Стороны египетского треугольника – А) Длинная сторона египетского треугольника равна 25 см. Определи расстояние между узлами. б) Определи длины других сторон. в) Треугольник разделили на два треугольника, которые тоже являются египетскими. Найди стороны этих треугольников.

Египетский треугольник — Википедия

Материал из Википедии — свободной энциклопедии

Египетский треугольник

Египетский треугольник — прямоугольный треугольник с соотношением сторон 3:4:5.

Свойства

  • Особенностью такого треугольника, известной ещё со времён античности, является то, что все три стороны его целочисленны, а по теореме, обратной теореме Пифагора, он прямоуголен.
  • Египетский треугольник является простейшим (и первым известным) из Героновых треугольников — треугольников с целочисленными сторонами и площадями.
  • Радиус вписанной в треугольник окружности равен единице.

История

Название треугольнику с таким отношением сторон дали эллины: в VII—V веках до нашей эры греческие философы и общественные деятели активно посещали Египет. Так, например, Пифагор в 535 году до нашей эры по настоянию Фалеса для изучения астрономии и математики отправился в Египет — и, судя по всему, именно попытка обобщения отношения квадратов, характерного для египетского треугольника, на любые прямоугольные треугольники и привела Пифагора к доказательству знаменитой теоремы.

Египетский треугольник с соотношением сторон 3:4:5 активно применялся для построения прямых углов египетскими землемерами и архитекторами, например, при построении пирамид. Историк и математик Ван дер Варден ставил этот факт под сомнение, однако более поздние исследования его подтвердили

[1]. В архитектуре средних веков египетский треугольник применялся для построения схем пропорциональности[2].

Для построения прямого угла использовался шнур или верёвка, разделённая отметками (узлами) на 12 (3+4+5) частей: треугольник, построенный натяжением такого шнура, с весьма высокой точностью оказывался прямоугольным и сами шнуры-катеты являлись направляющими для кладки прямого угла сооружения.

Примечания

  1. ↑ Ван дер Варден Б. Л. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. М.: Физматлит, 1959, С. 13, подстрочное примечание
  2. ↑ Египетский треугольник // Юсупов Э. Словарь терминов архитектуры, стр. 121. Издательство: Ленинградская галерея, 1994. ISBN 5-85825-004-1, 432 с.

См. также

Египетский Треугольник - это... Что такое Египетский Треугольник?


Египетский Треугольник
Прямоугольный треугольник с соотношением сторон 3:4:5. Сумма указанных чисел (3+4+5=12) с древних времен использовалась как единица кратности при построении прямых углов с помощью веревки, размеченной узлами на 3/12 и 7/12 ее длины. Применялся в архитектуре средних веков для построения схем пропорциональности.

Строительный словарь.

  • Дюбель
  • Жалюзи

Смотреть что такое "Египетский Треугольник" в других словарях:

  • Египетский треугольник — прямоугольный треугольник с соотношением сторон 3:4:5. Египетский треугольник Особенностью такого треугольника, известной ещё со времён античности, являетс …   Википедия

  • Египетский треугольник — – прямоугольный треугольник с соотношением сторон 3:4:5. Сумма указанных чисел (3+4+5=12) с древних времен использовалась как единица кратности при построении прямых углов с помощью веревки, размеченной узлами на 3/12 и 7/12 ее длины. Применялся… …   Словарь строителя

  • Египетский треугольник —    прямоугольный треугольник с отношением сторон 3:4:5 (сумма чисел 3 + 4 + 5 = 12). Землемеры и архитекторы с глубокой древности пользовались соотношением этих чисел для построения прямых углов с помощью верёвки, размеченной узлами на 3/12 и… …   Архитектурный словарь

  • лунный египетский треугольник — Треугольник, возникающий в центре большого квадрата, построенного на базе трёх лунных обелисков с отношением сторон 3:4:5, при условии, что вся площадь квадрата разделена на серию прямоугольных треугольников с отношением катетов 1:2. E. Egyptian… …   Толковый уфологический словарь с эквивалентами на английском и немецком языках

  • Треугольник (значения) — В Викисловаре есть статья «треугольник» Треугольник в широком смысле  объект треугольной формы, либо тройка объектов, попарно связ …   Википедия

  • Треугольник Халаиба — Халаибский треугольник مثلث حلايب спорная территория ← …   Википедия

  • Египетский крест (астеризм) — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете …   Википедия

  • Египетский лук — Угловой лук у стрелка на колеснице и простой  у пехотинца Египетские луки, как стрелковое оружие прошли определенный путь эволюционного развития от простого из одного вида дерева до сложносоставного («углового»)  из разных видов… …   Википедия

  • Халаибский треугольник — مثلث حلايب спорная территория ← …   Википедия

  • Зимний треугольник — красный цвет = зимний треугольник, синий цвет = зимний круг …   Википедия

Египетский треугольник Википедия

Египетский треугольник

Египетский треугольник — прямоугольный треугольник с соотношением сторон 3:4:5.

Свойства[ | ]

  • Особенностью такого треугольника, известной ещё со времён античности, является то, что все три стороны его целочисленны, а по теореме, обратной теореме Пифагора, он прямоуголен.
  • Египетский треугольник является простейшим (и первым известным) из Героновых треугольников — треугольников с целочисленными сторонами и площадями.
  • Радиус вписанной в треугольник окружности равен единице.

История[ | ]

Название треугольнику с таким отношением сторон дали эллины: в VII—V веках до нашей эры греческие философы и общественные деятели активно посещали Египет. Так, например, Пифагор в 535 году до нашей эры по настоянию Фалеса для изучения астрономии и математики отправился в Египет — и, судя по всему, именно попытка обобщения отношения квадратов, характерного для египетского треугольника, на любые прямоугольные треугольники и привела Пифагора к доказательству знаменитой теоремы.

Египетский треугольник с соотношением сторон 3:4:5 активно применялся для построения прямых углов египетскими землемерами и архитекторами, например, при построении пирамид. Историк и математик Ван дер Варден ставил этот факт под сомнение, однако более поздние исследования его подтвердили[1]. В архитектуре средних веков египетский треугольник применялся для построения схем пропорциональности[2].

Для построения прямого угла использовался шнур или верёвка, разделённая отметками (узлами) на 12 (3+4+5) частей: треугольник, построенный натяжением такого шнура, с весьма высокой точностью оказывался прямоугольным и сами шнуры-катеты являлись направляющими для кладки прямого угла сооружения.

Примечания[ | ]

  1. ↑ Ван дер Варден Б. Л. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. М.: Физматлит, 1959, С. 13, подстрочное примечание
  2. ↑ Египетский треугольник // Юсупов Э. Словарь терминов архитектуры, стр. 121. Издательство: Ленинградская галерея, 1994. ISBN 5-85825-004-1, 432 с.

См. также[ | ]

Этот удивительный египетский треугольник

Ка­ж­дый, кто внимательно слушал в школе преподавателя геометрии, очень хорошо знаком с тем, что представляет собой египетский треугольник. От других видов подобных геометрических фигур с углом в 90 градусов он отличается особым соотношением сторон. Когда человек впервые слышит словосочетание «египетский треугольник», на ум приходят картины величественных пирамид и фараонов. А что же говорит история?

Как это всегда бывает, в отношении названия «египетский треугольник» есть несколько теорий. Согласно одной из них, известная теорема Пифагора увидела свет именно благодаря данной фигуре. В 535 году до н.э. Пифагор, следуя рекомендации Фалеса, отправился в Египет с целью восполнить некоторые пробелы в познаниях математики и астрономии. Там он обратил внимание на особенности работы египетских землемеров. Они очень необычным способом выполняли построение треугольной фигуры с прямым углом, стороны которой были взаимосвязаны одна с другой соотношением 3-4-5. Данный математический ряд позволял относительно легко связать квадраты всех трех сторон одним правилом. Именно так и возникла знаменитая теорема. А египетский треугольник как раз и есть та самая фигура, натолкнувшая Пифагора на гениальнейшее решение. Согласно другим историческим данным, фигуре дали название греки: в то время они часто гостили в Египте, где могли заинтересоваться работой землемеров. Существует вероятность, что, как это часто бывает с научными открытиями, обе истории произошли одновременно, поэтому нельзя с уверенностью утверждать, кто же придумал первым название «египетский треугольник». Свойства его удивительны и, разумеется, не исчерпываются одним лишь соотношением размеров сторон. Его площадь и стороны представлены целыми числами. Благодаря этому применение к нему теоремы Пифагора позволяет получить целые числа квадратов гипотенузы и катетов: 9-16-25. Конечно, это может быть простым совпадением. Но как в таком случае объяснить тот факт, что египтяне считали «свой» треугольник священным? Они верили в его взаимосвязь со всей Вселенной.

После того, как информация об этой необычной геометрической фигуре стала общедоступной, в мире начались поиски других подобных треугольников с целочисленными сторонами. Было очевидно, что они существуют. Но важность вопроса состояла не в том, чтобы просто выполнить математические расчеты, а проверить «священные» свойства. Египтяне, при всей своей необычности, никогда не считались глупыми – ученые до сих пор не могут объяснить, как именно были возведены пирамиды. А здесь, вдруг, обычной фигуре приписывалась связь с Природой и Вселенной. И, действительно, найденная древнейшая вавилонская клинопись содержит указания о подобном треугольнике со стороной, размер которой описывается 15-значным числом. В настоящее время египетский треугольник, углы которого равны 90 (прямой), 53 и 37 градусов, находят в совершенно неожиданных местах. К примеру, при изучении поведения молекул самой обыкновенной воды, выяснилось, что смена агрегатного состояния сопровождается перестройкой пространственной конфигурации молекул, в которой можно увидеть…тот самый египетский треугольник. Если вспомнить, что молекула воды состоит из трех атомов, то можно говорить об условных трех сторонах. Конечно, о полном совпадении знаменитого соотношения речь не идет, но получаемые числа очень и очень близки к искомым. Не потому ли египтяне признавали за своим «3-4-5» треугольником символический ключ к природным явлениям и тайнам Вселенной? Ведь вода, как известно, основа жизни. Без сомнения, еще слишком рано ставить точку в изучении знаменитой египетской фигуры. Наука никогда не спешит с выводами, стремясь доказать свои предположения. А нам же остается лишь ждать и удивляться знаниям древних египтян.

Египетский треугольник

Очень важно, чтобы материал, с которым учащиеся познакомятся на уроке, вызвал у них интерес.

О теореме Пифагора

Уделом истины не может быть забвенье,
Как только мир ее увидит взор,
И теорема та, что дал нам Пифагор,
Верна теперь, как в день ее рожденья.
За светлый луч с небес вознес благодаренье
Мудрец богам не так, как было до тех пор.

Ведь целых сто быков послал он под топор,
Чтоб их сожгли как жертвоприношенье.

Быки с тех пор, как только весть услышат,
Что новой истины уже следы видны,
Отчаянно мычат и ужаса полны:
Им Пифагор навек внушил тревогу.
Не в силах преградить той истине дорогу,
Они, закрыв глаза, дрожат и еле дышат.
(А. фон Шамиссо, перевод Хованского)

Пифагор, VI в. до н. э. (580 – 500), древнегреческий философ и математик. Первым заложил основы математики как науки, имел свою школу (школа Пифагора). Ему приписывают и открытие так называемой теоремы Пифагора, хотя геометрическая интерпретация этой проблемы была известна и раньше.

Задача на смекалку

Поликрат (известный из баллады Шиллера тиран с острова Самос) однажды спросил на пиру у Пифагора, сколько у того учеников. “Охотно скажу тебе, о Поликрат, - отвечал Пифагор. – Половина моих учеников изучает прекрасную математику. Четверть исследует тайны вечной природы. Седьмая часть молча упражняет силу духа, храня в сердце учение. Добавь еще к ним трех юношей, из которых Теон превосходит прочих своими способностями. Столько учеников веду я к рождению вечной истины”. Сколько учеников было у Пифагора?

РЕШЕНИЕ:

Пусть х – число учеников Пифагора.

По условию задачи составим уравнение:

ОТВЕТ: 28 учеников.

Начнем урок в школе Пифагора.

1. Практическая работа

(Несколько человек работают у доски, остальные в тетрадях).

Задание 1. Построить треугольник по трем сторонам, если стороны равны.

а) 3, 4, 5;

б) 6, 8, 10;

в) 5, 12, 13 (единицы измерения указывать не обязательно).

Задание 2. Измерить больший угол этих треугольников.

Ответы близки к 90о.

Учитель предлагает внимательно посмотреть на построенные треугольники, найти отличия и определить, чем эти треугольники похожи друг на друга. Класс постепенно находит нужную формулировку: “Если треугольник имеет стороны a, b, c и a2+b2=c2, то угол, противолежащий стороне с, прямой”.

Доказательство этой теоремы – обратной к теореме Пифагора.

2. Устная работа

1) в прямоугольном треугольнике гипотенуза и катет соответственно равны 13 и 5. Найдите второй катет.

2) в прямоугольном треугольнике катеты равны 1,5 и 2. Найдите гипотенузу.

3) определите вид треугольника, стороны которого равны 6, 8, 10.

3. Практическая работа

На тонкой веревке делают метрии, делящие ее на 12 равных частей, связывают концы, а затем растягивают веревку в виде треугольника со сторонами 3, 4, 5. Тогда угол между сторонами 3 и 4 оказывается прямым.

ВЫВОД: если стороны треугольника пропорциональны числам 3, 4 и 5, то этот треугольник прямоугольный.

Учитель говорит учащимся, что этот факт использовался египтянами для построения на местности прямых углов – ведь оптических измерительных приборов тогда еще не было, а для строительства домов, дворцов и тем более гигантских пирамид надо было уметь строить прямые углы.

(Звучит музыка. Демонстрация слайдов с изображением античных дворцов, храмов, египетских пирамид).

Перед тем как перейти к следующему этапу урока, ученики вместе с учителем еще раз делают вывод, что безошибочность построения прямых углов следует из теоремы, обратной к теореме Пифагора. Проверяют еще раз эту теорему на треугольнике со сторонами 3, 4, 5: 32 + 42 = 52. Далее можно сказать, что в общем виде уравнение записывается следующим образом: а2 + b2 = с2. Необходимо проверить есть ли еще корни у этого уравнения.

Учащиеся проверяют этот факт. Прямоугольными являются также треугольники со сторонами:

  • 5, 12, 13;
  • 8, 15, 17;
  • 7, 24, 25.

Далее учитель сообщает, что прямоугольные треугольники, у которых длины сторон выражаются целыми числами, называются пифагоровыми треугольниками.

Учитель предлагает тем учащимся, которых заинтересовала данная тема, дома доказать, что катеты a, b и гипотенуза с таких треугольников выражаются формулами:

а = 2mn, b = m2 - n2, c = m2 + n2,

где m и n – любые натуральные числа, такие, что m > n.

В финале урока уместно прочитать известные стихи, посвященные теореме Пифагора.

Теорема Пифагора

Если дан нам треугольник,
И притом с прямым углом,
То квадрат гипотенузы
Мы всегда легко найдем:
Катеты в квадрат возводим,
Сумму степеней находим –
И таким простым путем
К результату мы придем.
(И. Дырченко)

Египетский треугольник - доклад сообщение (описание для детей)

Со времен античности до настоящего времени в разных сферах жизнедеятельности человека существует огромное количество бесценных открытий.

Среди них почетное место занимает всемирно известный "Египетский" треугольник. вавилонская геометрия славилась тем, что в ее пределах велась работам прямоугольным треугольником с сочетанием 3:4:5.

История его появления связана с наблюдениями эллинов за основой пирамиды Хеопса в Египетском государстве еще в v веке до г. э. По одной из версий название этому треугольнику было дано древними греками. Второе ее название - "Золотой треугольник".

Среди этих людей был ученый Пифагор Саросский, который особое внимание обратил на формы этой великой постройки. Так повелось, что с древних пор именно этот треугольник архитекторы применяли для достижения определенных пропорций строения. Теорема Пифагора, которая стала открытием, используется в настоящее время. Ученый изначально делал попытку обобщения отношения квадратов, характерных для египетского треугольника.

В строительстве правило его использования незаменимо. Это связано с тем, что при определенном произведении линий образуется угол в 90, 53 градусов 13 минут и 36 градусов 86 минут. Именно такие параметры имеет всемирно известная пирамида Хефена.

Особенностями египетского треугольника является его площадь и стороны - целые числа, также при использовании обычной веревки можно изобразить этот треугольник без труда. К этому способу обращались зачастую землемеры, которые с ее помощью выводили прямой угол.

В настоящее время также рабочие, связанные со стройкой, нередко обращаются к этой методике, чтобы при необходимости получить ровные прямые углы. Это было связано с тем, что в далеком прошлом было недостаточно инструментов для качественного процесса строительства зданий.

Таким образом, "Египетский треугольник" - это уникальная геометрическая конструкция, известная с давних пор. Прообразом этой фигуры является одна из египетских пирамид, на которую обратил внимание во время своего путешествия математик древности - Пифагор.

Ее особенность состоит в том, что, например, обычная идея построить дом возможна без обращения к угольнику или транспортиру. Грамотный подход и знания строителя, правильное соотношение всех углов возможно при грамотном подходе с построением этого треугольника.

Картинка к сообщению Египетский треугольник

Египетский треугольник

Популярные сегодня темы

  • Древние виды письменности

    Письменность - это то высшее умение, которое смог достигнуть человек в процессе своей эволюции. История того, как возникло письмо уходит далеко в древнейшие времена. Человек прошёл огромный п

  • Репродуктивное здоровье человека

    Не стоит думать, что репродуктивное здоровье касается только девушек, это зависит и от здоровья мужчины, поэтому и те, и другие должны следить за своим репродуктивным здоровьем

  • Македонский Александр

    Александр Македонский в свое время был талантливым и выдающимся полководцем. Это легендарная личность. Родился Александр в 356 году до нашей эры в Македонии. Его отец был царь.

  • Трицератопс

    Трицератопс – один из самых поздних динозавров, как было доказано наукой, это именно тот динозавр, существование которого смогли застать многие современные виды, которые сумели перекочевать д

  • Дельфины

    Дельфины – необыкновенные создания. Они млекопитающие, теплокровные. Живут они в солёной тепловатой воде морей.

  • Животные живого уголка

    В современном мире люди все меньше времени проводят на природе, лишь изредка они выбираются из душных квартир. От беспрерывного пребывания в городской среде особенно страдают дети

Планиметрия. Страница 5

         
  Главная > Учебные материалы > Математика:  Планиметрия. Страница 5  
   
 
 
 

1.Теорема Пифагора.
2.Египетский треугольник.
3.Соотношение между углами и сторонами в прямоугольном треугольнике.
4.Основные тригонометрические тождества.
5.Примеры.

 

 
1 2 3 4 5 6 7 8 9 10 11 12
 

1.Теорема Пифагора

 
 

   Теорема: В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Доказательство.

1. Разделим каждую сторону большого квадрата на два отрезка x и y точкой. И проведем через эти точки отрезки.

2. Тогда треугольники 1,2,3,4 равны по двум сторонам и углу между ними.

3. Т.к. сумма углов α + β = 90°, то фигура внутри большого квадрата тоже квадрат. (Все стороны = с и все углы = 90° )

4. Площадь большого квадрата равна сумме площадей малого квадрата и 4-х треугольников. (Рис.1)

 

Рис.1 Теорема Пифагора.

 
   
         

2.Египетский треугольник

 
         
 

   Пусть дан треугольник со сторонами АВ = a, ВС = b, АС = c. При условии, что а2 + b2 = с2. Доказать, что угол, лежащий против стороны с, прямой.

   Допустим, что треугольник АВС не прямоугольный. Тогда можно опустить высоту на сторону АС - h (Рис.2). Из двух прямоугольных треугольников ABD и DBC составим следующую систему уравнений по теореме Пифагора. Обозначим AD как х, BD - высота h.

   Но по условию задачи а2 + b2 = с2. Следовательно х = 0 и сторона а = h. Т.е. угол между сторонами АВ и АС - прямой.

   В древнем Египте данное соотношение применялось очень широко. Например для построения прямого угла между сторонами при строительстве зданий и сооружений. Или при измерении прямых углов пахотных земель. Так как зная соотношение, можно легко построить прямой угол. По этой причине треугольник со сторонами 3,4,5 ед. называют Египетским треугольником.    

 

Рис.2 Египетский треугольник.

 
       

3.Соотношение между углами и сторонами в прямоугольном треугольнике

   
       
 

   Пусть дан прямоугольный треугольник АВС. Проведем прямую ЕF параллельную стороне АВ (Рис.3). Тогда по теореме о пропорциональных отрезках:

   Т.е. соs α не зависит от размеров прямоугольного треугольника, а зависит только от величины угла. Тогда по теореме Пифагора sin α также зависит только от величины угла. А следовательно tg α и ctg α.

   Отсюда можно сделать следующие выводы:

AB = BC sin α
AC = BC cos α
AB = AC tg α
AC = AB ctg α

 

Рис.3 Соотношение между углами и сторонами в прямоугольном треугольнике.

 
         
         
 
   
 

4.Основные тригонометрические тождества

 

    Пусть дан прямоугольный треугольник со сторонами a,b,c. (Рис.4)

 

Рис.4 Основные тригонометрические тождества.

 
         
         

5.Пример 1

 

   У треугольника одна сторона равна 1 м, а прилегающие к ней углы 30° и 45°. Найдите другие стороны треугольника. (рис.5)

 
         
 

    Так как один из углов 30 градусов, то катет, лежащий против этого угла равен половине гипотенузы, т.е. h = b/2. А следовательно КС = h, т.к. угол β = 45 градусов.

 

Рис.5 Задача. У треугольника одна сторона равна 1 м...

 
         
 

Пример 2

 
 

   Найдите высоту равнобокой трапеции, если ее основания равны 6 м и 12 м, а боковая сторона равна 5 м. (Рис.6)

 
         
 

   Решение:

   Пусть ABCD данная трапеция. ВЕ перпендикуляр, опущенный на основание AD. Тогда АЕ = (12 - 6)/ 2 = 3 м. Так как АЕ = FD.

    По теореме Пифагора:

   АВ2 = AE2 + BE2

   Следовательно:

   52 = 32 + BE2

   25 = 9 + BE2

   BE2 = 16

   BE = 4 м.

 

Рис.6 Задача. Найдите высоту равнобокой трапеции...

 
         
         
 

Пример 3

 
 

   Докажите, что расстояние между двумя точками на сторонах треугольника не больше большей из его сторон. (Рис.7)

 
         
 

   Доказательство:

   Пусть ABC данный треугольник. АС - его большая сторона. Проведем отрезок DE параллельно стороне АС. Необходимо доказать, что отрезок DE меньше стороны АС. Если мы докажем, что отрезок DE меньше большей стороны АС, то при взятии двух других точек треугольника на других его меньших сторонах, отрезок между этими точками будет также меньше стороны АС.

    Опустим перпендикуляр BF на большую сторону АС. Составим следующее соотношение:

   АС = АВ сos α + ВС cos β

   Тогда отрезок DE будет равен:

   DE = DB сos α + ВE cos β

   Так как DB

   то следовательно, отрезок DE меньше стороны АС.

   Допустим, что отрезок DE непараллелен стороне АС (рис.7 б). Тогда можно взять отрезок DE1 параллельный АС, который больше чем DE, и доказать, что DE1 меньше стороны АС аналогичным образом.

 

Рис.7 Задача. Докажите, что расстояние между двумя точками...

 
         
 

Пример 4

 
 

   Докажите, что прямая, отстоящая от центра окружности на расстояние меньше радиуса, пересекает окружность в двух точках. (Рис.8)

 
         
 

   Доказательство:

   Пусть дана окружность с центром в точке О. И прямая а, отстоящая от центра окружности точки О, на расстояние ОЕ = h

   Обозначим прямую, на которой лежит отрезок ОЕ, как b. Пусть точка О делит прямую b на две полупрямые, одна из которых ОЕ. Согласно аксиоме, от любой полупрямой, от ее начальной точки (точки О), в заданную полуплоскость, можно отложить только один угол определенной градусной меры α. Следовательно, отрезок ОЕ = h = ОА*cos α.

   Но так как прямая b делит плоскость на две полуплоскости, то от полупрямой ОЕ, от ее начальной точки (точки О) можно отложить такой же угол, той же градусной меры и во вторую полуплоскость, т.е. -α. Так, что ОЕ = h = ОВ*cos (-α).

   Таким образом, если выполняется условие R = OA > h, то прямая а будет иметь две точки пересечения. Так как

    h = ОА*cos α = ОВ*cos (-α)

   Радиусы ОА и ОВ можно рассматривать как две наклонные, отложенные в двух полуплоскостях, в треугольнике АОВ перпендикуляра ОЕ.

 

Рис.8 Задача. Докажите, что прямая, отстоящая от центра окружности...

 
         
         
 

Пример 5

 
 

   Даны три положительных числа a,b,c. Докажите, что если каждое из этих чисел меньше суммы двух других, то существует треугольник со сторонами a,b,c. (Рис.9)

 
         
 

   Доказательство:

   Пусть даны три точки. Если эти три точки лежат на одной прямой, например А,Е,С, то расстояния между этими точками связаны соотношением: АС = АЕ + ЕС

   Отсюда видно, что каждое из трех расстояний не больше двух других. Т.е. расстояние между точками А и С не больше двух расстояний АЕ и ЕС.

    Если взять три точки, не лежащих на одной прямой, например А,В,С и опустить перпендикуляр ВЕ, то АС

   так как АЕ и ЕС являются проекциями AB и ВС на сторону АС. А любая проекция наклонной всегда меньше (в крайнем случае равна) самой наклонной. Т.е. АE < AB, a EC < BC.

   Таким образом, концы отрезков АВ и СВ смогут совпасть в одной точке В. И можно построить треугольник.

   Предположим, что расстояние АС > AB + BC (Рис.9 б). Тогда концы отрезков АВ и СВ не смогут совпасть в точке В. Так как, если даже отрезки такой же длины отложить на отрезке АС, то получится, что

    АС > АВ + СB1 = AE + CE1,

   Таким образом, если числа a,b и с принять за длины отрезков, то концы отрезков АВ и СВ не смогут совпасть в одной точке В. Между ними образуется некое расстояние ВВ1 и построить треугольник не получится.

 

Рис.9 Задача. Даны три положительных числа...

 
         
         
 
   
 
         
1 2 3 4 5 6 7 8 9 10 11 12
         
 

Содержание

     
         
  Страница 1   Страница 7  
  1.Основные фигуры планиметрии.
2.Аксиомы планиметрии.
3.Смежные углы.
4.Вертикальные углы.
5.Перпендикулярные прямые.
6.Признаки равенства треугольников.
  1.Движение и его свойства.
2.Симметрия относительно точки.
3.Симметрия относительно прямой.
4.Параллельный перенос и его свойства.
 
         
  Страница 2   Страница 8  
  1.Параллельность прямых.
2.Признаки параллельности прямых.
3.Свойство углов при пересечении параллельных прямых.
4.Сумма углов треугольника.
5.Единственность перпендикуляра к прямой.
6.Высота, биссектриса и медиана треугольника.
7.Свойство медианы равнобедренного треугольника.
  1.Вектор и его абсолютная величина.
2.Сложение векторов.
3.Умножение вектора на число.
4.Разложение вектора по двум неколлинеарным векторам.
5.Скалярное произведение векторов.
 
         
  Страница 3   Страница 9  
  1.Окружность.
2.Окружность описанная около треугольника.
3.Окружность вписанная в треугольник.
4.Геометрическое место точек.
  1.Преобразование подобия и его свойства.
2.Подобие фигур. Подобие треугольников по двум углам.
3.Подобие треугольников по двум пропорциональным сторонам и углу между ними.
4.Подобие треугольников по трем пропорциональным сторонам.
5.Подобие прямоугольных треугольников.
 
         
  Страница 4   Страница 10  
  1.Параллелограмм.
2.Свойства диагоналей параллелограмма.
3.Ромб.
4.Теорема Фалеса.
5.Средняя линия треугольника.
6.Трапеция.
7.Теорема о пропорциональных отрезках.
  1.Углы, вписанные в окружность.
2.Пропорциональность хорд и секущих окружности.
3.Теорема косинусов.
4.Теорема синусов.
5.Соотношение между углами и сторонами в треугольнике.
 
         
  Страница 5   Страница 11  
  1.Теорема Пифагора.
2.Египетский треугольник.
3.Соотношение между углами и сторонами в прямоугольном треугольнике.
4.Основные тригонометрические тождества.
  1.Многоугольники. Правильные многоугольники.
2.Радиус вписанной и описанной окружностей правильных многоугольников.
3.Подобие многоугольников.
4.Длина окружности.
 
         
  Страница 6   Страница 12  
  1.Декартова система координат.
2.Расстояние между точками.
3.Уравнение окружности.
4.Уравнение прямой.
5.Координаты точки пересечения.
  1.Площадь прямоугольника.
2.Площадь параллелограмма.
3.Площадь треугольника.
4.Площадь круга.
5.Площадь подобных фигур.
6.Площадь трапеции.
 
 
     
 

About Author


alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *