Определение несущей способности грунта: Несущая способность грунтов, как определить, таблица несущей способности. 🔨 Как избежать ошибок.

Определение несущей способности грунта | Статья ГеоКомпани

Несущая способность грунтов – нагрузка, действующая на единицу объема почвы и не приводящая к нестандартной усадке и деформации основания. Несущая способность напрямую зависит от типа и состава грунта, характеристик слоев, уровня расположения грунтовых вод, глубины промерзания земли.

От того, насколько будет устойчивым грунт под зданием, зависит надежность, функциональность, безопасность и долговечность строения. Поэтому до начала проектирования и строительства сооружения необходимо проверить прочность основания, то, как грунт будет выдерживать нагрузку от всего строения.

Особенности грунтов

Наиболее надежными являются скальные грунты, хорошо справляются с большой нагрузкой песчаные и крупнообломочные. Глинистые почвы легко впитывают влагу, подвержены текучести, увеличению в объеме во время морозов, пучению, что приводит к разрушению фундамента всего за одну зиму.

Но глинистые грунты – это не приговор, так как исправить ситуацию можно несколькими способами:

  • уплотнением основания путем вбивания небольших свай для сокращения пустот в породах;
  • введением в грунт химических добавок, сцепляющих отдельные частицы пород;
  • устройством песчаной подушки под фундамент, которая будет воспринимать и равномерно распределять нагрузку.

Расчет несущей способности грунтов

Работа выполняется после определения расположения пород внутри скважины и получения схемы геологических разрезов участка под застройку.

Несущаяспособность рассчитывается по формулам, но предварительно специалистами берутся пробы и устанавливаются следующие параметры – сопротивление осевому сжатию (R0), глубина промерзания и уровень заглубленности фундамента.

R=R0х[1+k1х(b-100)/100]х(d+200)/2х200 — при заглубленности фундамента до 2 м и R=R0х[1+k1х(b-100)/100]+k2хGх(d-200) — более 2 м, где:

  • k1 — 0,125 – для крупнообломочных или песчаных пород и 0,5 – для глин, супеси и суглинков;
  • k2 – для расчетов несущей способности слежавшихся крупнообломочных или песчаных почв;
  • G – для нахождения удельного веса почвы от подошвенного слоя и до нижней плоскости фундамента или последующего слоя;
  • b – ширина фундамента или его части, которые опираются на основание;
  • d – высота заглубленности фундамента.

Полученный показатель сравнивают с требуемым параметром. Если вторая цифра превышает первую, то следует подкорректировать проект фундамента – увеличить площадь его опирания на основание, либо уровень заглубленности, или вовсе изменить тип фундамента, или перенести место застройки на участок с другими, более прочными и надежными грунтами.

Организация «GeoCompani» выполнит инженерные изыскания для строительства в Москве и Московской области по доступным ценам. Задать вопросы и оформить заявку можно по телефону +7-495-777-65-35 или WhatsApp.

способы расчета под закладку фундамента, СНиП

На чтение 5 мин Просмотров 281 Опубликовано Обновлено

Степень восприимчивости почвы к нагрузкам называют несущей способностью грунта. Показатель характеризует максимальное усредненное давление между подошвой фундамента и земли, при котором не происходят сдвиги, оползни и провалы в окружающем слое. На величину значения влияет вид почвы, ее физические и механические характеристики.

Что такое несущая способность грунта и на что она влияет

От несущей способности грунта зависит выбор типа фундамента

Понятие рассматривают как давление, воспринимаемое единицей площади основания, при котором оно не деформируется и не приводит к разрушению строения. Геологи исследуют грунт, чтобы определить его свойства и рассчитать несущие характеристики.

Восприимчивость почвы к давлению зависит от условий:

  • тип грунта;
  • массивность слоя;
  • отметка залегания;
  • показатели нижележащего пласта;
  • уровень почвенных вод;
  • глубина промерзания земли;
  • плотность породы.

Показатели несущей способности влажного и сухого грунта отличаются, т.к. при насыщении влагой повышается текучесть и снижается сопротивление нагрузкам. Если слой контактирует с жидкостью, он относится к категории насыщенных. Исключение составляют песчаные крупно и среднезернистые почвы, которых не касается деформация так как они пропускают влагу, а не скапливают ее.

Изыскания проводят для определения, подходит слой для установки фундамента или нужно усилить его для повышения несущей способности. Не проектируют опорные элементы на глубине, где граничат разные пласты. Подошву фундамента закладывают ниже отметки стояния почвенной влаги, т. к. насыщенные породы вспучиваются при замерзании.

Чувствительность грунта к нагрузкам снижают путем искусственного уплотнения или введения химических модификаторов. В первом случае вбивают сваи, чтобы уменьшить объем пустот в почве. Химические реагенты способствуют адгезии (сцеплению) отдельных частиц почвы.

Определение плотности почвы и уровня грунтовых вод

Плотность определяют в зависимости от пористости основания. В почве есть твердые части, между ними находятся полости, наполненные водой или воздухом в зависимости от условий. Если превысить максимально допустимую нагрузку, сдвиги приведут к разрушению дома. Плотные грунты с малым числом или одиночными кавернами относят к наиболее прочным основаниям.

Плотность находят отношением веса почвенного образца при стандартной влажности к объему, который он занимает. Расчет делают по формуле p = B / V, где:

  • B — вес грунта в естественном состоянии, г;
  • V — объем, см3.

Породы, которые залегают неглубоко от поверхности, считаются неплотными, с понижением отметки грунты становятся толще, надежнее и прочнее, т. к. на их давят вышележащие пласты. В России наблюдают пески и глины, есть торфяники, болотистые местности и регионы со скальными породами.

Грунтовые жидкости находят в слабых и рыхлых породах или трещинах плотных пластов. Почвенная влага обычно поднимается постепенно и не имеет напора.

Уровень стояния зависит от факторов:

  • осадки, испарения;
  • температура воздуха, атмосферное давление;
  • изменение состояния водоемов;
  • хозяйственные процессы деятельности людей.

Влага внутри слоев может быть агрессивной, содержать кислоты, щелочи, сульфаты, углекислоту — такие добавки разрушают бетон и металл фундаментов. Определяют уровень жидкости путем бурения в полевых условиях шурфов, которые отрывают на несколько метров, чтобы они были ниже предполагаемой отметки опоры. Скважину накрывают и оставляют на 5 – 7 суток. Если в ней не обнаружена вода, почва не содержит влаги. В другом случае для выполнения строительных работ по правилам нужен дренаж (система отвода воды).

Как определить несущую способность грунта под фундамент самостоятельно

Несущая способность является основой при проведении подсчета в процессе проектирования. Классифицируют грунты в рамках сведений документа ГОСТ 25.100-2011 «Грунты. Классификация». Нормы сопротивления давлению находятся в таблицах нагрузки на грунт материалов СП 22.133.30-2016 «Основание зданий и сооружений». Здесь же приводятся стандартные модули расчёта, формулы, коэффициенты.

Несущую способность находят математическим выражением R = R0 · (1 + K · (B -100) / 100) · (N + 200) / 2 · 200 — для заглубления до двух метров, и формулой R = R0 · (1 + K · (B -100) / 100) + K2 · Q · (N – 200) — если конструкция погружается более двух метров, где:

  • R0 — противодействие нагрузке по вертикальной оси, содержится в таблицах и определяется видом грунта;
  • K2 — используется при расчётах в стабильных слоях;
  • K — поправочный коэффициент из таблиц СП на разновидность породы;
  • B — поперечный размер низа фундамента;
  • N — глубина погружения опоры;
  • Q — коэффициент, чтобы найти расчетный средний показатель удельного веса почвы от верха земли до подошвы фундамента.

Тип грунта можно определить своими руками. Берут грунт из скважины на глубине погружения опоры, смачивают водой и скатывают жгут, затем его соединяют в кольцо. Элемент без трещин, легко соединяется — почва связная, чаще это глины. При сгибании появляются трещины, значит, в руках смесь глины и песка, последнего содержится 10 – 30%. Жгут трудно скатать, а соединить кольцом невозможно — песчаная почва.

Далее используют таблицы СНиП несущей способности грунта, где по типу почвы можно найти требуемое значение.

Риски ошибок в исследовании несущей способности грунта

Появляется опасность сдвига почвы в результате неточного расчёта глубины заложения и габаритов фундамента. Здание весит тонны, на грунт оказывается сильное давление, поэтому к расчетам привлекают строительных инженеров и техников, чтобы в будущем исключить проблемы с деформацией.

Неправильное нахождение несущей способности почвы влечет неприятности в виде:

  • ошибочного подсчета диаметра сваи, площади подошвы ленточного монолита, бетонной плиты;
  • установки опоры в неплотные грунты, просадки строения;
  • неправильного выбора отметки заглубления, выталкивания фундамента вспучивающимися грунтами.

В расчете применяют много коэффициентов, которые нужно точно определить в таблице, иначе фундамент будет запроектирован с ошибками, которые легко править на бумаге, но трудно устранить после возведения стен и кровли. Шатается коробка дома, прогибаются полы в результате чрезмерных усадок после неправильно установленных свай. В здании идут трещины по углам, перекашиваются оконные и дверные коробки в проемах, если сдвинется ленточный фундамент.

Как Определить Несущую Способность Грунта

 

Несущая способность грунта — важнейшая характеристика участка будущего строительства. Она отображает возможность выдержать вес здания, который передается через фундамент. Чем ниже данный показатель, тем хуже выносится нагрузка. Следовательно — тем большей должна быть фундаментная подушка строения.

Определение свойств почвы проводится путем анализа образцов, отобранных на строительной площадке. Ошибки в расчетах становятся причиной проседания здания и появления трещин. Но есть один эффективный и проверенный годами метод — профессиональные исследования с использованием современного оборудования. Работы выполняются согласно нормативам государственных строительных норм, а значит — полученные результаты отображают объективную картину. В этой статье рассмотрим факторы, влияющие на данный параметр, и нюансы его определения.

 

От чего зависит несущая способность грунтов?

На эту характеристику влияет нескольких важных показателей:

  • тип грунта;
  • пористость и плотность;
  • влажность в течение года;
  • расположение подземных вод.

 

Структурно все породы, помимо скальных, представляют собой отдельные твердые частицы с порами между ними. Значительные внешние нагрузки приводят к уменьшению объема земли и ее усадке. Поэтому, чем меньше размер пор и плотнее материал, тем выше его несущие характеристики. Плотные слои практически не подвергаются усадке и легко выдерживают даже тяжеловесные высотные здания. Если подобное строение планируется возвести на «слабом» участке, необходимо предусмотреть большую глубину свай. Поскольку по мере заглубления плотность породы растет за счет давления вышерасположенных слоев. И основание такой сваи получит достаточно надежный упор.

Однако, как показывает практика, наибольшее влияние на состояние грунта оказывают подземные воды. Ведь свойства сухой и пропитанной влагой почвы могут значительно отличаться. Исключением является лишь песок, состоящий из средних и крупных фракций. Таким образом, перед началом проектирования нужно провести исследование территории. Для этого по краям и в центре участка бурятся скважины глубиной 2,5 метра. Спустя несколько часов в них появляется вода, после чего деревянной рейкой замеряется расстояние до ее верхнего уровня. Если оно превышает глубину промерзания почвы данной местности, можно не опасаться таких явлений, как пучение грунта. Если же подземные воды расположены близко к поверхности, необходимо предусмотреть достаточное заглубление фундамента. Это могут быть железобетонные сваи или же ленточный фундамент глубокого заложения.

Стоит учесть, что в разных точках площадки положение подземных вод может значительно меняться. Поэтому все последующие расчеты проводятся для самого невыгодного варианта — максимального УГВ (уровень грунтовых вод).

 

Какие бывают типы грунтов?

Они делятся на основные группы: скальные и нескальные. Благодаря жесткой структуре скальные слои отличаются высокой плотностью. Они не промерзают и не размываются. Вторая же группа не имеет жесткой структуры и подразделяется на несколько видов:

  • Глинистые. Цвет варьируется от желтоватого до коричневого. На 30% и более состоят из мелких глинистых частиц. Несущая способность глины при условии утрамбованости и глубоких подземных вод — хорошая. Относятся к пучинистым, т. е. в холодное время года способны увеличиваться в объеме.
  • Суглинки. Смесь песка и глины, которая занимает от 10% до 30%. При однородности земли и низком уровне залегания грунтовых вод отличаются высокой надежностью. Промерзают меньше глинистых почв.
  • Супеси. Песчаная основа с включением от 5% до 10% глины. Характеризуются высокой пористостью и предрасположенностью к плывучести.
  • Песчаные. Состоят из зерен песка разной крупности — средней с фракциями до 2,5 мм и крупной с частичками диаметром до 5 мм. Хорошо пропускают воду благодаря чему практически не подвержены пучению. Характеризуются быстрой усадкой и дальнейшим стабильным состоянием с хорошими несущими свойствами. Для участка под строительство предпочтительнее крупнозернистые пески.
  • Торфяные. Неустойчивая почва, сильно впитывает влагу и вспучивается при морозах. Отличается значительной и длительной усадкой, а также сильными сдвигами по горизонтали. Чаще всего требует глубоких свай до уровня устойчивых слоев.
  • Гравийные. Наблюдаются твердые вкрапления в виде гравия размером с небольшой грецкий орех.
  • Гальковые (щебенистые). Большую часть составляют крупные обломки горных пород размером с большой орех.

 

Как определить вид грунта?

Для принятия правильных проектных решений необходимо, чтобы этой задачей занялись специалисты во время геодезических исследований. Инженеры нашей компании проводят необходимые изыскания и анализ грунта с использованием высокоточного лабораторного оборудования. Плотность несвязных слоев определяется методом режущего кольца, а связных — парафинированием. Первый метод состоит в отборе образца при помощи специального пробоотборного кольца. Далее он спрессовывается, взвешивается и производится расчет согласно нормативным документам. Для второго метода образец объемом 0,5 м3 покрывается парафином. Его вес определяется путем помещения в воду и замера объема вытесненной жидкости. После чего производится расчет с применением нормативных формул.

Для предварительной оценки участка можно воспользоваться упрощенным методом. Для этого следует взять образец с глубины около двух метров. После чего некоторые породы легко распознаются по внешнему виду. Так, скалистые состоят из сплошного камня. А торфяные представляют собой характерную рыхлую болотистую почву. Для самостоятельного определения остальных типов следует размочить образец в воде. Далее попытаться скатать и сплющить небольшой шарик. Глина легко лепится и при попытке раздавить не образует трещин. Суглинок также удачно скатывается в шарик, но при расплющивании образуются трещинки. Супесь начинает ломаться при попытке раскатать шарик, а из песка никакую фигуру слепить не удастся. Кроме того, в нем явно различаются отдельные песчинки, которые хорошо ощущаются ладонями при попытке что-то слепить. Еще один характерный признак — степень загрязнения рук. Чем выше содержание глинистых частиц, тем сильнее они запачкаются.

Однако стоит еще раз отметить, что результат такого кустарного анализа не может использоваться для проектирования и строительства.

 

Как определить содержание разных фракций в породе?

Для примерного определения содержания различных фракций необходимо следующее:

  1. Отобранный образец поместить в банку на четверть ее объема.
  2. Долить в емкость чистой воды до 3/4 высоты.
  3. Добавить в банку 1 ч. л. любого жидкого моющего средства для посуды.
  4. Закрыть банку и активно встряхивать в течение примерно 10 минут.
  5. Спустя минуту отстаивания отметить маркером уровень песка.
  6. Спустя два часа покоя отметить уровень ила.
  7. После достижения прозрачности жидкости (2–7 дней) отметить уровень глины.

Далее следует определить толщину каждого слоя. К примеру, верхний уровень песка оказался ну высоте 7 см, ила — 8 см, глины — 10 см. Тогда при общей высоте осадка 10 см толщина слоя песка составит 7 см, ила — 1 см, а глины — 2 см. То есть в исходном образце содержалось 70% песка, 10% ила и 20% глины. Вероятнее всего, это — суглинки. Однако окончательный и максимально точный результат может дать только лабораторное исследование.

 

Расчет несущей способности породы

Нормативные данные для определения несущей способности грунтов — таблицы государственных строительных норм Украины ДБН В.2.1-10-2009 «Основы и фундаменты сооружений». Например, при расчете обязательно нужно учитывать сопротивление почвы.

 

Таблица 1 — Расчетное сопротивление гравийных и гальковых грунтов

ВидРасчетное сопротивление, кПа
Гальковые с песчаным заполнением600
Гальковые с глинистым заполнением400-450
Гравийные с песчаным заполнением500
Гравийные с глинистым заполнением350-400

 

Таблица 2 — Расчетное сопротивление плотных песков

ВидРасчетное сопротивление, кПа
Крупные600
Средние500
Мелкие300-400
Пылеобразные150-300

 

Таблица 3 — Расчетное сопротивление глинистых непроседающих грунтов

ВидРасчетное сопротивление, кПа
Супеси250-300
Суглинки200-300
Глина250-600

 

В таблице 3 расчетное сопротивление варьирует в зависимости от коэффициента пористости породы. Дальнейший расчет несущей способности фундамента также производится в соответствии с формулами в данном нормативном документе.

При обнаружении слабых несущих свойств могут предусматриваться различные мероприятия. Например, осушение участка строительства или устройство грунтовой подушки из гравия, песка и прочего. Также может использоваться уплотнение или закрепление грунта. Последнее проводится путем нагнетания силикатов, карбидных смол или битумной эмульсии.

Чтобы избежать неправильного определения характеристик почвы, неверно подобранного сечения или глубины свай, есть один действительно надежный метод — профессиональное исследование участка строительства. Поэтому рекомендуется воспользоваться помощью специалистов, которые гарантируют высокое качество, точность и оперативность проведения всех анализов и расчетов. Наша компания обладает огромным опытом в проведении геодезических и геологических изысканий. Поэтому мы с уверенностью предлагаем своим клиентам полный перечень услуг с гибкой ценовой политикой.

5 / 5 ( 6 голосов )

Фундамент и несущая способность грунта


 

Прибор для определения несущей способности грунта

При выборе типа и параметров  фундамента для строительства дома необходимо знать несущую способность грунта на строительном участке. В первую очередь исследуется тип грунта, затем определяется его несущая способность.

 

Для чего нужно определять несущую способность

Грунт состоит из твердых частиц и пор, заполненных водой или воздухом. Под действием нагрузки от дома объем грунта меняется за счет изменения объема пор – он уплотняется, а его пористость сокращается. При расчете нагрузок интерес для строителя представляют предельные нагрузки, т.е. нагрузки, увеличение которых приводит к потере устойчивости массива грунта.

Чаще всего нарушенное состояние равновесия приводит к большой осадке грунта  и его выпору из-под фундамента, смещению конструкций.

Значительное смещение конструкций губительно для большинства сооружений. Поэтому так важно определить максимально возможную безопасную для грунта нагрузку, которая не нарушит его равновесие.
 

Как определять несущую способность грунта

Осадки фундаментов принято рассчитывать по линейной зависимости между напряжениями и деформациями. В соответствии с рекомендациями СНиП 2.02.01-83* (п. 2.41.) среднее значения давления под подошвой фундамента не должно превышать расчетного сопротивления грунта основания. В соответствии с п. 2.42. и Приложения 3 СНиП 2.02.01-83*  расчетные сопротивления грунтов основания (R0) определяется по таблице:

Тип грунта

Расчетное сопротивление R0, кг/см2

Крупнообломочные 

Галечниковые (щебенистые) с песчаным заполнителем

6

Галечниковые (щебенистые) с
пылевато-глинистым заполнителем

4 — 4,5

Гравийные (дресвяные) с песчаным заполнителем

5

Гравийные (дресвяные) с
пылевато-глинистым заполнителем

3,5-4

Песчаные 

 

плотные

средней плотности

Крупные

6

5

Средней крупности

5

4

Мелкие маловлажные

4

3

Мелкие влажные и насыщенные водой

3

2

Пылеватые маловлажные

3

2,5

Пылеватые влажные

2

1,5

Пылеватые насыщенные водой

1,5

1

Пылевато-глинистые (непросадочные)

 

сухие

влажные

Супеси (коэффициент пористости 0,5) *

3

3

Супеси (0,7)

2,5

2

Суглинки (коэффициент пористости 0,5)

3

2,5

Суглинки (0,7)

2,5

1,8

Суглинки (1,0)

2

1

Глины (коэффициент пористости 0,5)

6

4

Глины (0,6)

5

3

Глины (0,8)

3

2

Глины (1,1)

2,5

1

Просадочные

 

сухие

влажные

Супеси природного сложения (плотностью в сухом состоянии 1,35 т/м3)

3

1,5

Супеси природного сложения (плотностью в сухом состоянии 1,55 т/м3)

3,5

1,8

Супеси уплотненные (плотностью в сухом состоянии 1,6 т/м3)

2

Супеси уплотненные (плотностью в сухом состоянии 1,7 т/м3)

2,5

Суглинки природного сложения (плотностью в сухом состоянии 1,35 т/м3)

3,5

1,8

Суглинки природного сложения (плотностью в сухом состоянии 1,55 т/м3)

4

2

Суглинки уплотненные (плотностью в сухом состоянии 1,6 т/м3)

2,5

Суглинки уплотненные (плотностью в сухом состоянии 1,7 т/м3)

3

* — коэффициент пористости показывает отношение объема пор к объему твердых частиц. Чем выше значение показателя, тем более рыхлый грунт. Оценить данный показатель самостоятельно можно только с некоторой долей допущения. При этом можно исходить из следующего: 

грунт при увлажнении проседает и уплотняется. Так, пучинистый грунт, расположенный ниже глубины промерзания, уплотняется по максимуму. С течением времени его состояние не меняется. При этом грунт, подверженный промерзанию, насыщается влагой и промерзая увеличивается в объеме за счет превращения в лед влаги, находящейся в порах (пучение). Замерзая, вода расширяется сама, и расширяет при этом поры: грунт становится пористым. 


 

Как зависит несущая способность грунта от глубины заложения фундамента

ВАЖНО:  значения R0, приведенные в таблице, определены для фундаментов шириной 1 м и глубиной заложения 2м.  При изменении ширины и глубины заложения фундамента, расчетное сопротивление  (R) вычисляется по формулам:

  • при глубине заложения менее 2 м:

             R R0 * [1 + k1*(– 100)/100] * (d +200)/2*200

  •  при глубине заложения более 2 м:

              R = R0 * [1 + k1 *(b — 100)/100] + k2*g*(d — 200), где

Коэффициент k1 равен:  0,125 — для оснований из крупнообломочных и песчаных грунтов, кроме пылеватых песков; 0,05 – из пылеватых песков, супесей, суглинков и глин;

Коэффициент k2 равен:  0,25 — для оснований из крупнообломочных и песчаных грунтов; 0,2 – из супесей и суглинков; 0,15 – из глин;

g— удельный вес грунта, расположенного выше подошвы фундамента, кг/см3;

b— ширина фундамента, см. Если подошва фундамента имеет круглое сечение или сечение правильного многоугольника площадью А, то ширина фундамента определяется по формуле  b=квадратный корень из А;

d– глубина заложения фундамента, см.

Как влияет сейсмичность на несущую способность грунта

При необходимости учета вибрационных нагрузок для постройки сейсмостойкого фундамента необходимо принимать во внимание, что при одновременном действии на грунт нагрузок от дома и вибраций происходит снижение прочности грунта, он приобретает свойства псевдожиткого состояния. Поэтому для учета возможного воздействия сейсмических нагрузок значение расчетного сопротивления делится на 1,5.

Подбор типа и параметров фундамента с учетом несущей способности грунта основания позволит избежать деформаций и смещений дома.

Несущая способность грунта таблица. Нагрузка на грунт. Определяем несущую способность разных грунтов.


Таблица несущей способности грунтов

Несущая способность грунта определяется на основе ряда характеристик почвы. Для того чтобы получить все необходимые показатели, потребуется выполнить ряд тестов. Они дадут возможность узнать точную несущую способность грунта на конкретном участке. Соответствующие эксперименты проводятся с почвой, полученной непосредственно на запланированном месте строительства.

Что такое несущая способность грунта?

Несущая способность грунта — это показатель давления, которое может выдерживать грунт. Его указывают либо в Ньютонах на квадратный сантиметр (Н/см²), либо в киолграмм-силе на 1 сантиметр квадратный (кгс/см²), либо в мегапаскалях (МПа).

Данная величина используется при проектировании фундаментов для сравнения нагрузки, которую оказывает на почву конструкция здания с учётом возможного слоя снега на крыше и давления ветра на поверхность стен. Даже при точном подсчете влияния каждого из указанных факторов на соотношение несущей способности поверхности земли на участке к совокупной нагрузке от конструкции здания, эту цифру берут с запасом.

Таблица средней несущей способности различных грунтов

Далее следует таблица с указанием средних цифр несущей способности или, как её ещё называют, расчетного сопротивления разных типов грунта в кгс/см².

Более точные расчеты с учётом всех коэффициентов, которые отображают влияние каждого существующего в реальных условиях фактора, можно выполнить следуя рекомендациям в нормативном своде правил за 2011 год СП 22.13330.2011 с названием Основания зданий и сооружений. Это официальное издание более старого стандарта СНиП 2.02.01-83*, выполненное научно-исследовательским институтом имени Н.М. Герсеванова.

В приведенной таблице отображены усреднённые результаты расчётов, проведенных с использованием формул и данных, основанных на описанном выше своде правил 2011 года.

Здесь можно видеть, что существует достаточно большой разброс в показателях сопротивления грунта. Это обусловлено в первую очередь влажностью почвы, которая непосредственно зависит от уровня залегания грунтовых вод.

Если нужно получить цифры в МПа или в Н/см², то можно перевести указанные в таблице значение согласно установленным соотношениям величин.

  • 1 кгс/см² = 0,098 МПа или 1 МПа = 10,2 кгс/см²
  • 1 кгс/см² = 9. 8 Н/см² или 1 Н/см² = 0.102 кгс/см²

Для удобства существует также таблица, где указаны средние цифры расчетного сопротивления грунта в Н/см²

Аналогичная проблема с таблицами подобного рода — очень существенное различие между минимальными и максимальными значениями. В общем случае рекомендуется брать минимальные показатели, которые указаны в табличных данных. Для примера разместим ещё одну таблицу, наглядно иллюстрирующую подход зарубежных специалистов к обнародованию данных своих исследований.

Очевидно, что табличные цифры используются, как правило, теми, кто принял решение не заказывать профессиональное геологическое исследование почвы на своём участке. Поэтому имеет смысл давать показатели с запасом, чтобы при самостоятельных расчетах, даже если в них закрадется небольшая погрешность, это не привело к непоправимым последствиям.

В то же время даже при значительном запасе по прочности не факт, что конструкция здания будет достаточно стабильно стоять на основании в течение десятков лет. За такой срок качество грунта может измениться, если не были соблюдены соответствующие меры по защите фундамента от скопления осадочных вод. Для этих целей обязательно следует изготавливать отмостку с хорошей гидроизоляцией и дренажную систему по периметру постройки для централизованного сбора стоков.

Уточнённая таблица с поправками на текучесть и пористость грунта

Существет ещё одна таблица несущей способности, позволяющая более точно определить цифры на участке, где известны коэффициенты пористости и показатели текучести почвы.

Влияние коэффициента текучести грунта на его несущую способность указаны в таблице. Средняя текучесть грунта зависит от его типа и коэффициента водонасыщения. Эти расчёты выполнить достаточно трудно, поэтому размещаем таблицы, которые описывают поведение образца грунта, характеризующее его текучесть.

Также расчетное сопротивление зависит от коэффициента пористости Е, который нужно устанавливать с помощью экспериментального взятия проб непосредственно на будущей строительной площадке.

Для теста потребуется взять кубик грунта 10х10Х10 см с объёмом О1 = 1000 см³ так, чтобы он не рассыпался. Далее этот кубик взвешивается и определяется его масса (М), после чего грунт измельчают. Затем, с помощью мерного стакана устанавливается объём измельченного грунта также в кубических сантиметрах (О2).

Далее нужно узнать объёмный вес исходного кубика (ОВ1) и измельченного грунта без пор (ОВ2). Для этого следует определенную вначале массу (М) разделить на (О1), чтобы получить (ОВ1) и затем разделить эту же величину (М) на (О2), чтобы получить (ОВ2). Исходный объём О1 изначально известен и равен 1000 см³, а объём измельченного грунта О2 берется из опыта с мерным стаканом.

  • ОВ1 = М/О1
  • ОВ2 = М/О2

Осталось только рассчитать пористость Е, которая равна 1 — (ОВ1/ОВ2)

Теперь, зная коэффициент текучести и пористость грунта, можно исходя из табличных цифр с определенной точностью сказать, какая именно несущая способность является расчетной именно для вашего участка. Если вы использовали экспериментальное выявление пористости, то убедитесь, что было проведено хотя бы 3 опыта, чтобы получить нужную величину с достаточно высокой точностью. При желании получить максимально близкие к реальности данные, используйте специальный калькулятор, где есть возможность указывать все влияющие на конечную цифру коэффициенты вот здесь.

silastroy.com

Фундамент и несущая способность грунта

 

Прибор для определения несущей способности грунта

При выборе типа и параметров  фундамента для строительства дома необходимо знать несущую способность грунта на строительном участке. В первую очередь исследуется тип грунта, затем определяется его несущая способность.

 

Для чего нужно определять несущую способность

Грунт состоит из твердых частиц и пор, заполненных водой или воздухом. Под действием нагрузки от дома объем грунта меняется за счет изменения объема пор – он уплотняется, а его пористость сокращается. При расчете нагрузок интерес для строителя представляют предельные нагрузки, т. е. нагрузки, увеличение которых приводит к потере устойчивости массива грунта.

Чаще всего нарушенное состояние равновесия приводит к большой осадке грунта  и его выпору из-под фундамента, смещению конструкций. Значительное смещение конструкций губительно для большинства сооружений. Поэтому так важно определить максимально возможную безопасную для грунта нагрузку, которая не нарушит его равновесие. 

Как определять несущую способность грунта

Осадки фундаментов принято рассчитывать по линейной зависимости между напряжениями и деформациями. В соответствии с рекомендациями СНиП 2.02.01-83* (п. 2.41.) среднее значения давления под подошвой фундамента не должно превышать расчетного сопротивления грунта основания. В соответствии с п. 2.42. и Приложения 3 СНиП 2.02.01-83*  расчетные сопротивления грунтов основания (R0) определяется по таблице:

Тип грунта

Расчетное сопротивление R0, кг/см2

Крупнообломочные 

Галечниковые (щебенистые) с песчаным заполнителем

6

Галечниковые (щебенистые) спылевато-глинистым заполнителем

4 — 4,5

Гравийные (дресвяные) с песчаным заполнителем

5

Гравийные (дресвяные) спылевато-глинистым заполнителем

3,5-4

Песчаные 

 

плотные

средней плотности

Крупные

6

5

Средней крупности

5

4

Мелкие маловлажные

4

3

Мелкие влажные и насыщенные водой

3

2

Пылеватые маловлажные

3

2,5

Пылеватые влажные

2

1,5

Пылеватые насыщенные водой

1,5

1

Пылевато-глинистые (непросадочные)

 

сухие

влажные

Супеси (коэффициент пористости 0,5) *

3

3

Супеси (0,7)

2,5

2

Суглинки (коэффициент пористости 0,5)

3

2,5

Суглинки (0,7)

2,5

1,8

Суглинки (1,0)

2

1

Глины (коэффициент пористости 0,5)

6

4

Глины (0,6)

5

3

Глины (0,8)

3

2

Глины (1,1)

2,5

1

Просадочные

 

сухие

влажные

Супеси природного сложения (плотностью в сухом состоянии 1,35 т/м3)

3

1,5

Супеси природного сложения (плотностью в сухом состоянии 1,55 т/м3)

3,5

1,8

Супеси уплотненные (плотностью в сухом состоянии 1,6 т/м3)

2

Супеси уплотненные (плотностью в сухом состоянии 1,7 т/м3)

2,5

Суглинки природного сложения (плотностью в сухом состоянии 1,35 т/м3)

3,5

1,8

Суглинки природного сложения (плотностью в сухом состоянии 1,55 т/м3)

4

2

Суглинки уплотненные (плотностью в сухом состоянии 1,6 т/м3)

2,5

Суглинки уплотненные (плотностью в сухом состоянии 1,7 т/м3)

3

* — коэффициент пористости показывает отношение объема пор к объему твердых частиц. Чем выше значение показателя, тем более рыхлый грунт. Оценить данный показатель самостоятельно можно только с некоторой долей допущения. При этом можно исходить из следующего:  грунт при увлажнении проседает и уплотняется. Так, пучинистый грунт, расположенный ниже глубины промерзания, уплотняется по максимуму. С течением времени его состояние не меняется. При этом грунт, подверженный промерзанию, насыщается влагой и промерзая увеличивается в объеме за счет превращения в лед влаги, находящейся в порах (пучение). Замерзая, вода расширяется сама, и расширяет при этом поры: грунт становится пористым. 

 

Как зависит несущая способность грунта от глубины заложения фундамента

ВАЖНО:  значения R0, приведенные в таблице, определены для фундаментов шириной 1 м и глубиной заложения 2м.  При изменении ширины и глубины заложения фундамента, расчетное сопротивление  (R) вычисляется по формулам:

  • при глубине заложения менее 2 м:

             R = R0 * [1 + k1*(b – 100)/100] * (d +200)/2*200

  •  при глубине заложения более 2 м:

              R = R0 * [1 + k1 *(b — 100)/100] + k2*g*(d — 200), где

Коэффициент k1 равен:  0,125 — для оснований из крупнообломочных и песчаных грунтов, кроме пылеватых песков; 0,05 – из пылеватых песков, супесей, суглинков и глин;

Коэффициент k2 равен:  0,25 — для оснований из крупнообломочных и песчаных грунтов; 0,2 – из супесей и суглинков; 0,15 – из глин;

g- удельный вес грунта, расположенного выше подошвы фундамента, кг/см3;

b- ширина фундамента, см. Если подошва фундамента имеет круглое сечение или сечение правильного многоугольника площадью А, то ширина фундамента определяется по формуле  b=квадратный корень из А;

d– глубина заложения фундамента, см.

Как влияет сейсмичность на несущую способность грунта

При необходимости учета вибрационных нагрузок для постройки сейсмостойкого фундамента необходимо принимать во внимание, что при одновременном действии на грунт нагрузок от дома и вибраций происходит снижение прочности грунта, он приобретает свойства псевдожиткого состояния. Поэтому для учета возможного воздействия сейсмических нагрузок значение расчетного сопротивления делится на 1,5.

Подбор типа и параметров фундамента с учетом несущей способности грунта основания позволит избежать деформаций и смещений дома.

podomostroim.ru

Несущая способность грунтов таблица — Фундамент своими руками

Таблица несущей способности грунтов

Несущая способность грунта определяется на основе ряда характеристик почвы. Для того чтобы получить все необходимые показатели, потребуется выполнить ряд тестов. Они дадут возможность узнать точную несущую способность грунта на конкретном участке. Соответствующие эксперименты проводятся с почвой, полученной непосредственно на запланированном месте строительства.

Что такое несущая способность грунта?

Несущая способность грунта — это показатель давления, которое может выдерживать грунт. Его указывают либо в Ньютонах на квадратный сантиметр (Н/см²), либо в киолграмм-силе на 1 сантиметр квадратный (кгс/см²), либо в мегапаскалях (МПа).

Данная величина используется при проектировании фундаментов для сравнения нагрузки, которую оказывает на почву конструкция здания с учётом возможного слоя снега на крыше и давления ветра на поверхность стен. Даже при точном подсчете влияния каждого из указанных факторов на соотношение несущей способности поверхности земли на участке к совокупной нагрузке от конструкции здания, эту цифру берут с запасом.

Таблица средней несущей способности различных грунтов

Далее следует таблица с указанием средних цифр несущей способности или, как её ещё называют, расчетного сопротивления разных типов грунта в кгс/см².

Более точные расчеты с учётом всех коэффициентов, которые отображают влияние каждого существующего в реальных условиях фактора, можно выполнить следуя рекомендациям в нормативном своде правил за 2011 год СП 22.13330.2011 с названием Основания зданий и сооружений. Это официальное издание более старого стандарта СНиП 2.02.01-83*, выполненное научно-исследовательским институтом имени Н.М. Герсеванова.

В приведенной таблице отображены усреднённые результаты расчётов, проведенных с использованием формул и данных, основанных на описанном выше своде правил 2011 года.

Здесь можно видеть, что существует достаточно большой разброс в показателях сопротивления грунта. Это обусловлено в первую очередь влажностью почвы, которая непосредственно зависит от уровня залегания грунтовых вод.

Если нужно получить цифры в МПа или в Н/см², то можно перевести указанные в таблице значение согласно установленным соотношениям величин.

  • 1 кгс/см² = 0,098 МПа или 1 МПа = 10,2 кгс/см²
  • 1 кгс/см² = 9. 8 Н/см² или 1 Н/см² = 0.102 кгс/см²

Для удобства существует также таблица, где указаны средние цифры расчетного сопротивления грунта в Н/см²

Аналогичная проблема с таблицами подобного рода — очень существенное различие между минимальными и максимальными значениями. В общем случае рекомендуется брать минимальные показатели, которые указаны в табличных данных. Для примера разместим ещё одну таблицу, наглядно иллюстрирующую подход зарубежных специалистов к обнародованию данных своих исследований.

Очевидно, что табличные цифры используются, как правило, теми, кто принял решение не заказывать профессиональное геологическое исследование почвы на своём участке. Поэтому имеет смысл давать показатели с запасом, чтобы при самостоятельных расчетах, даже если в них закрадется небольшая погрешность, это не привело к непоправимым последствиям.

В то же время даже при значительном запасе по прочности не факт, что конструкция здания будет достаточно стабильно стоять на основании в течение десятков лет. За такой срок качество грунта может измениться, если не были соблюдены соответствующие меры по защите фундамента от скопления осадочных вод. Для этих целей обязательно следует изготавливать отмостку с хорошей гидроизоляцией и дренажную систему по периметру постройки для централизованного сбора стоков.

Уточнённая таблица с поправками на текучесть и пористость грунта

Существет ещё одна таблица несущей способности, позволяющая более точно определить цифры на участке, где известны коэффициенты пористости и показатели текучести почвы.

Влияние коэффициента текучести грунта на его несущую способность указаны в таблице. Средняя текучесть грунта зависит от его типа и коэффициента водонасыщения. Эти расчёты выполнить достаточно трудно, поэтому размещаем таблицы, которые описывают поведение образца грунта, характеризующее его текучесть.

Также расчетное сопротивление зависит от коэффициента пористости Е, который нужно устанавливать с помощью экспериментального взятия проб непосредственно на будущей строительной площадке.

Для теста потребуется взять кубик грунта 10х10Х10 см с объёмом О1 = 1000 см³ так, чтобы он не рассыпался. Далее этот кубик взвешивается и определяется его масса (М), после чего грунт измельчают. Затем, с помощью мерного стакана устанавливается объём измельченного грунта также в кубических сантиметрах (О2).

Далее нужно узнать объёмный вес исходного кубика (ОВ1) и измельченного грунта без пор (ОВ2). Для этого следует определенную вначале массу (М) разделить на (О1), чтобы получить (ОВ1) и затем разделить эту же величину (М) на (О2), чтобы получить (ОВ2). Исходный объём О1 изначально известен и равен 1000 см³, а объём измельченного грунта О2 берется из опыта с мерным стаканом.

Осталось только рассчитать пористость Е, которая равна 1 — (ОВ1/ОВ2)

Теперь, зная коэффициент текучести и пористость грунта, можно исходя из табличных цифр с определенной точностью сказать, какая именно несущая способность является расчетной именно для вашего участка. Если вы использовали экспериментальное выявление пористости, то убедитесь, что было проведено хотя бы 3 опыта, чтобы получить нужную величину с достаточно высокой точностью.

Таблица несущей способности грунтов

Таблица несущей способности грунтов Несущая способность грунта определяется на основе ряда характеристик почвы. Для того чтобы получить все необходимые показатели, потребуется выполнить ряд

Источник: silastroy.com

Таблица несущей способности различных грунтов

Прежде чем начинать строить дом, необходимо знать площадь опоры под него. Площадь опоры фундамента на грунт может быть различной. Практически это зависит от характеристик грунта. При уменьшении несущей способности почвы увеличивается площадь опоры фундамента. Способность различных видов грунта выдерживать нагрузку зависит от влажности, плотности и вида почвы на участке. Она оценивается в кг/см2.

Влажность грунта зависит от того, как расположены грунтовые воды.

Если влажность становится больше, то несущая способность почвы становится меньше. Определить влажность можно самостоятельно. Лопатой или буром выкапывается скважина или яма. Если через какой то период времени в ней появляется вода – грунт влажный, а если ее нет, то он сухой.

Ниже приводится таблица плотности и несущей способности разных грунтов.

При разработке проекта дома для примерного расчета фундамента, как правило, несущую способность принимают 2 кг/см2.

Таблица несущей способности различных грунтов

Что такое несущая способность грунта. От каких факторов она зависит. Таблица плотности и несущей способности различных грунтов.

Источник: moi-fundament.ru

postroifundament.ru

как рассчитать, чтобы не прогадать

Мало построить дом – нужно построить его так, чтобы с годами в стенах не появились трещины, а само жилище не стало «проседать» и разрушаться. На практике такое случается нередко, а все – из-за ошибок, допущенных при закладке фундамента. В том числе, при оценке такого важного показателя как несущая способность грунта, находящегося под будущим домом. Чтобы верно его рассчитать, необходимо учесть несколько основополагающих факторов, а именно: тип, плотность и увлажненность грунта.

Говорим на языке специалистов

Разрушение дома из-за иного грунта

Твердые составляющие и капилляры, заполненные воздухом и влагой, – вот, то такое грунт. Он не имеет постоянной величины и под воздействием веса фундамента, здания, его «начинки», а также снежного покрова меняет объем, что ведет к смещению конструкций.

Когда столбик термометра за окном опускается ниже нулевой отметки, грунт может пучиниться и подниматься. Это связано с тем, что влага при минусовых температурах превращается в лед, что приводит к разрушению фундамента.

Выяснив несущую способность, можно определить, какую нагрузку способен выдержать грунт без негативных последствий для находящихся на нем построек. Основная единицы измерения – т/м2 или кг/см2. При расчетах действует принцип обратной пропорции: чем хуже он выдерживает нагрузку, тем масштабней должна быть площадь будущего фундамента. Главное же правило гласит, что среднее значения давления под подошвой не должно превышать расчетного сопротивления грунта основания.

Разновидности грунтов

Существует две основных группы, которые, в свою очередь, также делятся на несколько разновидностей.

Песчаные (осадка происходит быстро):

  • гравелистые и крупные — имеют высокую несущую способность, не теряют своих свойств даже при достаточно сильном увлажнении;
  • средней крупности — при обилии влаги несущая способность значительно снижается;
  • мелкие и пылеватые — характеризуются низкой несущей способностью.

Работа на глинистой почве

Глинистые (осадка происходит медленно):

  • глины – с одной стороны, они «вязкие» по консистенции, поэтому рекомендованные для строительства; с другой — могут содержать высокое количество влаги, а значит, подвержены морозному пучению;
  • суглинки – подвержены пучению в средней степени;
  • супеси – менее всего подвержены пучению.

Скальные (можно не бояться осадки). На самом деле это не совсем грунт, а сплошная горная порода. Он обладает огромным количеством преимуществ, в том числе: не пропускает воду, не сжимается, не пучинится при морозе и не накапливает влагу.

Крупнообломочные, или конгломераты (риск осадки фундамента сводится к нулю). Он состоит из различных «ингредиентов»: камней, щебенки, гравия и т.д. Если он имеет включения песка, то будет подвержен вспучиванию; если содержит в своем составе глину – грунт будет непучинистым.

И, наконец, торфяные. Они рыхлые, сжимаются неравномерно, а потому абсолютно не подходят для строительства. Такой грунт необходимо либо снять, либо максимально обжать и уплотнить.

Как определить тип грунта?

Большинство строителей-«любителей» определяют тип грунта на глаз и на ощупь. Для этого на участке пробуривается скважина глубиной до двух метров в среднем. Дальнейшая логика понятна:

Разновидности грунтов

  1. «песчанка» в основном состоит из частиц различных фракций. Если намочить крупнозернистый песок, то даже в таком состоянии из него будет сложно что-либо слепить.
  2. супесь: в сухом состоянии ее удастся скатать в комочек, однако он быстро рассыпается.
  3. суглинок более пластичный, но если сдавить комок, то можно получить потрескавшуюся лепешку;
  4. шарик, полученный из глины, при раздавливании также превращается в лепешку, но без трещин по краям.

Скальные и крупнообломочные типы грунтов определить еще легче благодаря их специфической структуре.

Однако надежней всего воспользоваться услугами профессионалов – геологов, которые с максимальной точностью определят, к какой категории можно отнести грунт, находящийся на том или ином участке.

В центре внимания – сейсмичность

Прочность грунта снижается там, где существует вероятность подземных вибраций. В подобных случаях он приобретает пагубные свойства псевдожидкого состояния, и также неспособен выдержать большие нагрузки. Поэтому, если стройка ведется там, где нередко случаются землетрясения, при расчетах необходимо учитывать еще один показатель – сейсмичность. Он определяется следующим образом: расчетное сопротивление делится на 1,5.

Все дело в водах

Еще один важнейший показатель, характеризующий способность грунта выдерживать большие нагрузки, — уровень залегания подземных вод, или УГВ. Данный показатель свидетельствует, на какой глубине ниже уровня земли находится первый водоносный слой. Чем он выше – тем хуже показатели несущей способности грунта. Кроме того, высокий УГВ – это стопроцентная гарантия того, что без регулярного дренажа и качественной гидроизоляции цокольные этажи и подвалы дома периодически будут затапливаться.

Определить УГВ можно с помощью инженерных изысканий, либо самостоятельно. Первый признак – пышная растительность на участке строительства. Но более надежный способ – пробурить скважину глубиной 2-2,5 метра и в течение суток наблюдать за ее состоянием. Уровень воды, скопившейся за это время, и станет показателем УГВ, который следует брать в расчет при проектировке фундамента.

Закрепляющий эффект

«Слабый» грунт – не приговор, а руководство к решительным действиям. Его можно закрепить с помощью ряда мероприятий. Но для начала необходимо подготовить основания под будущий фундамент. Существует несколько способов добиться желаемого эффекта:

  1. Осушение – для этого необходимо организовать на участке осушительные и дренажные канавы.
  2. Грунтовая подушка – слабая «основа» под дом меняется на слой из строительных отходов, крупных камней, гравия и т.д.
  3. Уплотнение – осуществляется с помощью виброплит или катков (кулачковых, пневмоколесных, решетчатых и с гладкими вальцами).
  4. Закрепление – практикуется лишь крупными строительными организациями, оснащенных соответствующим оборудованием и использующих определенные вяжущие материалы. В арсенал методов по закреплению входят: силикатизация, смолизация и битуминизация.

Основные ошибки, которые нельзя допускать

ФУНДАМЕНТально о грунте

При строительстве важна каждая деталь, и данные о несущей способности грунта – основополагающие величины, которые следует рассматривать при закладке фундамента. Состояние грунта характеризуется его:

  • плотностью и пористостью
  • сезонной влажностью;
  • уровнем подземных вод.

Максимально плотный и утрамбованный грунт, с низким уровнем влажности способен выдержать самые высокие нагрузки. Таким образом, наилучшей несущей способностью обладают скальные породы и конгломераты; чуть хуже «ведут» себя гравелистые и крупные песчаные, а также глинистые грунты (при низком уровне залегания подземных вод). Зато от строительства на черноземах и торфах лучше отказаться.

Определить тип грунта и уровень залегания вод, влияющих на его состояние, можно своими силами. Но целесообразней обратиться к специалистам, которые проведут инженерно-геологические изыскания и дадут точную оценку.

При строительстве необходимо также учитывать уровень сейсмичности на данном участке.

Если в силу своей специфики грунт не в состоянии выдерживать большие нагрузки, его можно закрепить. Для этого существует несколько способов, актуальных как в случае частного строительства малоэтажного жилья, так и при возведении многоэтажек.

nafundamente. ru

Таблица несущей способности различных грунтов

Прежде чем начинать строить дом, необходимо знать площадь опоры под него. Площадь опоры фундамента на грунт может быть различной. Практически это зависит от характеристик грунта. При уменьшении несущей способности почвы увеличивается площадь опоры фундамента. Способность различных видов грунта выдерживать нагрузку зависит от влажности, плотности и вида почвы на участке. Она оценивается в кг/см2.

Влажность грунта зависит от того, как расположены грунтовые воды.

Если влажность становится больше, то несущая способность почвы становится меньше. Определить влажность можно самостоятельно. Лопатой или буром выкапывается скважина или яма. Если через какой то период времени в ней появляется вода – грунт влажный, а если ее нет, то он сухой.

Ниже приводится таблица плотности и несущей способности разных грунтов.

Вид грунтаПлотный грунтГрунт средней плотности
Песок крупный65
Песок среднего размера54
Супесь(сухая)32. 5
Супесь влажная (пластичная)2.52
Мелкий песок (маловлажный)43
Мелкий песок (влажный)32
Глина (сухая)62.5
Глина влажная (пластичная)41
Суглинок (сухой)32
Суглинок влажный (пластичный)31

При разработке проекта дома для примерного расчета фундамента, как правило, несущую способность принимают 2 кг/см2.

Полезные статьи
Раздел: Грунт под фундамент дома Метки: вид грунта, грунт

moi-fundament.ru

Нагрузка на грунт. Определяем несущую способность разных грунтов.

Карта сайта

Показатель несущей способности видов грунта показывает собой характеристику, для правильного выполнения строительства. Она характеризует собой нагрузку, которую может выдержать грунт на единицу площади. Она измеряется в т/м² или кг/см².

В таблице показаны показатели несущей способности, кг/см².

* Таблица адаптирована с упрощением из СНиП 2.02.01-83. Приложение №3.

При увеличении влажности почвы, несущая способность грунта уменьшается в значительной степени. Наиболее устойчивые к влажности в этом отношении являются пески, однако стоит учитывать, что это выполняется только на крупных и среднекрупных песках.

Максимальная нагрузка на грунт может определяться не только геологами, но и вами самостоятельно. При самостоятельном исследовании есть возможность определить виды грунта и самостоятельно. Для этого можно воспользоваться буром или лопатой и выкопать яму в глубину порядка двух метров, что будет соответствовать условиях Подмосковья ниже глубины промерзания и этого достаточно.

Если выполнять эти работы летом, то сразу можно определить есть вода или нет на этом уровне, это весьма важно.

Рассматривая грунт можно визуально определить наличие песка, глины и их примесей. От этого зависит несущая способность, поэтому этот момент очень важен.

Почвы как супеси имеют в своем составе немного больше глины, однако ее количество не превышает 10 процентов от объема. При высыхании она крошится, однако обладает достаточной вязкостью, чтобы из нее можно было слепить шарик.

Суглинки имеют больший процент, который составляет примерно 10-30 процентов от объема. Вследствие чего этот грунт более пластичен, слепленный из такого состава шарик обладает пластичностью, но все же трескается по краям, если его сплющить.

Глина самая пластичная, слепленный из нее шар и раздавленный, не трескается по краям.

Плотность грунта постоянно меняется и не постоянен в зависимости от глубины залегания.

Глубоко залегаемый слой считается довольно плотным и нагрузка на грунт, которую он может выдержать довольно высока, это связано с тем, что поверхностные слои (плодородный слой и т. д.) давят с довольно существенной силой вниз.

Если извлечь грунт при бурении, то на поверхности плотность его теряется и он становиться рыхлым, поэтому плотность необходимо замерять непосредственно на той глубине, на которой планируется возводить фундамент. Можно взять, расчет небольшие допущения и рассчитывая, несущую способность, принять, что на глубине 0,8 и ниже плотный грунт, на результате расчета это принципиально не отразится.

Хочется заметить, что те, кто не проводят анализ грунта, хотя бы на глаз, весьма рискуют, это приводит к существенным ошибкам в строительстве, которые могут открыться только в период эксплуатации здания.

Для дачного строительства в расчетах можно применить более приблизительные, данные. Как правило, несущую нагрузку на грунт считают равной 2 кг/см².

Вернуться на Главную страницу.

www.apostroy.ru

Расчет несущей способности грунта

Несущая способность грунта – это необходимая характеристика, необходимая при строительстве дома, которая показывает, какую нагрузку может выдержать единица площади грунта. Так же она определяет опорную площадь фундамента дома, чем хуже способность грунта, тем больше должна быть площадь фундамента.

Несущая способность грунта зависит от следующих факторов:
  • Типа грунта.
  • От степени уплотненности и насыщенности грунта влагой.

Несущие способности различных грунтов

Тип грунтаПлотный, кг/см²Средней плотности, кг/см²
Крупный гравелистый песок65
Песок средней крупности54
Мелкий маловлажный песок43
Мелкий песок, насыщенный влагой32
Супеси сухие32,5
Супеси, насыщенные влагой (пластичные)2,52
Суглинки сухие32
Суглинки, насыщенные влагой (пластичные)31
Глины сухие62,5
Глины, насыщенные влагой (пластичные)41

Увеличение влажности грунта обязательно снижает в несколько раз его несущую способность. Пески средней крупности и крупные пески не меняют своих свойств, при увеличении влажности. Избыточная влажность грунта, как правило, зависит от наличия грунтовых вод на участке.

Узнать несущую способность грунта можно при помощи специалистов, или самостоятельно. Для этого необходимо земляным буром пробурить скважину в земле глубиной 2 метра. Это позволит определить тип грунта и его увлажненность.

Песок от глины отличить легко, в песке ясно видны отдельные песчинки. Крупный песок имеет размер частиц от 0,25 до 5 мм, средний – до 2 мм. Супесь содержит до 10% глинистых частиц. Суглинок содержит глинистых частиц до 30%. Глина – самый пластичный грунт, его легко можно скатать в шарик, а при его сжатии по краям не появятся трещины.

Влажность грунта можно определить визуально, если в вырытой яме сухо – грунт сухой, если же в яме через некоторое время скапливается вода – грунт насыщен влагой.

Во время строительных работ далеко не всегда исследуется несущая способность грунта, обычно используют приблизительные расчеты 2 кг/см².

Необходимо рассчитывать несущую способность грунта при следующих видах строительных работ:
  • Реконструкция, так как при возведении надстроек или пристроек возможно увеличение нагрузки на существующий фундамент.
  • Перепланировка, так как меняется нагрузка на фундамент за счет перегородок и стяжек.
  • Капитальный ремонт, при замене перекрытий или установке дополнительного оборудования увеличивается нагрузка на фундамент.
  • При проседании грунта.
  • При появлении трещин в фундаменте.

Расчет несущей способности грунта необходимо проводить совместно с анализом грунта.

nenovost.com

Несущая способность оснований фундаментов: расчет

Последствия неправильного расчета несущей способности фундамента

Сразу же после сдачи любого сооружения в эксплуатацию, происходит процесс медленного опускания фундамента за счет прикладываемых нагрузок. Фундамент всегда опускается на расчетную глубину, это значение всегда учитывается и закладывается при проведении расчетов.

Большие, неравномерные осадки оснований влекут за собой деформацию конструкций с дальнейшим разрушением здания. Как правило причина кроется в неправильном расчете несущей способности фундаментов, а также из-за ошибок в расчетах допустимых нагрузок на грунты.

Необходимость геологических исследований

Для определения типа фундаментов, а также в расчете ориентировочной просадки грунтов зоны строительства, в обязательном порядке проводятся геологические исследования. С их помощью определяется тип почвы, глубина промерзания, уровень залегания грунтовых вод, структура грунта и прочие параметры. Поэтому несущая площадь фундамента должна быть такой, чтобы ее масса вместе с будущим зданием не превышала расчетное сопротивление грунта на строительной площадке.

Только тогда получится качественный, надежный фундамент, способный выдерживать горизонтальные и вертикальные нагрузки. При этом строить дополнительные этажи без укрепления существующего фундамента запрещено, так как в таком случае резко увеличивается масса объекта в целом.

Что подразумевают под расчетной способностью грунтов?

Данные о несущей способности различных типов грунта для расчета фундамента

Несущую способность грунтов оценивают в комплексном порядке при расчете фундаментов и сооружений. Главная цель такого расчета – это обеспечить прочность, устойчивость грунтов под подошвой фундамента, не допустить сдвиг здания по подошве в любую сторону.

Нарушение правильного состояния здания может привести не только к накоплению осадок, но впоследствии к нарушению конструкции самого основания. На фундамент также влияют вертикальные, горизонтальные нагрузки со стороны почвы и самого здания, поэтому грунт может просто не справиться с такой массой. Именно по этой причине особое внимание уделяют расчетам несущей способности оснований фундаментов, чтобы максимально определить допустимую зону нагрузки и защитить грунт от полного разрушения.

Какие факторы влияют на состояние грунта и основания?

Таблица с указанием допустимой нагрузки на грунт для расчета несущей способности основания

На несущую способность влияет огромное количество различных факторов, среди которых стоит отметить:

  • вид и характер нагрузок − вертикальная, наклонная, горизонтальная или, непосредственно, нагрузка под подошвой;
  • распределение центра тяжести площади фундамента относительно эксцентричной нагрузки;
  • размеры, характеристики, габариты и материал выполнения подошвы;
  • структура грунта;
  • форма подошвы;
  • глубина погружения основания в грунт, а также наличие под подошвой мягких осадочных пород с малой сопротивляемостью;
  • насколько ровно расположена подошва относительно горизонтали;
  • степень однородности почвы;
  • наличие внешних факторов, которые могут нанести вред подошве, такие как вибрация, сейсмические сдвиги, сезонный подъем грунтовых вод.

Все расчеты несущей способности оснований нужно делать по СНиП 2.02.01-83. Поэтому, обеспеченная несущая способность вычисляется по формуле:   F ≤ YcFu/Yn, где:

  • F – это равнодействующая сила, она должна быть разнонаправлена к основной нагрузке;
  • γс – коэффициент условий работы;
  • Fu— это максимальное сопротивление основания всем нагрузкам;
  • γn— коэффициент надежности по назначению сооружения, принимается равным 1,2; 1,15; 1,10 для сооружений I, II и III классов соответственно.

Когда нужно делать расчет оснований на несущую способность


Чертеж расчета фундамента по несущей способности

  1. Если на существующее или новое основание воздействуют значительные горизонтальные нагрузки, особенно от строящихся по соседству домов или регулярные вибрации от автомагистралей, промышленных предприятий.
  2. Сооружение было построено на уклоне или откос образовался со временем, обнажив внешнюю часть основания.
  3. Если подошва фундамента установлена на влагонасыщенных почвах.
  4. Когда на основание может воздействовать выталкивающая сила различного происхождения.
  5. Если нужно проверить устойчивость естественных и искусственных склонов.

Если на строительной площадке или в фундаменте существующего здания уже появились видимые деформации конструкций, всегда сначала обращают внимание на состояние почвы под подошвой и определяют их состояние. Поэтому, по нормативам существует сразу несколько различных видов деформаций почвы, которые зависят от внутренних и внешних факторов.

Этапы деформаций грунтов в классическом виде

Схема развития деформаций и возможных перемещений грунта при неправильном расчете несущей способности

В современной литературе принято различать три основных фазы деформирования грунтов:

  1. Начальная. Это этап уплотнения почвы под влиянием внешних факторов, происходит из-за уменьшения пор между частицами почвы под подошвой. Фаза отличается тем, что сейчас не происходит сдвига фундамента, ведь все касательные нагрузки равноценные и компенсируются нагрузкой. Но нагрузка всегда возникает спонтанно, она распределяется неравномерно. В результате, в одной точке деформация может быть незначительной, а в другой – сильной. Как итог – происходят сдвиги основания.
  2. Вторая стадия – фаза сдвига подошвы основания. По мере увеличения нагрузок грунт сжимается все сильнее, захватывает новые районы, происходит значительный сдвиг подошвы в сторону большей нагрузки. Нарушается стандартное равновесие, под подошвой образуется плотный шар почвы, а по сторонам – пустое пространство. Материал фундамента стремится занять освободившееся место за счет естественных сил тяготения, поэтому возникают трещины и разрывы в основании, а затем в несущих стенах дома.
  3. Третья фаза – это разрушение подошвы. Тут уже материал подошвы выпирает плотный шар грунта и сразу деформируется.

Такая ситуация возникает с теми фундаментами, которые заложены выше граничной глубины промерзания почвы или сверху над горизонтами грунтовых вод. Немного иная картина происходит с глубоко заложенными основаниями. В таких случаях под подошвой также образуется плотный слой грунта, но его не выпирает на поверхность из-за большой площади перекрытия подошвы. Поэтому такой фундамент обладает лучшими несущими способностями, чем мелкозаглубленный.

Если начинается процесс деформации грунтов, то его порой остановить уже нет возможности. Единственный выход, это устраивать специальные защитные конструкции, способные нивелировать нагрузки или по максимуму снизить их воздействие.

Влияние размеров фундамента на несущую способность основания

Графическое изображение зависимости осадки основания фундамента от несущей нагрузки

Некоторые строители вынуждены для одного сооружения использовать сразу несколько различных видов фундаментов. Причем расчеты нужно делать для каждой подошвы индивидуально. Также возможно применение оснований с длиной, значительно превышающих их ширину.

Графики указывают, что с увеличением ширины фундамента увеличивается объем грунта, способного привести к разрушению подошвы. Поэтому при абсолютно одинаковых условиях и составу грунта, узкие фундаменты менее склонны к деформации, чем широкие.

Также несущая способность оснований зависит от их формы и используемых строительных материалов. Если два фундамента имеют абсолютно одинаковые размеры, одинаково заглублены в грунт, но один имеет длину и ширину практически одинаковую, а другой – более длинный, тогда первая конструкция будет создавать большую нагрузку на грунт, чем другая.

Причина кроется в особенностях подошвы. Для деформации и сдвига квадратного или круглого фундамента нужно затратить больше энергии, чем для ленточного длинного. Также необходимо учесть, что на песчаное основание размеры и форма фундамента влияет больше, чем на глинистые грунты.

Как влияет глубина заложения фундамента на несущую способность оснований

Эскиз неравномерного поднятия дна котлована из-за неправильного расчета несущей способности основания

Почему глубоко погруженные основания менее склонны к разрушениям, чем мелкозаглубленные? Ведь мелкие основания нужно обязательно укреплять, подбирать оптимальную конструкцию свай и делать сложные расчеты. Причина здесь кроется в характере поведения грунтов на различных глубинах.

Так для песчаных оснований увеличение глубины погружения фундамента ведет за собой снижение осадки, а вот несущая способность резко увеличивается. Аналогичная ситуация наблюдается с любыми иными почвами, в составе которых есть песок в больших количествах.

Поэтому в зависимости от глубины заложения, различают мелкие и глубокие основания. Понятно, что для каждого типа приходится использовать свои строительные материалы и технику, но при этом надежность конструкций отличается в несколько раз.

Как происходит деформация песчаных грунтов под подошвой фундаментов мелкого заглубления? Сначала происходит укрупнение почвы под подошвой, затем она клиньями поднимается по разные стороны конструкции и формирует свободную полость под подошвой. Поэтому даже незначительные сдвиги и подвижки почвы, повлекут за собой частичное разрушение несущих конструкций. Часто наблюдаются сдвиги и провалы.

А вот фундаменты глубокого заложения разрушить значительно сложнее. Смещение почвы будет практически полностью нейтрализовано вертикальным перемещением почвы по сторонам поверхности основания, и в данном случае могут быть только локальные уплотнения почвы. Разрушение фундамента в третьей фазе деформации почвы имеет спокойный характер. Зависимость глубины фундамента от осадки на глинистых почвах практически не проявляется.

Таким образом, несущая способность оснований – это важный показатель состояния грунтов и пренебрегать им нельзя. Если правильно сделать расчет и учесть все факторы, то уже по готовому результату можно подобрать не только оптимальные размеры и форму будущего фундамента, но и обнаружить скрытые проблемы в уже существующем. И в дальнейшем оперативно принять меры по срочному ремонту или усилению конструкций, чтобы они не деформировались от внешнего воздействия.

Прежде чем делать фундамент. Как своими руками определить несущую способность грунта | Фишки Ремонта

Частное строительство сейчас всё чаще проходит в режиме тотальной экономии. Вместо широко распространенного ранее ленточного фундамента делают свайный. Устраивают мелкозаглубленные ленты вместо того, чтобы заглубиться ниже промерзания. Отказываются от геологических изысканий и строят на свой страх и риск.

У «стариков» подсмотрел кустарный способ определения несущей способности грунта своими руками. Рекомендовать его, как замену полноценной геологии не могу. Но если вы однозначно решили не заказывать изыскания, проверить себя сможете.

Как определить несущую способность грунта

Копаем котлован или бурим яму до уровня заглубления фундамента.

На арматуру или шпильку диаметром 10-16 мм навариваем небольшую площадку для груза. Штырь опираем на грунт основания и начинаем нагружать (добавляем пригруз на площадку). Фиксируем при какой нагрузке конструкция начнет погружаться в основание.

Чтобы зафиксировать перемещение, устанавливаем на поверхности неподвижную опору: столб, штатив и т.д. Удобно фиксировать перемещение лазерным уровнем.
Измерения делаем в нескольких точках.

Несущую способность определяем, как нагрузку от конструкции поделенную на площадь поперечного сечения, вдавливаемой в грунт арматуры (шпильки). В расчет подставляем нагрузку, предшествующую той при которой стержень продавил грунт. Учитываем вес пригруза и арматуры с площадкой.

Пример.
Вес арматуры с грузом — 9кг.
Площадь поперечного сечения арматуры ф10 мм — 0,785 см2 (по таблице или формуле: 3,14 умножить на радиус в квадрате).
9 кг / 0,785 см2 = 11,4 кг/см2

Как определить выдержит ли постройку грунт

По СНиП рассчитываем нагрузку, которая будет действовать на грунт. Надо учесть постоянные и временные нагрузки от каждого элемента.

Чтобы грубо прикинуть нагрузку, складываем вес всех конструкций: стены (включая штукатурку), перекрытия (включая конструкцию пола), крышу (покрытие, стропила, утепление) и т.д. Если речь идет о каменной постройке, полученный результат умножаем на два. Это учтет временные нагрузки и коэффициенты запаса прочности.

Высчитываем площадь опирания на грунт. Для ленточного фундамента это площадь ленты. Для свайного — произведение площади одной сваи на их количество.

Делим вес постройки на площадь фундамента.
Например, получили вес 15 000 кг при площади фундамента 1 800 см2.
15 000 кг / 1 800 см2 = 8,3 кг/см2

В нашем случае нагрузка от строения (8,3) меньше, чем несущая способность грунта (11,4). Можно сказать, что основание выдержит.

У такого способа большие погрешности. Использовать его можно для хозпостроек, крылец, беседок и т.д. В случае со строительством дома, вы можете проверить себя, если до этого однозначно решили геологию не заказывать. Грунт не прошел проверку даже при самостоятельном определении несущей способности — идем к геологам и проектировщикам!

На этом у меня все. Спасибо, что дочитали! Если статья понравилась, подписывайтесь на канал и ставьте палец вверх👍. Напомню, теперь есть и группа в ВК. Заходите.

Как рассчитать несущую способность грунта

Обновлено 28 декабря 2020 г.

Автор С. Хуссейн Атер

Несущая способность грунта определяется уравнением

Q_a = \ frac {Q_u} {FS }

, где Q a — допустимая несущая способность (в кН / м 2 или фунт / фут 2 ), Q u — предельная несущая способность (в кН / м 2 или фунт / фут 2 ), а FS — коэффициент безопасности.Предел несущей способности Q и является теоретическим пределом несущей способности.

Подобно тому, как Пизанская башня наклоняется из-за деформации почвы, инженеры используют эти расчеты при определении веса зданий и домов. Когда инженеры и исследователи закладывают фундамент, они должны убедиться, что их проекты идеально подходят для той почвы, которая поддерживает их. Несущая способность — это один из методов измерения этой прочности. Исследователи могут рассчитать несущую способность почвы, определив предел контактного давления между почвой и помещенным на нее материалом.

Эти расчеты и измерения выполняются на проектах, касающихся фундаментов мостов, подпорных стен, плотин и подземных трубопроводов. Они опираются на физику почвы, изучая природу различий, вызванных давлением поровой воды материала, лежащего в основе фундамента, и межкристаллитным эффективным напряжением между самими частицами почвы. Они также зависят от жидкостной механики пространства между частицами почвы. Это объясняет растрескивание, просачивание и сопротивление сдвигу самой почвы.

В следующих разделах более подробно рассматриваются эти вычисления и их использование.

Формула несущей способности грунта

Фундаменты мелкого заложения включают ленточные, квадратные и круглые фундаменты. Глубина обычно составляет 3 метра, что позволяет получить более дешевые, реалистичные и легко переносимые результаты.

Теория предельной несущей способности Терзаги предполагает, что вы можете рассчитать предельную несущую способность для неглубоких сплошных фундаментов Q u с

Q_u = cN_c + gDN_q + 0.5gBN_g

, где c — сцепление почвы (в кН / м 2 или фунт / фут 2 ), г — эффективный удельный вес грунта (в кН / м 3 или фунт / фут 3 ), D — это глубина опоры (в метрах или футах), а B — ширина опоры (в метрах или футах).

Для неглубоких квадратных фундаментов уравнение: Q u с

Q_u = 1,3cN_c + gDN_q + 0,4gBN_g

, а для неглубоких круглых фундаментов уравнение:

Q_u = 1.{2 \ pi (0,75- \ phi ‘/ 360) \ tan {\ phi’}}} {2 \ cos {(2 (45+ \ phi ‘/ 2))}}

N c Равно 5,14 для ф ‘= 0 и

N_C = \ frac {N_q-1} {\ tan {\ phi’}}

для всех других значений ф ‘, Ng :

N_g = \ tan {\ phi ‘} \ frac {K_ {pg} / \ cos {2 \ phi’} -1} {2}

K pg получается из графического представления величин и определение того, какое значение K pg учитывает наблюдаемые тенденции.Некоторые используют N г = 2 (N q +1) tanф ‘/ (1 + .4sin4 ф’) в качестве приближения без необходимости вычислять K pg .

Могут быть ситуации, в которых грунт проявляет признаки местного разрушения сдвигом . Это означает, что прочность грунта не может показать достаточную прочность для фундамента, потому что сопротивление между частицами в материале недостаточно велико. В этих ситуациях предельная несущая способность квадратного фундамента составляет Q u =.867c N c + g DN q + 0,4 g BN g , сплошной фундамент i s Qu = 2 / 3c Nc + g D Nq + 0,5 g B Ng и круглый фундамент равен Q u = 0,867c N c + g DN q + 0,3 г BN g .

Методы определения несущей способности грунта

Фундаменты глубокого заложения включают фундаменты опор и кессоны.Уравнение для расчета предельной несущей способности этого типа грунта: Q u = Q p + Q f , где Q u — предельная несущая способность (в кН / м 2 или фунт / фут 2 ), Q p — теоретическая несущая способность конца фундамента (в кН / м 2 или фунт / фут 2 ) и Q f — теоретическая несущая способность из-за трения вала между валом и почвой.Это дает вам другую формулу для несущей способности грунта

Вы можете рассчитать теоретическую концевую несущую способность фундамента Q p как Q p = A p q p Где Q p — теоретическая несущая способность для концевого подшипника (в кН / м 2 или фунт / фут 2 ) и A p — эффективная площадь наконечник (в метрах 2 или в футах 2 ).

Теоретическая единица несущей способности несвязных илых грунтов q p составляет qDN q , а для связных грунтов — 9c, (оба в кН / м 2 или фунт / фут 2 ). D c — критическая глубина для свай в рыхлом иле или песках (в метрах или футах). Это должно быть 10B для рыхлых илов и песков, 15B для илов и песков средней плотности и 20B для очень плотных илов и песков.

Для фрикционной способности обшивки (вала) свайного основания теоретическая несущая способность Q f составляет A f q f для одного однородного слоя грунта и pSq f L для более чем одного слоя почвы. В этих уравнениях A f — эффективная площадь поверхности ствола сваи, q f kstan (d) , теоретическая единица трения для несвязных грунтов. (в кН / м 2 или фунт / фут), где k — боковое давление грунта, s — эффективное давление покрывающих пород и d — угол внешнего трения (в градусах). ). S — это сумма различных слоев почвы (например, a 1 + a 2 + …. + a n ).

Для илов эта теоретическая емкость составляет c A + kstan (d) , где c A — это адгезия. Он равен c, — сцепление грунта для грубого бетона, ржавой стали и гофрированного металла. Для гладкого бетона значение .8c от до c , а для чистой стали — от . 5c до .9c . p — периметр поперечного сечения сваи (в метрах или футах). L — эффективная длина сваи (в метрах или футах).

Для связных грунтов: q f = AS u , где a — коэффициент сцепления, измеряемый как 1-.1 (S uc ) 2 для S uc менее 48 кН / м 2 где S uc = 2c — прочность на неограниченное сжатие (в кН / м 2 или фунт / фут 2 ) .Для S uc больше, чем это значение, a = [0,9 + 0,3 (S uc — 1)] / S uc .

Что такое фактор безопасности?

Коэффициент безопасности колеблется от 1 до 5 для различных целей. Этот фактор может учитывать величину повреждений, относительное изменение шансов, что проект может потерпеть неудачу, сами данные о грунте, построение допусков и точность расчетных методов анализа.

Для случаев разрушения при сдвиге коэффициент запаса прочности изменяется от 1.2 к 2,5. Для плотин и насыпей коэффициент запаса прочности составляет от 1,2 до 1,6. Для подпорных стен — от 1,5 до 2,0, для шпунтовых свай — от 1,2 до 1,6, для раскосных выработок — от 1,2 до 1,5, для опор с разносом сдвига — от 2 до 3, для опор из матов — от 1,7 до 2,5. Напротив, в случаях просачивания, когда материалы просачиваются через небольшие отверстия в трубах или других материалах, коэффициент безопасности колеблется от 1,5 до 2,5 для подъема и от 3 до 5 для трубопроводов.

Инженеры также используют практические правила для коэффициента безопасности, равного 1.5 для опорных стен, которые переворачиваются гранулированной засыпкой, 2,0 для связной засыпки, 1,5 для стен с активным давлением грунта и 2,0 для стен с пассивным давлением грунта. Эти факторы безопасности помогают инженерам избежать отказов, связанных со сдвигом и просачиванием, а также тем, что почва может смещаться в результате нагрузки на нее.

Практические расчеты несущей способности

Вооружившись результатами испытаний, инженеры рассчитывают, какую нагрузку может безопасно выдержать почва. Начиная с веса, необходимого для срезания почвы, они добавляют коэффициент безопасности, поэтому конструкция никогда не прикладывает достаточный вес для деформации почвы.Они могут регулировать площадь основания и глубину фундамента, чтобы оставаться в пределах этого значения. В качестве альтернативы они могут сжимать почву для увеличения ее прочности, например, используя каток для уплотнения рыхлого насыпного материала для дорожного полотна.

Методы определения несущей способности грунта включают максимальное давление, которое фундамент может оказывать на грунт, так что приемлемый коэффициент запаса прочности против разрушения при сдвиге находится ниже основания и соблюдаются допустимые общие и дифференциальные осадки.

Предельная несущая способность — это минимальное давление, которое может вызвать разрушение опорного грунта непосредственно под фундаментом и рядом с ним. Они учитывают прочность на сдвиг, плотность, проницаемость, внутреннее трение и другие факторы при строительстве конструкций на грунте.

Инженеры руководствуются этими методами определения несущей способности грунта по своему усмотрению при выполнении многих из этих измерений и расчетов. Эффективная длина требует от инженера выбора того, где начать и где прекратить измерения.В качестве одного из методов инженер может выбрать использование глубины сваи и вычесть любые нарушенные поверхностные почвы или смеси грунтов. Инженер также может измерить ее как длину сегмента сваи в одном слое почвы, состоящем из многих слоев.

Что вызывает напряжение в почвах?

Инженеры должны учитывать почвы как смеси отдельных частиц, которые перемещаются друг относительно друга. Эти единицы грунта можно изучать, чтобы понять физику этих движений при определении веса, силы и других величин по отношению к зданиям и проектам, которые инженеры строят на них.

Разрушение при сдвиге может возникать в результате воздействий на грунт напряжений, которые заставляют частицы сопротивляться друг другу и рассеиваться таким образом, что это вредно для здания. По этой причине инженеры должны быть осторожны при выборе конструкций и грунтов с соответствующей прочностью на сдвиг.

Круг Мора может визуализировать напряжения сдвига на плоскостях, относящихся к строительным проектам. Круг напряжений Мора используется в геологических исследованиях испытания грунтов. Он предполагает использование образцов грунта цилиндрической формы, в которых радиальные и осевые напряжения действуют на слои грунта, рассчитанные с использованием плоскостей.Затем исследователи используют эти расчеты для определения несущей способности грунта в фундаменте.

Классификация почв по составу

Физики и инженеры могут классифицировать почвы, пески и гравий по их размеру и химическому составу. Инженеры измеряют удельную поверхность этих компонентов как отношение площади поверхности частиц к массе частиц, что является одним из методов их классификации.

Кварц является наиболее распространенным компонентом ила, а также песка и слюды и полевого шпата.Глинистые минералы, такие как монтмориллонит, иллит и каолинит, образуют листы или структуры пластинчатой ​​формы с большой площадью поверхности. Эти минералы имеют удельную поверхность от 10 до 1000 квадратных метров на грамм твердого вещества.

Эта большая площадь поверхности допускает химические, электромагнитные и ван-дер-ваальсовы взаимодействия. Эти минералы могут быть очень чувствительны к количеству жидкости, которая может проходить через их поры. Инженеры и геофизики могут определять типы глин, присутствующих в различных проектах, чтобы рассчитать влияние этих сил и учесть их в своих уравнениях.

Почвы с высокоактивными глинами могут быть очень нестабильными, поскольку они очень чувствительны к жидкости. Они набухают в присутствии воды и сжимаются в ее отсутствие. Эти силы могут вызвать трещины в физическом фундаменте зданий. С другой стороны, с материалами, которые представляют собой глины с низкой активностью, образующиеся при более стабильной активности, гораздо проще работать.

Таблица несущей способности почвы

Geotechdata.info содержит список значений несущей способности почвы, которые вы можете использовать в качестве диаграммы несущей способности почвы.

Несущая способность грунта — Диаграмма давления подшипника

Опоры не только обеспечивают ровную платформу для опалубки или кирпичной кладки, но и распределяют вес дома, чтобы почва могла выдержать нагрузку. Нагрузка распространяется внутри самого основания под углом примерно 45 градусов, а затем распространяется в почве под более крутым углом, больше похожим на 60 градусов от горизонтали.

По мере расширения нагрузки под опорой давление на почву уменьшается. Грунт непосредственно под основанием принимает наибольшую нагрузку, поэтому его следует тщательно утрамбовать.

Найдите ближайших подрядчиков по изготовлению плит и фундаментов, которые помогут с вашими опорами.

Поскольку нагрузка распределяется, давление на почву наибольшее прямо под опорой. К тому времени, когда мы опускаемся ниже основания на расстояние, равное ширине основания, удельное давление на грунт упадет примерно наполовину. Спуститесь еще раз на ту же дистанцию, и давление упадет на две трети. Так что почва прямо под основанием является наиболее критичной и, как правило, наиболее подверженной злоупотреблениям.

Когда мы выкапываем опоры, зубья ведра взбалтывают почву и подмешивают в нее воздух, уменьшая ее плотность. Также грунт с насыпи может попасть в траншею. Рыхлый грунт имеет гораздо меньшую несущую способность, чем исходный.

Вот почему так важно уплотнять дно траншеи. Используйте уплотнитель с виброплитой для песчаных или гравийных почв и уплотнитель с прыгающим домкратом для ила или глины (дополнительные сведения об оборудовании для уплотнения см. В этом руководстве по основанию и основанию).Если вы не уплотняете эту почву, вы можете получить 1/2 дюйма осадка всего на первых 6 дюймах почвы.

Если вы копаете слишком глубоко и заменяете почву для восстановления качества, вы добавляете обратно почву, которая расширилась на 50%. Под нагрузкой он снова уплотняется и вызывает оседание. Поэтому, когда вы заменяете материал в траншее, тщательно уплотняйте его или используйте крупный гравий. Гравий размером полтора дюйма или больше практически самоуплотняется при его укладке. Под весом деревянного дома он не осядет в значительной степени.

Узнайте, как перекрывать мягкие участки почвы.

Таблица грузоподъемности грунта

Класс материалов Несущее давление
(фунтов на квадратный фут)
Кристаллическая коренная порода 12 000
Осадочные породы 6 000
Песчаный гравий или гравий 5 000
Песок, илистый песок, глинистый песок, илистый гравий и глинистый гравий 3 000
Глина, песчаная глина, илистая глина и глинистый ил 2 000

Источник: Таблица 401.4.1; Кодекс CABO об одно- и двухсемейном жилище; 1995.

Свойства почвы и подшипник

Тип и плотность естественной почвы также важны. Международный Строительный Кодекс, как и Кодекс CABO до него, перечисляет предполагаемую несущую способность для различных типов грунтов. Очень мелкие почвы (глины и илы) обычно имеют меньшую емкость, чем крупнозернистые почвы (пески и гравий).

Однако некоторые глины или илы имеют более высокую несущую способность, чем значения в кодовых таблицах.Если вы проведете испытание почвы, вы можете обнаружить, что у вас более плотная глина с гораздо более высокой несущей способностью. Механическое уплотнение почвы также может повысить ее несущую способность.

Определение несущей способности на объекте

Проверить плотность почвы в траншее для фундамента с помощью пенетрометра. Несущая способность вашей почвы поможет вам определить, нужен ли вам неглубокий или глубокий фундамент. Прочность грунта непосредственно под основанием, где сосредоточены нагрузки, имеет решающее значение для производительности фундамента.

Вы можете получить довольно хорошее представление о несущей способности грунта на дне траншеи, используя ручной пенетрометр. Это карманное устройство представляет собой подпружиненный зонд, который оценивает давление, которое может выдержать почва, и откалиброван для получения показаний в тоннах на квадратный фут. Один из них должен быть у каждого подрядчика и строительного инспектора. Это поможет вам избежать многих неприятностей.

Несущая способность грунта — виды и расчеты

🕑 Время считывания: 1 минута

Несущая способность грунта определяется как способность грунта выдерживать нагрузки, исходящие от фундамента.Давление, которое почва может легко выдержать под нагрузкой, называется допустимым опорным давлением.

Виды несущей способности грунтов Ниже приведены некоторые типы несущей способности грунта:

1. Предельная несущая способность (q

u ) Общее давление на основание фундамента, при котором грунт разрушается, называется предельной несущей способностью.

2. Чистая предельная несущая способность (q

nu ) Пренебрегая давлением покрывающих пород из предельной несущей способности, мы получаем чистую предельную несущую способность.

Где = удельный вес грунта, D f = глубина фундамента

3. Чистая безопасная несущая способность (q

нс ) Если рассматривать только разрушение при сдвиге, конечная полезная несущая способность, разделенная на определенный коэффициент безопасности, даст чистую безопасную несущую способность.

q нс = q nu / F

Где F = коэффициент безопасности = 3 (обычное значение)

4. Полная допустимая несущая способность (q

с ) Если предельную несущую способность разделить на коэффициент безопасности, получится полная безопасная несущая способность.

q с = q u / F

5. Чистое безопасное расчетное давление (q

np ) Давление, с которым грунт может выдерживать нагрузку без превышения допустимой осадки, называется чистым безопасным оседающим давлением.

6. Допустимое рабочее давление подшипника (q

na ) Это давление, которое мы можем использовать при проектировании фундаментов. Это равно чистому безопасному давлению в подшипнике, если q np > q нс. В обратном случае оно равно чистому безопасному расчетному давлению.

Расчет несущей способности

Для расчета несущей способности грунта существует очень много теорий. Но все теории заменяются теорией несущей способности Терзаги.

1. Теория несущей способности Терзаги

Теория несущей способности Терзаги полезна для определения несущей способности грунтов под ленточным фундаментом. Эта теория применима только к фундаментам мелкого заложения. Он рассмотрел некоторые предположения, которые заключаются в следующем.
  1. Основание ленточного фундамента грубое.
  2. Глубина опоры меньше или равна ее ширине, т. Е. Неглубокая опора.
  3. Он пренебрег прочностью грунта на сдвиг над основанием фундамента и заменил его равномерной надбавкой. (D f )
  4. Нагрузка, действующая на опору, равномерно распределена и действует в вертикальном направлении.
  5. Он предположил, что длина основания бесконечна.
  6. Он считал уравнение Мора-Кулона определяющим фактором прочности почвы на сдвиг.
Как показано на рисунке выше, AB является основанием фундамента. Он разделил зоны сдвига на 3 категории. Зона -1 (ABC), которая находится под основанием, действует так, как если бы она была частью самого основания. Зона -2 (CAF и CBD) действует как зоны радиального сдвига, которые подпадают под наклонные кромки AC и BC. Зона -3 (AFG и BDE) называется пассивными зонами Ренкина, на которые взимается дополнительная плата (y D f ), исходящая от верхнего слоя почвы. Из уравнения равновесия Нисходящие силы = восходящие силы

Нагрузка от опоры x вес клина = пассивное давление + сцепление x CB sin

Где P p = результирующее пассивное давление = (P p ) y + (P p ) c + (P p ) q (P p ) y — это , полученное с учетом веса клина BCDE и нулевой связностью и надбавкой.(P p ) c — это , полученное с учетом сплоченности и пренебрежения весом и дополнительными расходами. (P p ) q получается с учетом надбавки и пренебрежением весом и связностью. Следовательно, Подставив, Итак, в итоге получаем q u = c’N c + y D f N q + 0,5 y B N y Вышеприведенное уравнение называется уравнением несущей способности Терзаги. Где q u — предельная несущая способность, а N c , N q , N y — коэффициенты несущей способности Терзаги.Эти безразмерные коэффициенты зависят от угла сопротивления сдвигу (). Уравнения для определения коэффициентов несущей способности: Где Kp = коэффициент пассивного давления грунта. Коэффициенты несущей способности при общем разрушении при сдвиге для различных значений приведены в таблице ниже.
Nc Nq Ny
0 5,7 1 0
5 7.3 1,6 0,5
10 9,6 2,7 1,2
15 12,9 4,4 2,5
20 17,7 7,4 5
25 25,1 12,7 9,7
30 37,2 22,5 19,7
35 57.8 41,4 42,4
40 95,7 81,3 100,4
45 172,3 173,3 297,5
50 347,5 415,1 1153,2
Наконец, для определения несущей способности под ленточным фундаментом можно использовать

q u = c’N c + D f N q + 0.5 B N y

Согласно модификация приведенного выше уравнения, также даны уравнения для квадратных и круглых фундаментов, и они есть. Для квадратного фундамента

q u = 1,2 c’N c + D f N q + 0,4 B N y

Для круглой опоры

q u = 1,2 c’N c + D f N q + 0,3 B N y

2.Теория несущей способности Хансена

Для связных грунтов значения, полученные с помощью теории несущей способности Терзаги, превышают экспериментальные значения. Но, тем не менее, он показывает те же значения для несвязных грунтов. Поэтому Хансен изменил уравнение, приняв во внимание факторы формы, глубины и наклона. По словам Хансена

q u = c’N c Sc dc ic + D f N q Sq dq iq + 0,5 B N y Sy dy iy

Где Nc, Nq, Ny = коэффициенты несущей способности Хансена. Sc, Sq, Sy = факторы формы dc, dq, dy = коэффициенты глубины ic, iq, iy = коэффициенты наклона Коэффициенты несущей способности рассчитываются по следующим уравнениям.Коэффициенты несущей способности Хансена для различных значений рассчитываются в таблице ниже.
Nc Nq Нью-Йорк
0 5,14 1 0
5 6,48 1,57 0,09
10 8,34 2,47 0.09
15 10,97 3,94 1,42
20 14,83 6,4 3,54
25 20,72 10,66 8,11
30 30,14 18,40 18,08
35 46,13 33,29 40.69
40 75,32 64,18 95,41
45 133,89 134,85 240,85
50 266,89 318,96 681,84
Коэффициенты формы для различных форм опор приведены в таблице ниже.
Форма опоры SC кв. Sy
Непрерывный 1 1 1
прямоугольный 1 + 0.2B / L 1 + 0,2B / л 1-0,4B / L
Квадрат 1,3 1,2 0,8
Круглый 1,3 1,2 0,6
Коэффициенты глубины учитываются в соответствии со следующей таблицей.
Коэффициенты глубины Значения
постоянного тока 1 + 0,35 (Д / Б)
dq 1 + 0.35 (Д / В)
dy 1,0
Аналогичным образом учитываются коэффициенты наклона из таблицы ниже.
Факторы наклона Значения
ic 1 — [H / (2 c B L)]
iq 1 — 1,5 (В / В)
iy (iq) 2
Где H = горизонтальная составляющая наклонной нагрузки B = ширина опоры L = длина опоры.

Методы определения несущей способности Уравнение Терзаги

  • Аналитический метод, то есть через уравнения несущей способности, такие как уравнение Терзаги, уравнение Мейерхоф, уравнение Хансена и т. Д.

  • Корреляция с данными полевых испытаний, например Стандартный тест на проникновение (SPT), тест на проникновение конуса (CPT) и т. Д.

  • Определение несущей способности на месте e.g Испытание на нагрузку на плиту, испытание на нагрузку на свай

  • Предполагаемая несущая способность (рекомендуемая несущая способность по различным кодам)

Ниже приведены методы:

  1. Аналитический метод определения несущей способности

Аналитический метод

Отказ нижней границы

Нижняя граница разрушения гласит: «Если можно найти равновесное распределение напряжения, которое уравновешивает приложенную нагрузку и нигде не нарушает критерий текучести, массив грунта не разрушится или просто окажется в точке разрушения i.е. это будет оценка емкости снизу. Рассмотрим условия равновесия в почве под нагрузкой на опору. Когда фундамент вдавливается в землю, в блоке напряжений 1 возникают основные напряжения, как показано. Однако толчок в землю смещает почву с правой стороны линии OY вбок, в результате чего основное основное напряжение на блоке 2 оказывается горизонтальным, как показано. Когда два блока примыкают друг к другу на вертикальной линии OY, тогда

Некоторые формулы

Теорема о верхней границе

Теорема о верхней границе утверждает, что «если решение кинематически допустимо и одновременно удовлетворяет равновесию, должно произойти нарушение» i.е. это будет оценка емкости сверху. Для возможной верхней границы рассмотрим поверхность разрушения как полукруг. Принимая момент около O

Уравнение несущей способности Терзаги (1943)

Терзаги разработал общую формулу предельной несущей способности фундамента с расстилочным фундаментом при следующих допущениях:

  • Глубина основания меньше или равна его ширине (D, B)
  • Фундамент жесткий с неровным дном
  • Грунт под фундаментом однородной полубесконечной массы
  • Ленточный фундамент с горизонтальным основанием и ровной поверхностью земли при вертикальных нагрузках.
  • Основной режим разрушения при сдвиге и отсутствие уплотнения, если грунт происходит (оседание происходит только из-за сдвига и боковых перемещений грунта)
  • Прочность грунта на сдвиг описывается как s = c + σ tan

Предполагаемые значения несущей способности почвы в зависимости от ее описания

Предполагаемые значения несущей способности почвы в зависимости от ее описания
Расчетная допустимая нагрузка (фунт / фут) Описание почвы
1500 Глина, песчаная глина, илистая глина, глинистый ил, ил и песчаный ил
2000 Песок, илистый песок, глинистый песок, илистый гравий и глинистый гравий
3000 Гравий и песчаный гравий
4000 Осадочные породы
12000 Кристаллическая коренная порода

Сообщите нам в комментариях, что вы думаете о концепциях в этой статье!

Несущая способность грунта фундамента | Анализ стен | GEO5

Несущая способность грунта фундамента

class = «h2″>

Контрольный анализ несущей способности грунта фундамента учитывает силы, полученные от всех уже выполненных проверок общей устойчивости конструкции (теория предельных состояний, запас прочности).Для этого используются следующие соотношения:

Обычно форма контактного напряжения в основании основания считается постоянной при уменьшенной длине основания.

Трапецеидальная форма напряжения требуется в соответствии с некоторыми стандартами. В этом случае проверка выполняется для максимального значения σ max .

где:

N

нормальное усилие66, действующее в основании подошвы

3

ширина каблука

e

макс.Эксцентриситет нормальной силы

R d

Несущая способность грунта фундамента

e alw 9002 —

0003 9066

0003 9066

0003 допустимый эксцентриситет (это значение определяется в рамке « Настройки » на вкладке «Анализ стены»)

Для расчета несущей способности грунта фундамента (в случае принятия неглубокий фундамент под стеной) программа позволяет нам необходимо рассчитать расчетную или служебную нагрузку , которая действует в центре основания основания.При передаче данных и результатов в программу « Spread Footing » можно правильно рассчитать осадку и поворот фундамента. Для свайного фундамента в раме «Фундамент» можно просмотреть внутренние силы в головках свай (для одного ряда свай), соответственно, в центре основания основания (для плоской свайной сетки).

Диалоговое окно «Несущая способность»

% PDF-1.4 % 1 0 объект > эндобдж 2 0 obj > поток 2017-11-21T11: 48: 58 + 09: 002017-11-21T11: 48: 56 + 09: 002017-11-21T11: 48: 58 + 09: 00Слово 用 Acrobat PDFMaker 18uuid: cc093d7d-31e3-4788-8a2f- 2b9b976bb7f8uuid: 37d93c6d-369c-4145-aa3b-36430a51523f

  • 3
  • application / pdf
  • Дики 2017
  • Библиотека Adobe PDF 15.0D: 2017110

    23дома конечный поток эндобдж 5 0 obj > эндобдж 3 0 obj > эндобдж 7 0 объект > / ExtGState> / Font> / XObject >>> / Type / Page >> эндобдж 8 0 объект > / ExtGState> / Font> / XObject >>> / Type / Page >> эндобдж 9 0 объект > / ExtGState> / Font> / XObject >>> / Type / Page >> эндобдж 10 0 obj > / ExtGState> / Font> / XObject >>> / Type / Page >> эндобдж 11 0 объект > / ExtGState> / Font> / XObject >>> / Type / Page >> эндобдж 12 0 объект > / ExtGState> / Font> / XObject >>> / Type / Page >> эндобдж 13 0 объект > / ExtGState> / Font> / XObject >>> / Type / Page >> эндобдж 66 0 объект > поток HWr6} Wa @ oL ڴ a.$ y: $ = {@; (

    24 CFR § 3285.202 — Классификация грунтов и несущая способность. | CFR | Закон США

    § 3285.202 Классификация грунтов и несущая способность.

    Классификация грунта и несущая способность грунта должны быть определены до того, как фундамент будет построен и закреплен. Классификация грунта и несущая способность должны определяться одним или несколькими из следующих методов, если несущая способность грунта не установлена, как разрешено в параграфе (f) этого раздела:

    (а) Испытания почвы.Испытания грунта в соответствии с общепринятой инженерной практикой; или

    (б) Почвенные записи. Почвенные записи применимого LAHJ; или

    (c) Классификация почв и несущая способность. Если класс грунта или несущая способность не может быть определен с помощью испытаний или записей грунта, но его тип может быть идентифицирован, можно использовать классификацию грунта, допустимые давления и значения крутящего момента, указанные в таблице к § 3285.202.

    (d) Карманный пенетрометр; или

    (e) Вместо определения несущей способности грунта с использованием методов, показанных в таблице, может использоваться допустимое давление 1500 фунтов на квадратный фут, если информация для конкретного участка не требует использования более низких значений, основанных на классификации и типе грунта. .

    (f) Если кажется, что почва состоит из торфа, органических глин или неуплотненной насыпи или имеет необычные условия, зарегистрированный профессиональный геолог, зарегистрированный профессиональный инженер или зарегистрированный архитектор должны определить классификацию почвы и максимально допустимую несущую способность почвы. вместимость.

    Классификация почв Описание почвы Допустимая грунтовая опора
    давление (psf)
    Счетчик ударов ASTM D 1586-99 Датчик крутящего момента значение
    (дюйм-фунт) —
    Классификационный номер ASTM D 2487-00
    или Д 2488-00
    (зарегистрированный Ссылка
    , см. § 3285.4)
    1 Сковорода или сковорода с твердым покрытием 4000 +
    2 GW, GP, SW, SP, GM, SM Песчаный гравий и гравий; очень плотные и / или цементированные пески; гравий / булыжники; предварительно загруженные илы, глины и кораллы 2000 40 + Более 550.
    3 GC, SC, ML, CL Песок; илистый песок; глинистый песок; пылеватый гравий; пески средней плотности; песчано-гравийный; и очень плотный ил, песчаные глины 1500 24–39 351-550.
    4A CG, MH Пески рыхлые и средней плотности; устойчивы к твердым глинам и илам; аллювиальные насыпи 1000 18–23 276-350.
    4B CH, MH пески рыхлые; твердые глины; аллювиальные насыпи 1000 12-17 175-275.

    About Author


    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    ЮК «Эгида-Сочи» - недвижимость.

    Наш принцип – Ваша правовая безопасность и совместный успех!

    2021 © Все права защищены.