходимого для обустройства данного типа фундамента. Для определения подходящего типа, обязательно обратитесь к специалистам.

Все расчеты выполняются в соответствии со СНиП 52-01-2003 «Бетонные и железобетонные конструкции», СНиП 3.03.01-87 и ГОСТ Р 52086-2003

С вайный либо столбчатый фундамент – тип фундамента, в котором сваи либо столбы находятся непосредственно в самом грунте, на необходимой глубине, а их вершины связаны между собой монолитной железобетонной лентой (ростверком), находящейся на определенном расстоянии от земли. Главным отличием между столбчатым и свайным фундаментом является разная глубина установки опор.

О сновными условиями для выбора такого фундамента является наличие слабых, растительных и пучинистых грунтов, а так же большая глубина промерзания. В последнем случаем и при возможности забивания свай при любых погодных условиях, такой вид очень актуален в районах с суровым климатом. Так же к основным преимуществам можно отнести высокую скорость постройки и минимальное количество земляных работ, так как достаточно пробурить необходимое количество отверстий, либо вбить уже готовые сваи с использованием специальной техники.

С уществует различное множество вариаций данного типа фундамента, таких как геометрическая форма свай, материалы для их изготовления, механизм действия на грунт, методы установки и виды ростверка. В каждом индивидуальном случае необходимо выбирать свой вариант с учетом характеристик грунта, расчетных нагрузок, климатических и других условий. Для этого необходимо обращаться к специалистам, которые смогут произвести все необходимые замеры и расчеты. Попытки экономии и самостроя могут привести к разрушению постройки.

При заполнении данных, обратите внимание на дополнительную информацию со знаком Дополнительная информация .

Д алее представлен полный список выполняемых расчетов с кратким описанием каждого пункта. Вы так же можете задать свой вопрос, воспользовавшись формой справа.

Общие сведения по результатам расчетов

  • О бщая длина ростверка
  • - Периметр фундамента, с учетом длины внутренних перегородок.
  • П лощадь подошвы ростверка
  • - Соответствует размерам необходимой гидроизоляции.
  • П лощадь внешней боковой поверхности ростверка
  • - Соответствует площади необходимого утеплителя для внешней стороны фундамента.
  • О бщий Объем бетона для ростверка и столбов
  • - Объем бетона, необходимого для заливки всего фундамента с заданными параметрами. Так как объем заказанного бетона может незначительно отличаться от фактического, а так же вследствие уплотнения при заливке, заказывать необходимо с 10% запасом.
  • В ес бетона
  • - Указан примерный вес бетона по средней плотности.
  • Н агрузка на почву от фундамента в местах основания столбов
  • - Нагрузка на почву от веса фундамента в местах основания столбов/свай.
  • М инимальный диаметр продольных стержней арматуры
  • - Минимальный диаметр по СНиП, с учетом относительного содержания арматуры от площади сечения ленты.
  • М инимальное кол-во рядов арматуры ростверка в верхнем и нижнем поясах
  • - Минимальное количество рядов продольных стержней в каждом поясе, для предотвращения деформации ленты под действием сил сжатия и растяжения.
  • М инимальный диаметр поперечных стержней арматуры (хомутов)
  • - Минимальный диаметр поперечных и вертикальных стержней арматуры (хомутов) по СНиП.
  • М инимальное кол-во вертикальных стержней арматуры для столбов
  • - Количество вертикальных стержней арматуры на каждый столб/сваю.
  • М инимальный диаметр арматуры столбов
  • - Минимальный диаметр вертикальных стержней для столбов/свай.
  • Ш аг поперечных стержней арматуры (хомутов) для ростверка
  • - Шаг хомутов, необходимых для предотвращения сдвигов арматурного каркаса при заливке бетона.
  • В еличина нахлеста арматуры
  • - При креплении отрезков стержней внахлест.
  • О бщая длина арматуры
  • - Длина всей арматуры для вязки каркаса с учетом нахлеста.
  • О бщий вес арматуры
  • - Вес арматурного каркаса.
  • Т олщина доски опалубки
  • - Расчетная толщина досок опалубки в соответствии с ГОСТ Р 52086-2003, для заданных параметров фундамента и при заданном шаге опор.
  • К ол-во досок для опалубки
  • - Количество материала для опалубки заданного размера.

M100 | B7,5 M150 | B10 M150 | B12,5 M200 | B15 M250 | B20 M300 | B22,5 M350 | B25 M350 | B26,5 M400 | B30 M450 | B35 M550 | B40 M600 | B45 Выберите марку (класс) бетона, которую хотите получить. М100 (В7.5) Из-за низкой прочности используется в основном при подготовительных бетонных работах. Может быть использован в виде «подушки» под фундамент, бордюр, тротуарную плитку, дорожное полотно и т.п. М150 (В12.5) Бетон данной марки имеет достаточную прочность для заливки разных типов фундамента под малые сооружения. Также используется для заливки стяжек пола, укладки бетонных дорожек. М200 (В15) Одна из самых востребованных марок бетона (наравне с М300) используемых в загородном строительстве. Основное применение: заливка фундамента (столбовно-ростверкового, ленточного, плитного), изготовление бетонных дорожек, стен, лестниц. М250 (В20) Используется для заливки фундамента, малонагруженных плит перекрытий, изготовление лестниц, подпорных стен. М300 (В22.5) Наравне с М200 имеет большую популярность в частном строительстве. Данная марка бетона за счет своей универсальности позволяет использовать его для заливки фундамента под практически любой дом в загородном секторе, а также для изготовления лент заборов, плит перекрытий. М350 (В25) Основное применение: изготовление плит перекрытий, несущих стен, колон, железобетонных изделий и конструкций, отлив монолитных фундаментов. М400 (В30) Редко используется в загородном строительстве. Используется для изготовления поперечных балок, подпорных стенок, конструкций мостов и гидротехнических сооружений, заливки чаш бассейнов, цокольных этажей монолитных зданий. М450(B35) Основное применение: банковские хранилища, мостовые конструкции, метростроение, гидротехнические сооружения. М550 (В40) Основное применение: железобетонные конструкции специального назначения (хранилища банков, плотин, дамб, метростроении). М600 (В45) Основное применение: фундаментные основы для комплексных и масштабных объектов, мостовые опоры, гидротехнические сооружения, объекты особого назначения (бункеры и т.п.). http://www.gvozdem.ru

л При использовании бетономешалки укажите ее объем. Калькулятор посчитает кол-во замесов для необходимого объема бетона и кол-во составляющих смеси (цемента, песка, щебня и воды) для одного замеса. Если для замешивания вы используете любую тару вертикальной загрузки (ведро, корыто и т.п.) то укажите в литрах объем данной тары. Результаты расчета можно увидеть ниже в данном калькуляторе «Расчет для 1 замеса бетономешалки: Расчетные значения по коэф. выхода бетонной смеси».

1,1-1,8мм | мелкий песок 2-2,5мм | средний песок более 2,5 | крупный песок


Выберите тип фундаментного столба

Это могут быть столбы с круглым или прямоугольным основанием. И с круглой или прямоугольной основной частью.

Укажите размеры в миллиметрах

B - Ширина или диаметр.
H - Высота основной части.

A - Высота основания столба. Если свая без основания, то не указывайте этот размер.
D - Ширина или диаметр основания.

D1 - Длина для прямоугольного основания.
B1 - Ширина для прямоугольного столба.
При круглых сечениях эти размеры в расчете не участвуют.

Габариты столбчатого фундамента

X - Ширина фундамента.
Y - Длина фундамента.

X1 - Количество столбов по ширине, включая столбы по углам.
Y1 - Количество столбов по длине, включая столбы по углам.

S - Если отмечено, то будут рассчитываться столбы, расположенные равномерно под всем домом. Если нет, то столбы только по периметру фундамента.

Габариты ростверка

E - Ширина ростверка.
F - Высота ростверка.
Если расчет монолитного ростверка не требуется, то не указывайте эти размеры.

Арматура

ARM1 - Количество прутьев арматуры в одном столбе.
ARM2 - Количество рядов арматуры в ленте ростверка.
ARMD - Диаметр арматуры. Указывается всегда в миллиметрах.
Если армирования не требуется, то установите значения в 0.

Укажите количество цемента для изготовления одного кубического метра бетона. В килограммах.
Укажите пропорции для изготовления бетона, по весу. Эти данные различны в каждом конкретном случае.
Они зависят от марки цемента, размеров щебня и технологии строительства. Уточняйте их у поставщиков строительных материалов.

Для расчета ориентировочной стоимости строительных материалов укажите их цены.

В результате программа автоматически вычислит:
Расстояние между фундаментными столбами и их количество.
Объем бетона для одного столба, отдельно для верхней и нижней части.
Количество бетона для ростверка.
Длину и вес необходимого количества арматуры.
Стоимость строительных материалов для устройства монолитного столбчатого или свайного фундамента с ростверком.
Чертежи дадут общее представление и помогут в проектировании свайных фундаментов.

Для бань и домов без подвалов, домов с легкими стенами и домов из кирпича, где применять ленточный фундамент не экономично, часто применяется столбчатый фундамент. Его расчет дело трудоемкое, но с нашей программой подсчеты не отнимут у вас много времени. Все, что вам нужно, это заполнить согласно инструкции соответствующие поля, и вы получите сведения о необходимых для строительства материалах, узнаете их количество и общую стоимость.

Краткая характеристика

Столбчатый фундамент имеет вид столбов, которые объединены при помощи ростверка. Столбы эти располагаются по углам будущего строения, а так же на местах пересечения стен, под несущими или просто тяжелыми стенами, балками и ответственными конструкциями. В тех местах, где нагрузка особенно велика. Ростверк служит для усиления столбчатого фундамента, и имеет вид армированной перемычки между столбами.

Где не стоит применять столбчатый фундамент

Применять столбчатый фундамент не рекомендуется там, где находятся подвижные или слабые грунты, такие как торф или насыщенные водой глинистые грунты. Не стоит применять фундамент этого типа и в зонах, где наблюдается резкий перепад высот.

Преимущества

Столбчатый фундамент имеет ряд достоинств, делающих его оптимальным решением при строительстве частного дома. Он дешевле, чем ленточный или плитный фундамент, экономичнее по расходу строительных материалов и затратам на его возведение, дает меньшую усадку и позволяет сократить общую площадь фундамента. Такой фундамент эффективно противостоит разрушительному воздействию морозного пучения грунта.

Материалы

В зависимости от массы и этажности дома следует подбирать и материалы для изготовления фундамента. Это камень, кирпич, бетон и железобетон. Согласно типу материала подбирается и минимальный размер сечения столбов. Так, для бетонных столбов размер сечения не должен быть меньше 400 мм, для каменной кладки не меньше 600 мм, для кирпичной кладки 380 мм, если она выше уровня земли, и от 250 мм, если использована технология перевязки с забиркой.

Строительство фундамента

Прежде чем приступать к строительству, необходимо выяснить глубину промерзания почвы, вид и состав грунта, чтобы при необходимости устроить его замену, и уровень расположения грунтовых вод для выявления необходимости в дренаже и гидроизоляции. Строительство столбчатого фундамента протекает в 9 последовательных этапов.
1. Подготовительные работы, представляющие собой очистку строительной площадки.
2. Разметка фундамента, когда земельный участок размечается согласно проекту.
3. Рытье ям.
4. Установка опалубки для столбов.
5. Установка арматуры.
6. Заливка столбов.
7. Изготовление ростверка.
8. Постройка так называемой забирки или заграждающей стенки между столбами.
9. Меры по гидроизоляции фундамента.

Важные моменты

Если дом возводится на пучинистых грунтах, то нельзя откладывать начатое строительство. Если оставить пустующий фундамент на зиму, он может деформироваться.
Только что залитые опоры из бетона должны отстояться в течение 30 дней. В этот период нагружать их не рекомендуется.
Для изготовления бетона оптимально подойдет цемент марки М400, а в качестве наполнителя мелкий гравий и крупнозернистый песок.

Как рассчитать нагрузку на фундамент?

На чтение 5 мин Просмотров 1.2к.

При проведении строительных работ по возведению сооружений различного типа достаточно важно выполнить расчет нагрузки, оказываемой на фундамент.

Этот показатель необходим для того, чтобы спроектировать фундамент: геометрические размеры, тип, площадь подошвы и многие другие моменты. Результатом проводимого расчета становится показатель нагрузки на квадратный метр грунта.

Расчет нагрузки на фундамент

Типы нагрузок

В независимости от того, какое сооружение, оно так или иначе оказывает давление на основание грунт. В результате этого происходит проседание и последующая деформация важных несущих конструкций. Расчет оказываемого давления проводится с учетом того, какие есть их разновидности.

Различают следующие силы, которые воздействую на основание:

  1. Статическая – вес основной конструкции и многих других ее элементов определяют давление, которое появляется.
  2. Динамическая – еще один тип нагрузки, которую также учитывают при расчете. Возникает дополнительное давление на основаниепри различных колебаний, которые возникают по причине работы различных устройств.

При умеренном климате следует учитывать и нагрузку, которая возникает при выпадении большого количества осадков. Примером назовем снег на крыше – он может создавать сильное давление на основание.

Еще при выполнении расчетов следует учитывать давление, которое оказывается предметами в доме. Этот показатель также следует учитывать.

Совокупность этих показателей и определяет то, какое давление будет оказываться на фундамент.

Есть довольно много формул расчета оказываемой нагрузки на дно. Зачастую при расчете требуется следующая информация:

  1. Глубина залегания грунтовых вод и тип почвы.
  2. Регион, в котором проводятся строительные работы.
  3. Планировка зданий, тип кровли и используемого материала при создании стен, этажность.
  4. Материалы, из которых изготавливаются важные элементы конструкции.

Примером можно назвать следующие входные данные:

  • Здание одноэтажное.
  • При возведении несущих конструкций используют полнотелый кирпич, толщина которых составляет 40 см.
  • Габариты дома составляют 10 на 8 метров.
  • Перекрытие подвала представлено железобетонными плитами.
  • Перекрытие первого этажа представлено железобетонными балками, поверх которых укладываются деревянные доски.
  • Крыша представлена двускатной конструкцией. Материал представлен металлочерепицей, уклон составляет 25 градусов.
  • Тип грунта суглинки, пористость которых составляет 0,5
  • Предполагается создать фундамент из мелкозернистого фундамента, толщина будет равна толщине стен.

Рассчитывается несколько показателей. Примером можно назвать определение площади основания. Она определяется с учетом несущей способности грунта.

Формула расчета

Сама формула, по которой определяется площадь основания, выглядит следующим образом:

S > Уn · F / (Уc · R0)

В данной формуле используется коэффициент условий работ (Уc), а также коэффициент надежности (Уn), который в данном случае 1,2. Важным показателем можно назвать нагрузку (F), представленная сочетанием показателей веса дома и веса фундамента, а также других нагрузок.

В формуле R0указывает расчетное сопротивление грунта под основанием фундамента. Кроме учитывается площадь основания, которая обозначается буквой S.

При использовании данной формулы получают расчетный показатель площади основания, которого должно быть достаточно. На практике берется большее значение для обеспечения запаса прочности. Вся необходимая информация, касающаяся табличных данных, берется их таблиц. Примером назовем коэффициент условной работы, который зависит от типа грунта.

Вес конструкции зависит от площади конструкции, а также плотности используемого материала. Зная площадь основания и плотность, к примеру, используемого бетона, вычисляется оказываемое давление.

Глубина залегания зависит от уровня залегания грунтовых вод и промерзания почвы. При этом для каждого типа фундамента показатель глубины залегания существенно отличается.

Расчет нагрузки на грунт представляет собой сочетание нескольких показателей:

  1. Давление, оказываемое стенами. Рассчитывается она путем перемножения показателя объема стен и удельного веса, который берется из таблицы. Полученный результат делят на длину всех сторон периметра и умножают на показатель толщины.
  2. Стоит учитывать тот момент, что на грунт оказывает влияние и вес фундамента. Он представлен произведением объема конструкции на удельную плотность. Для того чтобы рассчитать нагрузку на один квадратный метр грунта, следует разделить полученный результат на площадь основания.
  3. Кровля также оказывает давление на основание. Провести расчет этого показателя достаточно сложно, так как давление распределяется между сторонами фундамента, на которые опираются стропила. В случае двускатной крыши это обычно две противоположные стороны. Оказываемое давление определяется следующим образом: проекция крыши, которая отнесена к площади нагруженной стороны фундамента, умножается на удельный показатель веса материала.
  4. При проведении расчетов учитывается и нагрузка, которая оказывается снегом. Площадь снежного покрова зависит от площади кровли. Оказываемое воздействие заключается в делении площади снежного покрова на площадь нагруженных сторон фундамента, после чего результат умножается на удельную снеговую нагрузку.

В целом расчеты довольно сложны и точно существенно теряется в случае выбора коэффициентов. Также не стоит забывать о допущении математических ошибок. Именно поэтому следует использовать онлайн-калькуляторы, которые в последнее время пользуются большой популярностью.

Онлайн калькулятор нагрузки

Рассчитать рассматриваемый показатель можно путем использования специальных онлайн-калькуляторов. Примером можно назвать сервис: http://prostobuild.ru/onlainraschet/204-raschet-nagruzki-na-fundament.html или http://www.gvozdem.ru/stroim-dom/kalkulyatory/sbor-nagruzok-na-fundament.php.

Особенностями второго онлайн-калькулятора назовем следующие моменты:

  1. Программа учитывает планировку сооружения и тип используемых материалов при строительстве.
  2. Рассматриваются все нагрузки, который оказываются на основание. Данный онлайн-калькулятор позволяет рассчитывать нагрузку стен, кровли, отделочных и других материалов.

На рассматриваемом сервисе есть поля, в которых указывается важная информация, а также таблицы с важной информацией, нужные формулы и многое другое.

Советы по расчетам

Вышеприведенная информация определяет то, что расчеты довольно сложны. При получении не круглых чисел рекомендуется брать значения с запасом, так как нужно создавать фундамент с запасом.

Также после появления онлайн-калькулятора не рекомендуется вычислять нужные показатели самостоятельно по формулам, так как подобным образом можно избежать погрешностей и других проблем.

В заключение отметим, что все строительные работы по возведению сооружений и созданию оснований предусматривают выполнение расчетов. Если этого не проводить, то есть вероятность сильной просадки, что станет причиной повреждения несущих и других конструкций.

Несущая способность | Расчёты - Гравитационная стена | GEO5

Несущая способность

class="h2">

В рамке «Несущая способность» отображены результаты расчёта несущей способности грунта основания. Напряжение в подошве рассчитано на основе всех анализов выполненных в рамке «Проверка». В программу «Отдельные фундаменты»и «Отдельные фундаменты CPT» анализы будут переданы как сочетания нагрузок.

Ограничение на рис. 4-4, на стр. 73 руководства NCMA программа не контролирует. Программа автоматически проверяет соответствие задания грунта основания принципам конструирования.

Рамка предлагает следующие опции расчётов:

  • Ввести несущую способность грунта основания

В вводное поле вводят несущую способность грунта основания. Результаты анализа стены на эксцентриситет и несущую способность грунта основания отображены в правой части рамки. Кнопка «Подробно» открывает диалоговое окно с детальной выпиской результатов анализа несущей способности грунта.

  • Рассчитать несущую способность грунта основания в программе «Отдельные фундаменты»

Кнопкой «Запуск программы Отдельные фундаменты» запустить программу «Отдельные фундаменты», в которой можно рассчитать несущую способность грунта основания, или осадку и поворот фундамента. После выполнения расчётов нажать кнопку «OK» - результаты в т.ч. заданные изображения будут переданы в протокол расчёта программы «Стена Redi-Rock». Если не установлена программа «Отдельные фундаменты», то кнопка недоступна. Задают общую длину фундамента стены.

  • Рассчитать несущую способность грунта основания в программе «Отдельные фундаменты CPT»

Процедура расчёта идентична расчёту несущей способности грунта основания с помощью программы «Отдельные фундаменты».

  • Не проводить расчёт (фундамент на сваях)

Не производится расчёт несущей способности грунта основания.

Программа позволяет задать форму напряжения в грунте основания.

Стиль рисунка можно менять в диалоговом окне «Настройка рисования».

Рамка «Несущая способность»

Онлайн-помощь помощь на 📝 экзамене по механике грунтов механика грунтов

1. Сколько стоит помощь?

Цена, как известно, зависит от объёма, сложности и срочности. Особенностью «Всё сдал!» является то, что все заказчики работают со экспертами напрямую (без посредников). Поэтому цены в 2-3 раза ниже.

2. Каковы сроки?

Специалистам под силу выполнить как срочный заказ, так и сложный, требующий существенных временных затрат. Для каждой работы определяются оптимальные сроки. Например, помощь с курсовой работой – 5-7 дней. Сообщите нам ваши сроки, и мы выполним работу не позднее указанной даты. P.S.: наши эксперты всегда стараются выполнить работу раньше срока.

3. Выполняете ли вы срочные заказы?

Да, у нас большой опыт выполнения срочных заказов.

4. Если потребуется доработка или дополнительная консультация, это бесплатно?

Да, доработки и консультации в рамках заказа бесплатны, и выполняются в максимально короткие сроки.

5. Я разместил заказ. Могу ли я не платить, если меня не устроит стоимость?

Да, конечно - оценка стоимости бесплатна и ни к чему вас не обязывает.

6. Каким способом можно произвести оплату?

Работу можно оплатить множеством способом: картой Visa / MasterCard, с баланса мобильного, в терминале, в салонах Евросеть / Связной, через Сбербанк и т.д.

7. Предоставляете ли вы гарантии на услуги?

На все виды услуг мы даем гарантию. Если эксперт не справится — мы вернём 100% суммы.

8. Какой у вас режим работы?

Мы принимаем заявки 7 дней в неделю, 24 часа в сутки.

Расчет нагрузки на фундамент - Самая лучшая система расчета нагрузки

Расчет нагрузки на фундамент необходим для правильного выбора его геометрических размеров и площади подошвы фундамента. В конечном итоге, от правильного расчета фундамента зависит прочность и долговечность всего здания. Расчет сводится к определению нагрузки на квадратный метр грунта и сравнению его с допустимыми значениями.

Для расчета необходимо знать:

  • Регион, в котором строится здание;
  • Тип почвы и глубину залегания грунтовых вод;
  • Материал, из которого будут выполнены конструктивные элементы здания;
  • Планировку здания, этажность, тип кровли.

Исходя из требуемых данных, расчет фундамента или его окончательная проверка производится после проектирования строения.

Попробуем рассчитать нагрузку на фундамент для одноэтажного дома, выполненного из полнотелого кирпича сплошной кладки, с толщиной стен 40 см. Габариты дома – 10х8 метров. Перекрытие подвального помещения – железобетонные плиты, перекрытие 1 этажа – деревянное по стальным балкам. Крыша двускатная, покрытая металлочерепицей, с уклоном 25 градусов. Регион – Подмосковье, тип грунта – влажные суглинки с коэффициентом пористости 0,5. Фундамент выполняется из мелкозернистого бетона, толщина стенки фундамента для расчета равна толщине стены.

Определение глубины заложения фундамента

Глубина заложения зависит от глубины промерзания и типа грунта. В таблице приведены справочные величины глубины промерзания грунта в различных регионах.

Таблица 1 – Справочные данные о глубине промерзания грунта

Справочная таблица для определения глубины заложения фундамента по регионам

Глубина заложения фундамента в общем случае должна быть больше глубины промерзания, но есть исключения, обусловленные типом грунта, они указаны в таблице 2.

Таблица 2 – Зависимость глубины заложения фундамента от типа грунта

Зависимость глубины заложения фундамента от типа грунта

Глубина заложения фундамента необходима для последующего расчета нагрузки на почву и определения его размеров.

Определяем глубину промерзания грунта по таблице 1. Для Москвы она составляет 140 см. По таблице 2 находим тип почвы – суглинки. Глубина заложения должна быть не менее расчетной глубины промерзания. Исходя из этого глубина заложения фундамента для дома выбирается 1,4 метра.

Расчет нагрузки кровли

Нагрузка кровли распределяется между теми сторонами фундамента, на которые через стены опирается стропильная система. Для обычной двускатной крыши это обычно две противоположные стороны фундамента, для четырехскатной – все четыре стороны. Распределенная нагрузка кровли определяется по площади проекции крыши, отнесенной к площади нагруженных сторон фундамента, и умноженной на удельный вес материала.

Таблица 3 – Удельный вес разных видов кровли

Справочная таблица – Удельный вес разных видов кровли

  1. Определяем площадь проекции кровли. Габариты дома – 10х8 метров, площадь проекции двускатной крыши равна площади дома: 10·8=80 м2.
  2. Длина фундамента равна сумме двух длинных его сторон, так как двускатная крыша опирается на две длинные противоположные стороны. Поэтому длину нагруженного фундамента определяем как 10·2=20 м.
  3. Площадь нагруженного кровлей фундамента толщиной 0,4 м: 20·0,4=8 м2.
  4. Тип покрытия – металлочерепица, угол уклона – 25 градусов, значит расчетная нагрузка по таблице 3 равна 30 кг/м2.
  5. Нагрузка кровли на фундамент равна 80/8·30 = 300 кг/м2.

Расчет снеговой нагрузки

Снеговая нагрузка передается на фундамент через кровлю и стены, поэтому нагружены оказываются те же стороны фундамента, что и при расчете крыши. Вычисляется площадь снежного покрова, равная площади крыши. Полученное значение делят на площадь нагруженных сторон фундамента и умножают на удельную снеговую нагрузку, определенную по карте.

Таблица – расчет снеговой нагрузки на фундамент

  1. Длина ската для крыши с уклоном в 25 градусов равна (8/2)/cos25° = 4,4 м.
  2. Площадь крыши равна длине конька умноженной на длину ската (4,4·10)·2=88 м2.
  3. Снеговая нагрузка для Подмосковья по карте равна 126 кг/м2. Умножаем ее на площадь крыши и делим на площадь нагруженной части фундамента 88·126/8=1386 кг/м2.

Расчет нагрузки перекрытий

Перекрытия, как и крыша, опираются обычно на две противоположные стороны фундамента, поэтому расчет ведется с учетом площади этих сторон. Площадь перекрытий равна площади здания. Для расчета нагрузки перекрытий нужно учитывать количество этажей и перекрытие подвала, то есть пол первого этажа.

Площадь каждого перекрытия умножают на удельный вес материала из таблицы 4 и делят на площадь нагруженной части фундамента.

Таблица 4 – Удельный вес перекрытий

Таблица расчет веса перекрытий и их нагрузка на фундамент

  1. Площадь перекрытий равна площади дома – 80 м2. В доме два перекрытия: одно из железобетона и одно – деревянное по стальным балкам.
  2. Умножаем площадь железобетонного перекрытия на удельный вес из таблицы 4: 80·500=40000 кг.
  3. Умножаем площадь деревянного перекрытия на удельный вес из таблицы 4: 80·200=16000 кг.
  4. Суммируем их и находим нагрузку на 1 м2 нагружаемой части фундамента: (40000+16000)/8=7000 кг/м2.

Расчет нагрузки стен

Нагрузка стен определяется как объем стен, умноженный на удельный вес из таблицы 5, полученный результат делят на длину всех сторон фундамента, умноженную на его толщину.

Таблица 5 – Удельный вес материалов стен

Таблица – Удельный вес стен

  1. Площадь стен равна высоте здания, умноженной на периметр дома: 3·(10·2+8·2)=108 м2.
  2. Объем стен – это площадь, умноженная на толщину, он равен 108·0,4=43,2 м3.
  3. Находим вес стен, умножив объем на удельный вес материала из таблицы 5:   43,2·1800=77760 кг.
  4. Площадь всех сторон фундамента равна периметру, умноженному на толщину: (10·2+8·2)·0,4=14,4 м2.
  5. Удельная нагрузка стен на фундамент равна 77760/14,4=5400 кг.

Предварительный расчет нагрузки фундамента на грунт

Нагрузку фундамента на грунт расчитывают как произведение объема фундамента на удельную плотность материала, из которого он выполнен, разделенное на 1 м2 площади его основания. Объем можно найти как произведение глубины заложения на толщину фундамента. Толщину фундамента принимают при предварительном расчете равной толщине стен.

Таблица 6 – Удельная плотность материалов фундамента

Таблица – удельная плотность материало для грунта

  1. Площадь фундамента – 14,4 м2, глубина заложения – 1,4 м. Объем фундамента равен 14,4·1,4=20,2 м3.
  2. Масса фундамента из мелкозернистого бетона равна: 20,2·1800=36360 кг.
  3. Нагрузка на грунт: 36360/14,4=2525 кг/м2.

Расчет общей нагрузки на 1 м

2 грунта

Результаты предыдущих расчетов суммируются, при этом вычисляется максимальная нагрузка на фундамент, которая будет больше для тех его сторон, на которые опирается крыша.

Условное расчетное сопротивление грунта R0 определяют по таблицам  СНиП 2.02.01—83 «Основания зданий и сооружений».

  1. Суммируем вес крыши, снеговую нагрузку, вес перекрытий и стен, а также фундамента на грунт: 300+1386+7000+5400+2525=16 611 кг/м2=17 т/м2.
  2. Определяем условное расчетное сопротивление грунта по таблицам СНиП 2.02.01—83. Для влажных суглинков с коэффициентом пористости 0,5 R0 составляет 2,5 кг/см2, или 25 т/м2.

Из расчета видно, что нагрузка на грунт находится в пределах допустимой.

Калькулятор сопротивления заземления для одиночного электрода - нарушение напряжения

Включение металлического заземляющего стержня в землю является одним из основных шагов в создании подходящего заземления или заземления для электрической установки. Для одиночного электрода, вбитого в землю, уравнение для эффективного значения сопротивления земли или заземления определяется следующим уравнением:

Следующий калькулятор можно использовать для расчета сопротивления земли или заземления для одного электрода, вбитого в землю.Используются типичные значения удельного сопротивления почвы, указанные в IEEE Std 80, или вместо этого пользователь может вводить данные удельного сопротивления почвы непосредственно в калькулятор. Обратите внимание, что проводимость в почве в основном электролитическая. Количество влаги и растворенных солей влияет на удельное сопротивление почвы. Без фактических измерений трудно определить точную характеристику конкретной почвы как «влажную органическую почву» или «влажную почву».

Диапазон удельного сопротивления земли

Измерение фактического удельного сопротивления почвы может быть выполнено с помощью двух распространенных методов: метода Веннера или метода Шлюмберже.Если проводятся фактические измерения, рекомендуется снимать показания в разных местах, чтобы определить любые аномальные показания. Из приведенного выше уравнения видно, что для низкого сопротивления заземления (Rg) важны следующие параметры.

Удельное сопротивление грунта [ρ]: Низкое удельное сопротивление грунта снижает сопротивление грунта. Связь между удельным сопротивлением почвы и эффективным сопротивлением электродов линейна.

Длина электрода [L]: Влияние длины электрода на сопротивление земли не является линейным.Все остальные параметры остаются неизменными, первые несколько футов электрода значительно снижают сопротивление заземления, но примерно через 8 футов оно имеет тенденцию к выравниванию.

Диаметр электрода [d]: Увеличение диаметра электрода имеет ограниченное влияние на сопротивление заземления. Удилища большого диаметра могут пригодиться при движении по пересеченной местности.

Изменение сопротивления земли в зависимости от глубины стержня и диаметра стержня

Другие методы снижения сопротивления земли включают использование нескольких стержней параллельно или уменьшение удельного сопротивления почвы путем химической обработки.

Статьи по теме: Заземление подстанции - роль щебня

Испытания на удельное сопротивление почвы

Показания на небольшой глубине 6 дюймов, 1 фут, 1,5 фута, 2 фута и 2,5 фута важны для проектирования заземления, поскольку заземляющие проводники обычно проложены на глубине 1,5–2,5 фута ниже поверхности земли. Чтобы точно рассчитать, как эти проводники будут работать на этих глубинах, необходимо снять показания неглубокого грунта. Эти неглубокие показания становятся еще более важными, когда инженеры рассчитывают повышение потенциала земли, напряжения прикосновения и ступенчатые напряжения.

Очень важно, чтобы измерительные датчики и датчики тока были вставлены в землю на надлежащую глубину для измерения удельного сопротивления почвы на мелководье. Если зонды введены слишком глубоко, может быть трудно определить удельное сопротивление неглубокой почвы. Эмпирическое правило состоит в том, что глубина проникновения потенциальных датчиков не должна превышать 10% расстояния между выводами, тогда как датчики тока не должны перемещаться более чем на 30% расстояния между выводами.

Глубокие чтения

Часто тип используемого измерителя определяет максимальную читаемую глубину или интервал.Общее правило заключается в том, что высокочастотные измерители удельного сопротивления почвы подходят для расстояний между штырями не более 100 футов, особенно в почвах с низким удельным сопротивлением. Для большего расстояния между выводами требуются низкочастотные измерители удельного сопротивления почвы. Они могут генерировать необходимое напряжение, необходимое для проталкивания сигнала через почву на большие расстояния и обнаружения слабого сигнала без наведенного напряжения от выводов подачи тока.

Место проведения испытаний на удельное сопротивление грунта

Испытания удельного сопротивления грунта следует проводить как можно ближе к предлагаемой системе заземления, принимая во внимание физические элементы, которые могут вызвать ошибочные показания.Есть две (2) проблемы, которые могут вызвать низкое качество показаний:

1. Электрические помехи, вызывающие попадание нежелательного сигнального шума в счетчик.
2. Металлические предметы «сокращают» электрический путь от датчика к датчику. Практическое правило здесь заключается в том, что между измерительной траверсой и любыми параллельными заглубленными металлическими конструкциями должен соблюдаться зазор, равный расстоянию между штифтами.

Очевидно, что тестирование вблизи рассматриваемого объекта имеет важное значение; однако это не всегда практично.У многих электроэнергетических компаний есть правила относительно того, насколько точным должен быть тест на удельное сопротивление почвы, чтобы он был действительным. Геология местности также играет важную роль в уравнении, поскольку совершенно разные почвенные условия могут существовать только на небольшом расстоянии.

Если остается мало места или плохие условия для проведения надлежащего испытания на удельное сопротивление почвы, следует использовать ближайшее доступное открытое поле с как можно более похожими геологическими условиями почвы.

Удельное сопротивление грунта и сопротивление грунта для сухого и влажного грунта

В моделировании Cymgrd использовалась двухслойная модель грунта [20] для расчета сопротивления грунта, повышения потенциала земли и других соответствующих параметров.Для моделирования сопротивления заземления, ступенчатого потенциала и потенциала прикосновения масса тела, толщина поверхностного слоя, удельное сопротивление поверхностного слоя и продолжительность удара были приняты равными 70 кг, 0,2 м, 2500 Ом · м и 0,5 с соответственно. Эти значения были выбраны согласно стандарту IEEE [20]. Модель двухслойной почвы обычно представлена ​​верхним слоем почвы конечной глубины х , расположенным над нижним слоем бесконечной глубины. На этапе моделирования кажущееся сопротивление рассчитывалось по уравнению, приведенному в [19].В процессе моделирования измеренные значения удельного сопротивления почвы из Таблицы 1 сначала вводились в программное обеспечение, из которого программное обеспечение сгенерировало график удельного сопротивления и длины после отбрасывания сомнительных точек данных, как показано на Рис. 4. Была проведена та же процедура. для элементов данных удельного сопротивления почвы в Таблице 4, и в этом случае результирующий график удельного сопротивления и длины был получен, как показано на Рис. 5. Отчеты об анализе почвы показаны в Таблице 5 и Таблице 6 для влажных и сухих почв, соответственно. , где входные параметры были заданы (для программного обеспечения) по стандарту IEEE, а выходные параметры были получены в результате.

Фиг.4 Таблица 4 Измеренное сопротивление заземления на сухом грунте Рис.5 Таблица 5 Отчет по анализу сетки для влажной почвы Таблица 6 Отчет по анализу сетки для сухой почвы

Как показано в таблице 5, рассчитанные значения удельного сопротивления верхнего и нижнего слоев составляют 26,19 и 47,13 Ом · м соответственно. Кроме того, среднеквадратичная погрешность, максимально допустимые потенциалы касания и шага равны 0%, 903.32 и 2947,19 В соответственно. Среднеквадратичная ошибка 0% представляет более высокую точность между измеренным и моделированным удельным сопротивлением почвы. В случае сухой почвы (показано в Таблице 6) среднеквадратичная погрешность, максимально допустимые потенциалы касания и шага составляют 4,92%, 671,58 и 2194,17 В соответственно. Из этих сравнений видно, что среднеквадратичная ошибка, ступенчатый и контактный потенциалы немного больше в случае сухой почвы. При моделировании глубина заглубления сетки в грунт со стержнями и без них принималась равной 0.5 м, чтобы найти параметры, связанные с землей. Отчеты об анализе сетки (со стержнями и без них) для влажных и сухих почв показаны в Таблице 7 и Таблице 8, соответственно. Из Таблицы 3 и Таблицы 7 видно, что минимальные значения измеренного и рассчитанного (имитационного) сопротивления заземления с применением сетки со стержнями для влажного грунта составляют 7,08 и 7,24 Ом соответственно. В этом случае смоделированное сопротивление заземления очень близко к измеренному сопротивлению заземления. Для сухого грунта с применением заземляющей сетки без стержней минимальные значения измеренного и расчетного сопротивления заземления оказываются равными 34.5 и 27,87 Ом соответственно, как показано в Таблице 4 и Таблице 8. В этом случае разница между измеренным и рассчитанным сопротивлением заземления немного больше по сравнению со значениями влажной почвы. Эта разница возникает из-за более высоких значений удельного сопротивления почвы на этом участке.

Таблица 7 Отчет по анализу сетки со стержнями для влажной почвы Таблица 8 Отчет по анализу сетки без стержней для сухой почвы

Полоса с цветовой кодировкой, полученная при моделировании сетки со стержнями для влажной почвы, показана на рис.6. Область, окрашенная между зеленым и голубым цветом на полосе, означает, что значения потенциалов прикосновения в этой области составляют менее 25% от максимально допустимого потенциала прикосновения, составляющего 667,42 В. На другой стороне полосы находится окрашенная область. между фиолетовым и красным означает, что значения потенциалов прикосновения в этой области превышают 75% максимально допустимого потенциала прикосновения. Область, превышающая 100% максимально допустимого потенциала прикосновения, представляет собой небезопасное состояние.Область фиолетового цвета около 75% представляет поверхностный потенциал, который характеризует безопасную систему заземления. Такое же объяснение можно дать в случае сетки без стержней, как показано на шкале с цветовой кодировкой на рис. 7. Максимально допустимый потенциал касания для сетки без стержней для сухой почвы составляет 671,85 В, что немного выше, чем у сетки со стержнями для мокрый грунт. Однако потенциалы касания для решеток со стержнями и без них составляют приблизительно 2,6 и 11,5 кВ для влажных и сухих почв соответственно, как показано на контурных кривых, приведенных на рис.8 и 9. Потенциал касания сетки без стержней для сухой почвы оказался намного больше, чем у сетки со стержнями для влажной почвы, и это был ожидаемый результат. Графики потенциальных профилей сетки со стержнями и без стержней для влажных и сухих грунтов показаны на рис. 10 и 11 соответственно. Повышение потенциала земли (GPR) сетки со стержнями для влажной почвы составляет 7432,08 В, тогда как это значение составляет 28522,10 В для сетки без стержней для сухой почвы, как показано в Таблице 7 и Таблице 8, соответственно.Чрезвычайно высокий уровень георадара для участков с сухой почвой достигается за счет высокого сопротивления грунта.

Рис.6

Цветовая кодировка сетки для влажной почвы

Рис.7

Цветовая кодировка решетки для сухой почвы

Рис.8

Контурные графики потенциала касания сетки для влажной почвы

Рис.9

Контурные графики потенциала касания сетки для сухого грунта

Рис.10

Профиль потенциалов сетки для влажного грунта

Рис.11

Профиль потенциалов сетки для сухого грунта

Методы испытаний на удельное сопротивление грунта - тестер Wenner 4 Probe Tester

Методы испытаний на удельное сопротивление грунта популярный пост. Первоначально опубликовано в 2013 году, теперь обновлено в 2020 году.

Wenner 4 Probe - один из наиболее распространенных методов измерения удельного сопротивления почвы. Это также часть 3 в серии коротких сообщений о методах испытаний на удельное сопротивление почв.Часть 1 и Часть 3. Вместе с тем, встречающиеся типичные ошибки. А также практические советы о том, как избежать 10 распространенных ошибок при тестировании на удельное сопротивление почвы.

Методы испытаний на удельное сопротивление грунта - Зонд Веннера 4

Таким образом, испытания на удельное сопротивление грунта можно проводить разными методами. Поэтому ниже описывается метод тестирования зонда Веннера 4. Кроме того, это один из трех самых популярных методов измерения удельного сопротивления почвы, используемых для проведения испытания на удельное сопротивление почвы:

Метод определения удельного сопротивления грунта с помощью 4 зонда Веннера

Массив Веннера, вероятно, самый трудоемкий из всех способов при выполнении более длинных ходов.Следовательно, этот метод может привлечь до четырех человек для выполнения задачи в разумные сроки.

С другой стороны, это оптимальный метод испытания удельного сопротивления почвы (на сегодняшний день), который выбирают для проектов заземления, благодаря соотношению принимаемого напряжения на единицу передаваемого тока.

Таким образом, это означает, что метод Веннера считается одним из наиболее «надежных» методов исследования грунтов на более глубокие глубины.

Методы испытания удельного сопротивления почвы - испытание зонда Веннера 4.

На рисунке выше показано, как расстояние между датчиками соотносится с кажущейся глубиной при испытании, например расстояние между датчиками 6 м. В результате указывает удельное сопротивление грунта на глубине ~ 6м.

Итак, проведите тестирование почвы с помощью 4-зондового метода Веннера, указанного в стандарте IEEE Standard 81, часть 1, BS EN 50522 или BS 7430.

Итак, для каждого измерения ход. Расстояние между штырями (между соседними датчиками) должно начинаться с 6–12 дюймов. И после этого увеличьте примерно в 1 раз.5. Затем до максимального расстояния между штифтами, выбранного для этой траверсы.

Поэтому очень желательно иметь от 2 до 3 траверсов, центрированных в разных местах. Аналогично, максимальное расстояние между датчиками (между соседними датчиками) достигает расстояния, превышающего максимальную протяженность подстанции. Например, его наибольший диагональный размер (и любой другой объект, связанный с подстанцией), предпочтительно вдвое больше диагонального размера. При этом избегая воздействия заглубленных металлических конструкций.

Следовательно, требуется ряд дополнительных более коротких переходов (от 0,15 до 6 м) для получения данных, в достаточной степени представляющих почвенные условия на небольших глубинах по всему участку.

Итак, метод измерения удельного сопротивления почвы зонда Wenner 4 состоит из четырехэлектродных зондов; два для текущего впрыска. И два для измерения потенциала.

На рис. 1 показан метод испытания зонда Веннера 4.

Формула для расчета удельного сопротивления почвы Уравнение 1: показывает формулу удельного сопротивления почвы, связанную с методом испытания зонда Веннера 4.

Где R - сопротивление, измеренное машиной

a - шаг датчика

Итак, пример расстояния между датчиком и датчиком для конфигурации датчика Веннера 4 выглядит следующим образом:

При проектировании в соответствии с IEC BS EN 50522 предусмотрено 14 предопределенных расстояний на каждую траверсу.

Расстояние между зондами

Таблица NC.2 - Рекомендуемые расстояния Веннера в метрах

выше минимальное -наборы. Итак, важно отметить, что интервалы - это « серия, » измерений, выполненных вдоль одного хода. Таким образом, обеспечивается соответствующий уровень детализации для анализа и инверсии данных.

Насколько глубоко тестирует метод зонда Веннера 4

Читатели часто спрашивают: «Насколько глубоко тестирует метод Веннера 4?» Принцип работы метода Веннера заключается в передаче электрического сигнала в землю через датчики и измерении возвращаемого сигнала.Зонды проникают в землю всего на несколько дюймов, но сам электрический сигнал может проникать на многие метры.

Итак, чтобы повторить ... датчики физически проникают только на несколько дюймов. Однако исследуемый объем геологии определяется расстоянием между каждым испытательным зондом. Таким образом, теоретически проверяемая глубина ограничивается только силой сигнала прибора и возможным расстоянием между зондами.

BS EN 50522 описывает типичный набор расстояний между датчиками, которые подходят для заземляющих электродов большинства размеров.

Кстати, почему бы не написать нам в чате или связаться с нами для получения дополнительной информации об особенностях BS EN50522 стихов IEEE Std 81.

Учитывая огромную важность данных удельного сопротивления почвы для адекватного заземления, для расчетов конструкции системы заземления требуется четко определенная программа контроля качества в полевых условиях, чтобы продемонстрировать достоверность показаний.

Итак, при сборе данных из теста удельного сопротивления грунта Веннера эти данные затем необходимо обработать дальше:

Инверсия данных испытаний на удельное сопротивление почвы

Измеренные данные удельного сопротивления грунта необходимо инвертировать, чтобы получить эквивалентный многослойный грунт перед использованием в последующем проекте заземления / заземления.

Таким образом, эта интерпретация требует учета глубины стержня электрода. Также любые неправильные расстояния между штырями (из-за препятствий в поле). И известные закопанные металлические конструкции. Это от умеренного до умеренного искажения измеренных значений.

Поэтому выберите одну или несколько подходящих моделей почвы для исследования заземления. Из результатов всех измерений. Также объясните эти варианты в окончательном отчете.

Итак, в настоящее время общепринятой практикой для метода анализа данных является использование специализированных программных средств.Например, CDEGS RESAP или XGS_SRA (из XGSLab) для доставки одномерной (одномерной) оптимизированной модели. Но учтите, что двумерные псевдосекции не всегда можно использовать для проектирования заземления. Тем не менее, псевдосегменты становятся все более популярными для геологоразведочных работ. Кроме того, может предоставить полезную информацию (трехмерные данные конечного объема) для проектирования системы заземления.

Следовательно, разумно иметь любые приближения к модели почвы, обоснованные для хорошей оценки. Учет вариаций модели структуры почвы из-за местных и сезонных колебаний путем разработки предельных случаев структуры почвы.

В результате это невозможно недооценить. Насколько важны надежные и ТОЧНЫЕ данные об удельном сопротивлении почвы для последующего проектирования заземления. Кроме того, абсолютным основополагающим требованием является выполнение всех следующих расчетов безопасности для напряжения прикосновения и ступенчатого напряжения.


Обновление программных средств

- январь 2020 г.

Постоянные читатели этого блога знают, что GreyMatters на протяжении многих лет отстаивает CDEGS. Но теперь есть жизнеспособная и привлекательная альтернатива CDEGS.Я объясняю «Почему я выбрал эту альтернативу» в этой статье. И сравните несколько прошлых проектов, выполненных с CDEGS, и альтернативой - в этой статье.


Greymatter’s имеет опыт работы с широким спектром услуг по системам электрического заземления. Воспользуйтесь окном чата ниже или свяжитесь с нами здесь.

Испытания на удельное сопротивление почвы для проектирования катодной защиты

В этой статье обсуждается наиболее распространенный метод испытания удельного сопротивления почвы и приводятся некоторые рекомендации по правильному сбору достаточных данных для разработчика системы катодной защиты.

Одним из наиболее важных проектных параметров при рассмотрении применения катодной защиты заглубленных конструкций является удельное сопротивление грунта. Испытания на удельное сопротивление грунта - важное соображение для оценки коррозионной активности окружающей среды по отношению к подземным конструкциям. Это также оказывает огромное влияние на выбор типа, количества и конфигурации анода. Таким образом, очень важно, чтобы проектировщик CP имел точные данные о состоянии грунта как в конструкции, так и в любых предлагаемых местах расположения анодной системы.Отсутствие достаточных данных об удельном сопротивлении грунта может сделать конструкцию системы катодной защиты (системы CP) неэффективной и может привести к дорогостоящим усилиям по восстановлению во время ввода в эксплуатацию.

Коррозионная активность почвы

Удельное сопротивление почвы является основным диагностическим фактором, используемым для оценки коррозионной активности почвы. При проведении испытаний на удельное сопротивление почвы можно оценить множество факторов, включая состав почвы, содержание влаги, pH, концентрации хлоридов и сульфат-ионов, а также окислительно-восстановительный потенциал.Все это общие компоненты программы лабораторных или полевых испытаний почвы, и все они влияют на удельное сопротивление почвы. Хотя может потребоваться комплексная программа испытаний почвы, особенно при выполнении анализа отказов, для большинства сред данные испытаний на удельное сопротивление почвы обеспечивают отличную основу для оценки коррозионной активности почвы. Ниже приведена типичная диаграмма корреляции удельного сопротивления почвы с коррозионной активностью.

1,0 1.5 2,0 ​​ 3,0 4,5 6,0 9,0 13,5 18,0 27,0 36,0 54,0 81,0 100
Удельное сопротивление почвы (Ом-см) Рейтинг коррозионной активности
> 20,000 Практически не вызывает коррозии
от 10 000 до 20 000 Слабокоррозийный
5 000–10 000 Умеренно коррозионный
от 3000 до 5000 Коррозийный
от 1000 до 3000 Сильнокоррозийный
<1 000 Чрезвычайно коррозионно-агрессивный

ИСТОЧНИК: Основы коррозии: Введение, NACE Press Book, 2 nd , издание Pierre Roberge

Испытания на удельное сопротивление грунта

Четырехштырьковый метод измерения удельного сопротивления грунта Веннера

Хотя существует несколько методов измерения удельного сопротивления грунта, наиболее распространенным методом полевых испытаний является четырехштырьковый метод Веннера (ASTM G57).В этом тесте используются четыре металлических зонда, вбитых в землю и разнесенных на одинаковом расстоянии друг от друга. Внешние контакты подключены к источнику тока (I), а внутренние контакты подключены к вольтметру (V), как показано на рисунке 1.

Когда известный ток вводится в почву через внешние датчики, внутренние датчики могут использоваться для измерения падения напряжения из-за сопротивления почвы при прохождении тока между внешними датчиками. Затем это значение сопротивления R может быть преобразовано в значение удельного сопротивления почвы по формуле: ρ = 2 × π × a × R, где «ρ» измеряется в Ом-см, а «a» - это расстояние между штырями в см.Это значение представляет собой среднее удельное сопротивление почвы на глубине, эквивалентной расстоянию между зондами, поэтому, если зонды расположены на расстоянии 5 футов друг от друга, полученное значение будет эквивалентно среднему удельному сопротивлению почвы на глубине 5 футов.

При проектировании системы катодной защиты обычно проводят несколько измерений удельного сопротивления почвы с использованием этой методики с различными расстояниями между зондами. Для неглубокого размещения анода обычно достаточно снятия показаний на глубине 2,5 футов, 5 футов, 10 футов, 20 футов, 25 футов.Для применения с глубокими анодами измерения удельного сопротивления почвы могут быть рекомендованы на гораздо больших глубинах, соответствующих предполагаемой глубине системы глубоких анодов.

Эффекты слоев

Важно отметить, что значения удельного сопротивления грунта, полученные при испытании с помощью четырех штифтов, представляют собой среднее удельное сопротивление грунта от поверхности земли до глубины, и каждое последующее расстояние между датчиками включает все показания сопротивления на мелководье над ним. Для целей проектирования катодной защиты часто необходимо определять сопротивление почвы на анодной глубине путем «вычитания» верхних слоев из показаний на глубине.Этот процесс «вычитания» верхних слоев требует некоторой вычислительной настройки. Один популярный подход называется методом Барнса, который предполагает слои почвы одинаковой толщины с границами, параллельными поверхности земли. Если измеренные данные указывают на уменьшение сопротивления с увеличением расстояния между электродами, этот метод можно использовать для оценки удельного сопротивления слоев.

Значения сопротивления (R) должны быть представлены в табличном формате, а затем преобразованы в проводимость, которая просто обратна значению сопротивления.Затем рассчитывается изменение проводимости для каждого последующего промежутка. Затем это значение преобразуется обратно в значение сопротивления слоя, принимая обратное значение изменения проводимости. Наконец, удельное сопротивление слоя рассчитывается с использованием ρ = 2 × π × a × R.

Для анализа Барнса, приведенного ниже, данные показывают, что зона низкого сопротивления существует на глубине от 60 до 100 метров.

ДАННЫЕ ИСПЫТАНИЙ АНАЛИЗ БАРНСА

Расстояние а
(м)

Сопротивление
(Ом)
Электропроводность 1 / R
(Сименс)
Изменение проводимости
(Сименс)
Сопротивление слоев
(Ом)

Удельное сопротивление слоя
(Ом-м)

20 1.21 0,83 1,21 152
40 0,90 1,11 0,28 3,57 449
60 0,63 1,59 0,48 2,08 261
80 0,11 9,09 7,5 0,13 17
100 0,065 15.38 6,29 0,16 20
110 0,058 17,24 1,86 0,54 68

Рекомендации по оборудованию для испытаний на удельное сопротивление почвы

С точки зрения электричества, земля может быть довольно шумной средой с воздушными линиями электропередач, электрическими подстанциями, железнодорожными путями и многими другими источниками, которые способствуют шуму сигнала. Это может исказить показания, что может привести к значительным ошибкам.По этой причине специализированное оборудование для измерения сопротивления почвы, которое включает в себя сложные электронные блоки, способные отфильтровывать шум, имеет решающее значение при получении данных удельного сопротивления почвы.

Существует два основных типа измерителей удельного сопротивления грунта: высокочастотные и низкочастотные.

Высокочастотные измерители удельного сопротивления грунта

Высокочастотные измерители работают на частотах значительно выше 60 Гц и должны ограничиваться сбором данных на глубине около 100 футов. Это связано с тем, что им не хватает напряжения для обработки длинных переходов, и они вызывают шумовое напряжение в потенциальных выводах, которое невозможно отфильтровать, поскольку удельное сопротивление почвы уменьшается, а расстояние между датчиками увеличивается.Они менее дороги, чем их части для низкочастотных счетчиков, и на сегодняшний день являются наиболее распространенным измерителем, используемым для тестирования удельного сопротивления почвы. В целях проектирования CP они часто используются для оценки коррозионной активности почвы и для проектирования мелких анодов.

Измерители удельного сопротивления грунта низкочастотные

Низкочастотные измерители генерируют импульсы в диапазоне от 0,5 до 2,0 Гц и являются предпочтительным оборудованием для более глубоких измерений удельного сопротивления почвы, поскольку они могут снимать показания с очень большим расстоянием между зондами.Некоторые модели могут работать с расстояниями в несколько тысяч футов. Эти модели обычно включают в себя более сложные электронные фильтры, которые превосходят те, что используются в высокочастотных моделях. Для конструкций CP, предусматривающих установку с глубоким анодом, низкочастотный измеритель является предпочтительным оборудованием для получения точных данных на глубине ниже 100 футов.

Рекомендации по полевым данным

При сборе точных данных об удельном сопротивлении грунта для проектирования системы катодной защиты важно учитывать следующие передовые методы, чтобы избежать ошибочных показаний:

  1. Пригодность места проведения испытания. Для использования метода тестирования с четырьмя выводами Веннера требуется открытое пространство, достаточное для правильного размещения выводов и сбора данных на необходимую глубину. Для систем катодной защиты с глубоким анодом это потребует минимум в три раза большей глубины анодной системы.
  2. Избегать заглубленных трубопроводов и других металлических предметов. Наличие каких-либо заглубленных металлических конструкций (трубопроводов, трубопроводов, железобетонных конструкций, систем заземления и т. Д.) Обеспечивает слабые пути тока, которые могут вызвать эффект короткого замыкания, который исказит показания сопротивления и приведет к ошибочным показаниям удельного сопротивления почвы.
  3. Глубина зондов. Важно, чтобы датчики были правильно вставлены в землю. Для показаний удельного сопротивления на мелководье слишком глубокие зонды могут повлиять на показания на мелководье. В идеале штифты не должны быть глубже 1/20 и расстояния между штифтами и не более 10 см (4 дюйма).
  4. Избегайте мест с высоким электрическим шумом. Испытания почвы не должны выполняться непосредственно под системами передачи высокого напряжения или рядом с другими внешними источниками тока в почве, такими как системы легкорельсового транспорта постоянного тока.
  5. Точно запишите место и условия проведения испытания. Важно, чтобы место проведения испытания было точно записано вместе с условиями почвы и температурой во время испытания. Тестирование не следует проводить в мерзлой почве, а также в периоды сильной засухи или аномально влажных условий.

Резюме

Проверка удельного сопротивления грунта с точным сбором данных является лучшим индикатором коррозионной активности грунта для заглубленных металлических конструкций и оказывает значительное влияние на проектирование систем катодной защиты.Наиболее распространенной методологией испытаний для сбора данных о почве в полевых условиях является четырехконтактный метод Веннера. При правильном сборе и использовании соответствующих аналитических методов полевые данные сопротивления почвы могут обеспечить точную оценку значений удельного сопротивления почвы для использования при проектировании соответствующей системы катодной защиты.

Узнайте об услугах по испытанию удельного сопротивления грунта MATCOR


У вас есть вопросы по испытаниям на удельное сопротивление грунта или вам нужно расценки на услуги или проектирование катодной защиты и материалы? Свяжитесь с нами по ссылке ниже.

СВЯЗАТЬСЯ С КОРРОЗИЕЙ

Удельное сопротивление и проводимость - температурные коэффициенты для обычных материалов

Удельное сопротивление равно

  • электрическое сопротивление единичного куба материала, измеренное между противоположными гранями куба

Калькулятор сопротивления электрического проводника

Этот калькулятор можно использовать для рассчитать электрическое сопротивление проводника.

Коэффициент удельного сопротивления (Ом · м) (значение по умолчанию для меди)

Площадь поперечного сечения проводника (мм 2 ) - Калибр провода AWG

сплав 2014, отожженный 9018 10153 Чашка 9045 (константроникель) 55- 43 x 10 -8 9015 905 905 905 3.35K) 901885 1.0 x 10 -5 -8
905 Калий.01 x 10 -8 9018 Рубидий 9018 9018 9018 9029 9029 9029 Нержавеющая сталь 10 6 Вольфрам-вольфрамовый 9015-3 9015 9015 902 9015
Алюминий .65 x 10 -8 3,8 x 10 -3 3,77 x 10 7
Алюминиевый сплав 3003, прокат 3,7 x 10 -8
3,4 x 10 -8
Алюминиевый сплав 360 7,5 x 10 -8
Алюминиевая бронза 12 x 10 -8
Животный жир 14 x 10 -2
Животный мускул 0.35
Сурьма 41,8 x 10 -8
Барий (0 o C) 30,2 x 10 -8 2
2 2 905 x 10 -8
Бериллий медный 25 7 x 10 -8
Висмут 115 x 10
9018 Латунь - 58% Cu 5.9 x 10 -8 1,5 x 10 -3
Латунь - 63% Cu 7,1 x 10 -8 1,5 x 10 -3
Cadmium 7,4 x 10 -8
Цезий (0 o C) 18,8 x 10 -8
9029 C 9024 902 902 902 9029 3,11 x 10 -8
Углерод (графит) 1) 3-60 x 10 -5 -4.8 x 10 -4
Чугун 100 x 10 -8
Церий (0 o C) 73 x 10 -8 906222
Хромель (сплав хрома и алюминия) 0,58 x 10 -3
Хром 13 x 10 -8
Кобаль -8
Константан 49 x 10 -8 3 x 10 -5 0.20 x 10 7
Медь 1,724 x 10 -8 4,29 x 10 -3 5,95 x 10 7
Диспрозий (0 o C) 89 x 10 -8
Эрбий (0 o 10292 C) 9015 x -8
Эврика 0.1 x 10 -3
Европий (0 o C) 89 x 10 -8
Гадолий 126 x 1062 -8
Галлий (1,1K) 13,6 x 10 -8
Германий 1) 1-500 x 10 -3 -50 x 10 -3
Стекло 1 - 10000 x 10 9 10 -12
Золото 2.24 x 10 -8
Графит 800 x 10 -8 -2,0 x 10 -4
Гафний (0,35K) 30,4 - 8
Hastelloy C 125 x 10 -8
Гольмий (0 или C) 90 x 10 -8
8 x 10 -8
Инконель 103 x 10 -8
Иридий 5,3 x 10
Железо 9,71 x 10 -8 6,41 x 10 -3 1,03 x 10 7
Лантан (4,71K) 54 x 10

62-8

Свинец 20.6 x 10 -8 0,45 x 10 7
Литий 9,28 x 10 -8
Лютеций 548 9018 9029
Магний 4,45 x 10 -8
Магниевый сплав AZ31B 9 x 10 -8
185
Mercury 98,4 x 10 -8 8,9 x 10 -3 0,10 x 10 7
Mica Mica 1 x 10 13
Низкоуглеродистая сталь 15 x 10 -8 6,6 x 10 -3
Молибден
55 5,2 x 10 9029
Монель 58 x 10 -8
Неодим 61 x 10 -8
Никель Нихром и хром 24 (сплав) х 10 -8 0.40 x 10 -3
Никель 6,85 x 10 -8 6,41 x 10 -3
Никелин 50 x 10 -3 10 -4
Ниобий (Columbium) 13 x 10 -8
Осмий 9 x 10
10.5 x 10 -8
Фосфор 1 x 10 12
Платина 10,5 x 10 -8 3,93 -8 3,93 x x 10 7
Плутоний 141,4 x 10 -8
Полоний 40 x 10 -8
Празеодим 65 x 10 -8
Прометий 50 x 102 9018 9024t K) 17,7 x 10 -8
Кварц (плавленый) 7,5 x 10 17
Рений (1,7K) 17.2 x 10 -8
Родий 4,6 x 10 -8
Резина - твердая 1-100 x 1022
11,5 x 10 -8
Рутений (0,49K) 11,5 x 10 -8
Самарий
Скандий 50.5 x 10 -8
Селен 12,0 x 10 -8
Кремний 1) 0,1-60 0,1-60
Серебро 1,59 x 10 -8 6,1 x 10 -3 6,29 x 10 7
Натрий
Грунт, типовой грунт 10 -2 -10 -4
Припой 15 x 10 -8
Стронций 12.3 x 10 -8
Сера 1 x 10 17
Тантал 12,4 x 10 -8
9015 x 10 -8
Таллий (2,37K) 15 x 10 -8
Торий 18 x 10 -8 Тулий 67 x 10 -8
Олово 11.0 x 10 -8 4,2 x 10 -3
Титан 43 x 10 -8
10155 4,5 x 10 -3 1,79 x 10 7
Уран 30 x 10 -8
Ванадий
Вода дистиллированная 10 -4
Вода пресная 10 -2
9015 902 9015
Иттербий 27.7 x 10 -8
Иттрий 55 x 10 -8
Цинк 5,92 x 10 -8 3,7 x 3,7
Цирконий (0,55K) 38,8 x 10 -8

1) Примечание! - удельное сопротивление сильно зависит от наличия примесей в материале.

2 ) Примечание! - удельное сопротивление сильно зависит от температуры материала.Приведенная выше таблица основана на справочном материале 20 o C.

Электрическое сопротивление в проводе

Электрическое сопротивление провода больше для более длинного провода и меньше для провода с большей площадью поперечного сечения. Сопротивление зависит от материала, из которого оно изготовлено, и может быть выражено как:

R = ρ L / A (1)

, где

R = сопротивление (Ом, ). Ом )

ρ = коэффициент удельного сопротивления (Ом · м, Ом · м)

L = длина провода (м)

A = площадь поперечного сечения провода (м ) 2 )

Фактором сопротивления, учитывающим природу материала, является удельное сопротивление.Поскольку он зависит от температуры, его можно использовать для расчета сопротивления провода заданной геометрии при различных температурах.

Обратное сопротивление называется проводимостью и может быть выражено как:

σ = 1 / ρ (2)

где

σ = проводимость (1 / Ом м)

Пример - сопротивление алюминиевого провода

Сопротивление алюминиевого кабеля длиной 10 м и площадью поперечного сечения 3 мм 2 можно рассчитать как

R = (2.65 10 -8 Ом м) (10 м) / ((3 мм 2 ) (10 -6 м 2 / мм 2 ))

= 0,09 Ом

Сопротивление

Электрическое сопротивление компонента схемы или устройства определяется как отношение приложенного напряжения к протекающему через него электрическому току:

R = U / I (3)

, где

R = сопротивление (Ом)

U = напряжение (В)

I = ток (A)

Закон Ома

Если сопротивление постоянно в течение значительного диапазон напряжения, затем закон Ома,

I = U / R (4)

можно использовать для прогнозирования поведения материала.

Удельное сопротивление в зависимости от температуры

Изменение удельного сопротивления в зависимости от температуры можно рассчитать как

= ρ α dt (5)

, где

dρ = изменение удельного сопротивления ( Ом м 2 / м)

α = температурный коэффициент (1/ o C)

dt = изменение температуры ( o C)

Пример - изменение удельного сопротивления

Алюминий с удельным сопротивлением 2.65 x 10 -8 Ом м 2 / м нагревается от 20 o C до 100 o C . Температурный коэффициент для алюминия составляет 3,8 x 10 -3 1/ o C . Изменение удельного сопротивления можно рассчитать как

dρ = (2,65 10 -8 Ом м 2 / м) (3,8 10 -3 1/ o C) ((100 o C) - (20 o C))

= 0.8 10 -8 Ом м 2 / м

Окончательное удельное сопротивление можно рассчитать как

ρ = (2,65 10 -8 Ом м 2 / м) + (0,8 10 -8 Ом · м 2 / м)

= 3,45 10 -8 Ом · м 2 / м

Зависимость коэффициента удельного сопротивления от температуры2 Этот калькулятор caculator 9 использоваться для расчета удельного сопротивления материала проводника в зависимости оттемпература.

ρ - Коэффициент удельного сопротивления (10 -8 Ом м 2 / м)

α - температурный коэффициент (10 -3 1/ o C)

dt - изменение температуры ( o C)

Сопротивление и температура

Для большинства материалов электрическое сопротивление увеличивается с температурой.Изменение сопротивления можно выразить как

dR / R s = α dT (6)

, где

dR = изменение сопротивления (Ом)

R с = стандартное сопротивление согласно справочным таблицам (Ом)

α = температурный коэффициент сопротивления ( o C -1 )

dT = изменение температура от эталонной температуры ( o C, K)

(5) может быть изменена на:

dR = α dT R s (6b)

«Температурный коэффициент сопротивления» - α - материала - это увеличение сопротивления резистора 1 Ом из этого материала при повышении температуры 9 0186 1 или С .

Пример - сопротивление медного провода в жаркую погоду

Медный провод с сопротивлением 0,5 кОм при нормальной рабочей температуре 20 o C в жаркую солнечную погоду нагревается до 80 o C . Температурный коэффициент для меди составляет 4,29 x 10 -3 (1/ o C) , а изменение сопротивления можно рассчитать как

dR = ( 4,29 x 10 -3 1/ o C) ((80 o C) - (20 o C) ) (0.5 кОм)

= 0,13 (кОм)

Результирующее сопротивление медного провода в жаркую погоду будет

R = (0,5 кОм) + (0,13 кОм)

= 0,63 ( кОм)

= 630 (Ом)

Пример - сопротивление угольного резистора при изменении температуры

Угольный резистор с сопротивлением 1 кОм при температуре 20 o C нагревается до 120 или С .Температурный коэффициент для углерода отрицательный. -4,8 x 10 -4 (1/ o C) - сопротивление уменьшается с повышением температуры.

Изменение сопротивления можно рассчитать как

dR = (-4,8 x 10 -4 1/ o C) ((120 o C) - (20 o C) ) (1 кОм)

= - 0,048 (кОм)

Результирующее сопротивление резистора будет

R = (1 кОм) - (0.048 кОм)

= 0,952 (кОм)

= 952 (Ом)

Калькулятор зависимости сопротивления от температуры

Этот счетчик может использоваться для расчета сопротивления проводника в зависимости от температуры.

R с - сопротивление (10 3 (Ом)

α - температурный коэффициент (10 -3 1/ o C)

dt - изменение температуры ( o C)

Температурные поправочные коэффициенты для сопротивления проводника

Коэффициент Преобразовать в 20 ° C 9015 0,980 0,980 1,040
Температура проводника
(° C)
Обратно преобразовать в 20 ° C
5 1.064 0,940
6 1,059 0,944
7 1,055 0,948
8 1,050
8
1,050
8
10 1,042 0,960
11 1,037 0,964
12 1,033 0.968
13 1,029 0,972
14 1,025 0,976
15 1,020 0,980
1,020 0,980
1,012 0,988
18 1,008 0,992
19 1,004 0,996
20 1.000 1.000
21 0.996 1.004
22 0,992 1.008
23 0,98812
23 0,98812
23 0,98812
0,98812
25 0,980 1,020
26 0,977 1,024
27 0,973 1.028
28 0,969 1,032
29 0,965 1,036
30 0,962 1,040
1,040
0,954 1,048
33 0,951 1,052

Магазин AMPP - Расчет и отслеживание изменения удельного сопротивления почвы в коридорах с высоким переменным током

Доступно для скачивания