Теплопроводность керамики таблица: Теплопроводность, теплоемкость, плотность керамики и огнеупоров: таблицы значений

Теплопроводность, теплоемкость, плотность керамики и огнеупоров: таблицы значений

Теплопроводность и плотность керамики, огнеупоров

В таблице представлены значения плотности, пористости П, теплопроводности керамики и огнеупоров в зависимости от температуры. Свойства керамики и огнеупоров в таблице даны для температуры от 200 до 1600°С.

Содержание оксида алюминия Al2O3 в изделиях находится в пределах от 28 до более 90%; содержание оксида кремния SiO2 в керамике от 25 до более 97%; содержание оксида циркония ZrO2 от 50 до более 90%. Также в огнеупорах содержаться оксид магния и карбид кремния.

Плотность, пористость П и теплопроводность приведены для следующих материалов: огнеупор из кварцевого стекла, керамика, содержащая оксид алюминия Al2O3, SiO2, MgO, SiC, диоксид циркония ZrO2, изделия: динасовые, полукислые, шамотные, муллитокремнеземистые, муллитовые, муллитокорундовые, корундовые, периклазовые, форстеритовые, карбидкремниевые, бадделеитовые, цирконовые плавленые и поликристаллические.

Плотность керамики в таблице приведена при температуре 20°С. Наиболее плотной и тяжелой керамикой является бадделеитовая керамика на основе оксида циркония — ее плотность составляет от 5500 до 5800 кг/м3.

Теплоемкость керамики и огнеупоров

В таблице представлены значения удельной массовой теплоемкости керамики и огнеупоров в зависимости от температуры.
Теплоемкость огнеупоров в таблице дана в интервале температуры от 273 до 1773К (от 0 до 1500°С). Размерность теплоемкости кДж/(кг·град).

Теплоемкость приведена для следующих огнеупорных материалов: алундум, глинозем, карборунд, кирпич динасовый, магнезитовый, хромитовый, шамотный кирпич, силлиманит, уголь электродный, фарфор высоковольтный, низковольтный и установочный, циркон.

Теплоемкость шамота, динаса, корунда и магнезита

В таблице представлены значения удельной массовой теплоемкости этих огнеупоров в зависимости от температуры.

Теплоемкость шамота, динаса, корунда и магнезита в таблице дана в интервале температуры от 50 до 1500°С.  Размерность удельной теплоемкости кДж/(кг·град).

Теплоемкость высокоогнеупорных материалов и керамики

В таблице даны значения удельной массовой теплоемкости высокоогнеупорных материалов в зависимости от температуры.
Теплоемкость огнеупорных материалов и керамики в таблице приведена в интервале температуры от 100 до 1400°С (размерность теплоемкости кДж/(кг·град)).

Теплоемкость указана для следующих огнеупоров и керамических материалов: корунд (искусственный), глинозем, муллит, кианит (борисовский), андалузит (Семиз-Бугу), силлиманит, муллитовые изделия, магнезитовые изделия 88% MgO, спекшийся магнезит, серпентин, шпинель, известь (плавленая), окись циркония ZrO2, циркон (ильменский), хромитовые изделия, хромит (халиловский), карборунд (кристаллический), карборундовые изделия типа карбофракс SiC, графит С.

Источники:

  1. Физические величины. Справочник. А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский и др.; Под ред. И. С. Григорьева, Е. З. Мейлихова. — М.: Энергоатомиздат, 1991. — 1232 с.
  2. Таблицы физических величин. Справочник. Под ред. акад. И. К. Кикоина. М.: Атомиздат, 1976. — 1008 с.
  3. Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.

Теплопроводность керамических блоков (Поротерм): коэффициент, теплопередача поризованного кирпича

Керамические блоки становятся все более распространенным строительным материалом. Одной из их важнейших характеристик, которая влияет на потребительские качества, является теплопроводность.  

Определение термина

В физике теплопроводностью называется способность тела (в нашем случае, поризованного блока) проводить тепло от более нагретых частей к менее нагретым. Количественно она выражается в величине, называемой коэффициентом теплопроводности и обозначается как Вт/(м*С). Еще одни вариант международного обозначения – греческая буква λ (лямбда).

Проще говоря, теплопроводность керамического блока показывает, сколько тепла (в градусах) уходит из здания через внешнюю стену, в пересчете на единицу площади. Важно знать о том, что тем этот показатель ниже, тем меньше тепла будет уходить наружу, и тем более «теплой», при прочих равных условиях, будет стена.

Уровень теплопроводности тесно связан с другими характеристиками керамоблока (как впрочем, и любого другого строительного материала). В их числе:

  • Пустотность.
  • Пористость.
  • Плотность.

Чем выше уровень пустотности, пористости и ниже плотность, тем теплопроводность будет ниже (что в нашем случае – хорошо), и наоборот. Получается, что оптимальная теплопроводность керамоблока достигается путем увеличения технологических пустот, а также пор (от чего и произошло название материала – поризованная керамика). Но при этом, как правило, будет снижаться плотность блока и его марка прочности. Сразу же хочется отметить, что этой прочности, в любом случае, с большим запасом будет достаточно для возведения малоэтажных (2-3 этажа) коттеджей с несущими стенами. И уж тем более ее будет достаточно для заполнения внешних стен и перегородок в многоэтажном каркасно-монолитном строительстве.

Для сравнения: марка прочности газобетонных блоков в 2-3 раза ниже, чем у керамических блоков, но даже они вполне подходят для кладки несущих стен коттеджей.

Сравнение разных материалов

Сравним популярные стеновые материалы. Чтобы было понятно, приведенные ниже расчеты в таблицах основаны на СНиП 23-02-2003 «Тепловая защита зданий». Учитывалось, что в стенах нет дополнительной теплоизоляции (пенопласт, минеральная вата) или облицовочного кирпича.

  Материал Расчетное содержание влаги Теплопроводность  Вт/(м*С) в сухом состоянии Теплопроводность  Вт/(м*С) расчетное значение   Толщина стены, см
Древесина* 20% 0,09 0,18 48
Керамический кирпич полнотелый   2% 0,56 0,81 219
Керамический кирпич пустотелый 2% 0,41 0,58 155
Ячеистый бетон** 6% 0,12 0,16 43
Силикатный кирпич 4% 0,70 0,87 230
Керамзитобетон
10%
0,58 0,79 209
Поризованный блок*** 1% 0,13 0,14 38

* – сосна и ель поперек волокон; ** – ячеистый бетон плотностью 500 кг/1м3; *** – керамический блок Porotherm 38 Thermo, кладка на теплосберегающем растворе.

Теперь сравним коэффициент теплопроводности керамических блоков нескольких наиболее распространенных на российском рынке. Источники – официальные сайты производителей.

  Наименование блока Теплопроводность,  Вт/(м*С) Толщина стены, мм Нужно ли дополнительное утепление*
Porotherm 25 0,24 250 Да
Porotherm 38 0,145 380 Да
Porotherm 38 Thermo 0,123 380 Нет
Porotherm 44 0,136 440 Нет
Porotherm 51 0,143 510 Нет
BRAER Ceramic Thermo 10,7 NF 0,14 380 Да
BRAER Ceramic Thermo 12,4 NF 0,139 440 Нет
BRAER Ceramic Thermo 14,3 NF 0,14 510 Нет
KERAKAM 38 0,19 380 Да
KAIMAN 38 Самара 0,084 380 Нет
KERAKAM 44 Самара 0,128 440 Нет
KERAKAM 51 Самара 0,16 510 Нет
10,7НФ 250ММ Гжель 0,143 250 Да
12,3НФ Гжель 0,131 440 Нет
14,3НФГжель 0,143-0,17 510 Нет

* На примере г. Москвы и Московской области. В других городах с разными климатическими условиями потребность в дополнительном утеплении может меняться. Информацию о других регионах на примере блоков Поротерм (Wienerberger) можно узнать на официальном сайте компании.

Кстати, в большинстве случаев небольшие блоки формата 2,1NF, также именуемые двойным поризованным камнем, имеют чуть худшую теплопроводность, по сравнению с более крупными «собратьями». Причем это касается всех производителей.

Коэффициент теплопроводности Поротерм и других перечисленных изготовителей примерно сопоставим. То же самое касается и теплопередачи внутренних перегородочных и доборных блоков. Кстати, о перегородках. В них уровень λ, как правило выше, чем для стеновых блоков и колеблется в пределах 0,20-0,25 Вт/(м*С). Однако это не является проблемой, поскольку они все равно используются только для внутренних работ.

Мои рекомендации по толщине стен

В таблице были рассмотрены лишь 4 производителя из числа наиболее распространенных. Есть и другие, но общая картина видна и так: мы видим, что при строительстве в климатических условиях Московского региона блоки толщиной 440мм и 510мм не требуют дополнительного утепления или использования облицовочного кирпича. В то же время, для всех блоков толщиной 250мм и части 330-миллиметровых требуется дополнительное утепление. В любом случае, ассортимент продукции, представленной на рынке – намного шире, чем в нашей таблице, поэтому в случае с каждым блоком разных производителей, все детали следует узнавать индивидуально.

При этом, теплопроводность поризованного кирпича, предназначенного для перегородок, не столь важна. Он используется для внутренних работ и не от него попросту не требуется таких же характеристик, как и для стеновых блоков.

Общие выводы

Как мы видим, теплопроводность теплой керамики – это исключительно важный параметр. Однако помимо этого, при выборе следует учитывать и другие факторы, в том числе климатические условия региона и отсутствие или наличие дополнительного утепления или отделки облицовочным кирпичом. В целом же, для средней полосы России подходят все керамоблоки. Тем не менее, если вы не хотите использовать дополнительную теплоизоляцию, то имеет смысл купить блоки толщиной 440мм или 510мм, или же некоторые разновидности 380мм блоков. Если же вас не смущает будущий монтаж дополнительной «термошубы», то вполне можно обойтись и блоками для толщины стен 250мм и 380мм, при том условии, что вы обеспечите дополнительную теплоизоляцию в виде минваты или пенопласта, и декоративной штукатурки. Плюс этого варианта в том, что вам будет достаточно более тонкого фундамента, что сократит расходы и сроки его возведения.

Теплоемкость твердых материалов и жидкостей

 

НазваниеCpж
кДж/(кг °С)
НазваниеCpж
кДж/(кг °С)
Асбест 0,80 Мрамор 0,80
Асбоцемент (плиты) 0,96 Панели легкие строительные 1,47. ..1,88
Асфальт 0,92 Парафин 2,19
Базальт 0,84 Песчаник глиноизвестковый 0,96
Бакелит 1,59 Песчаник керамический 0,75-0,84
Бетон 1,00 Песчаник красный 0,71
Бумага сухая 1,34 Пластмасса 1.67…2.09
Волокно минеральное 0,84 Полистирол 1,38
Гипс 1,09 Полиуретан 1,38
Глина 0,88 Полихлорвинил 1,00
Гранит 0,75 Пробка 1,26. ..2,51
Графит 0,84 Пробка, крошка 1,38
Грунт песчаный 1.1…3.2 Резина твердая 1,42
Дерево, дуб 2,40 Сера ромбическая 0,71
Дерево, пихта 2,70 Слюда 0,84
Древесно-волокнистая плита 2,30 Солидол 1,47
Земля влажная 2,0 Соль каменистая 2.1…3.0
Земля сухая 0,84 Соль каменная 0,92
Земля утрамбованная 1,0-3,0 Соль поваренная 0,88
Зола 0,80 Стекло 0,75-0,82
Известь 0,84 Стекловолокно 0,84
Кальцит 0,80 Тело человека 3,47
Камень 0. 84..1,26 Торф 1,67…2,09
Каолин (белая глина) 0,88 Уголь бурый (О…1ОО °С )  
Картон сухой 1,34 20% воды 2,09
Кварц 0,75 60% воды 3,14
Кизельгур (диатомит) 0,84 в брикетах 1,51
Кирпич 0,84 Уголь древесный 0,75… 1,17
Кирпичная стена 0,84… 1,26 Уголь каменный (0…100°С) 1,17… 1,26
Кожа 1,51 Фарфор 0,80
Кокс (0…100°С) 0,84 Хлопок 1,30
(0. ..1000°C) 1,13 Целлюлоза 1.55
Лед (0°С) 2.11 Цемент 0,80
(-10°С) 2,22 Чугун 0,55
(-20 °С) 2,01 Шерсть 1,80
(-60 °С ) 1,64 Шифер 0,75
Лед сухой (твердая CO2) 1,38 Щебень 0,75…1,00
НазваниеCpж
кДж/(кг °С)
НазваниеCpж
кДж/(кг °С)
Ацетон 2,22 Масло минеральное 1,67…2,01
Бензин 2,09 Масло смазочное 1,67
Бензол (10°С) 1,42 Метиленхлорид 1,13
(40С) 1,77 Метил хлорид 1,59
Вода чистая (0°С) 4,218 Морская вода (18°С)  
(10°С) 4,192 0,5% соля 4,10
(20°С) 4,182 3% соля 3,93
(40°С) 4,178 6% соли 3,78
(60°С) 4,184 Нефть 0,88
(80°С) 4,196 Нитробензол 1,47
(100°С) 4,216 Парафин жидкий 2,13
Глицерин 2,43 Рассол (-10°С)  
Гудрон 2,09 20% соли 3,06
Деготь каменноугольный 2,09 30% соли 2,64. ..2,72
Дифенил 2,13 Ртуть 0,138
Довтерм 1,55 Скипидар 1,80
Керосин бытовой 1,88 Спирт метиловый (метанол) 2,47
Керосин бытовой (100 °С) 2,01 Спирт нашатырный 4,73
Керосин тяжелый 2,09 Спирт этиловый (этанол) 2,39
Кислота азотная 100%-я 3,10 Толуол 1.72
Кислота серная 100%-я 1,34 Трихлорэтилен 0,93
Кислота соляная 17%-я 1,93 Хлороформ 1,00
Кислота угольная (-190°С) 0,88 Этиленгликоль 2,30
Клей столярный 4,19 Эфир кремниевой кислоты 1,47

 

Примечание: источниками справочных данных являются публикации в Интернете, поэтому они не могут считаться «официальными» и «абсолютно точными». Как правило, в Интернет справочниках не приводятся ссылки на научные работы, являющиеся основой опубликованных данных. Мы стараемся брать информацию из наиболее надежных научных сайтов. Однако если кого-то интересуют ссылки на эксперименты, советуем произвести самостоятельно углубленный поиск в Интернете. Будем признательны за любые комментарии к нашим справочным таблицам, а особенно за уточнения существующей информации или дополнение справочных данных.

Доклад на тему: » Температуропроводность керамики SiC-NbC»

Температуропроводность керамики SiCNbC

Керамика из карбида кремния благодаря высокой прочности, теплопроводности, термостойкости и модуля Юнга, низкому коэффициенту теплового расширения уже находит широкое применение в микроэлектронике и конструкциях, где имеются высокие температуры.

Свойства керамики SiC в значительной степени зависят от содержания примесей, и его пористости. Теплопроводность λ, электросопротивление S, микротвердость Н, модули упругости при этом могут изменятся в несколько раз.

Эффективными добавками при получении керамик SiC являются оксиды бериллия, алюминия и редкоземельных металлов. Они повышают эффективную теплопроводность, плотность, термостойкость, механическую прочность и электросопротивление.

Однако до сих пор отсутствует достаточно четкое объяснение физических основ такого резкого изменения теплофизических свойств в зависимости от концентрации примесей, температуры и пористости. Это можно решить комплексным исследованием как тепловых, так и механических свойств керамик, полученных одной технологией в зависимости от зернистости, чистоты исходных порошков, примесей и т.д.

В работе представлены экспериментальные данные температурной зависимости эффективной теплопроводности (300-700 К) керамики SiC с добавлением от 10 до 90 % масс. NbC в SiC различной пористости.

Анализ специфики спекания карбида кремня предопределил основные технологические методы получения керамических материалов с различной пористостью, а именно: измельчение (активация), активирующие добавки и высокотемпературного спекания. Использовался зеленый порошок, исходная дисперсность которого составляла 5 мкм и 20 мкм и порошки NbC. Порошок SiC перемалывался в шаровой мельнице, подвергался центрофугирированию, очищению и удалению с поверхности пленки SiO в плавиковой кислоте. Таким образом, были получены порошки карбида кремния дисперсностью 2,4 мкм и 13,6 мкм соответственно. Эти порошки смешивались с порошком карбида ниобия в необходимых пропорциях (10-90 % масс.) карбида ниобия, после чего спекались в атмосфере CO2 и азота. Температура спекания 2320-2420 К и давление 2·108 Па. Результаты определения пространственного распределения и локальных концентраций карбида ниобия показали, что в керамике SiC карбид ниобия распределен равномерно.

Образцы для измерения температуропроводности имели размеры: диаметр-10мм, высота — 5-10 мм, Ср— на измерителе теплоемкости ИТ-С-400.

На рис.17 представлены экспериментальные данные температурной зависимости температуропроводности керамики SiC- NbC различного состава (10-90 % масс.) карбида ниобия. Как видно из рис.17, температуропроводность SiC с повышением концентрации NbC падает. На рисунках 17 – 20 представлены температурные зависимости температуропроводности керамики SiC- NbC различного состава. 10 вес.% NbC в SiC.

Рис. 17. Зависимость температуропроводности керамики SiC- NbC от температуры для состава 10 вес.% NbC в SiC.

Рис. 18. Зависимость температуропроводности керамики SiC- NbC от температуры для состава 30 вес.% NbC в SiC.

Рис. 19. Зависимость температуропроводности керамики SiC- NbC от температуры для состава 50 вес.% NbC в SiC.

Рис. 20. Зависимость температуропроводности керамики SiC- NbC от температуры для состава 90 вес.% NbC в SiC.

§ 3.2. Теплопроводность керамики SiC NbC

Данные по плотности и пористости для керамики SiC-NbC представлены в таблице 4. и на рис. Видно, что плотность образцов возрастает от 1.68103 до 5.23103 кг/м3 с увеличением содержания NbC от 10 до 90 % вес., а пористость уменьшается.

Таблица 4.

п/п

Температура получения, К

Состав,

NbC %

Плотность

ρх103, кг/м3

Пористость

П, %

1.

2273

10

1,68

53,7

2.

2373

30

1,82

53,4

3.

2373

50

2,29

52,4

4.

2473

70

3,39

38

5.

2473

90

5,23

17

Рис.21 . Концентрационная зависимость плотности и пористости

керамики SiC-NbC.

Используя данные по кажущейся плотности плотности, теплоёмкости и температуропроводности были рассчитаны данные по теплопроводности керамики SiC-NbC по формуле

В таблице 5, 6 представлены данные по теплопроводности керамики SiC-NbC в зависимости от состава рассчитанные по экспериментальным измерениям температуропроводности при комнатной температуре Т=300 К и Т=500 К соответственно. По таблице видно, что с ростом температуры теплопроводность керамики SiC-NbC падает.

Т=300 К

Таблица 5.

Состав NbC %

Температуропров-сть, а·10-6, м2

Плотность, ρ·103, кг/м3

Теплоёмкость, СP, Дж/кг·К

Теплопроводность, λ, Вт/м·К

1

10

30

1,68

682

34,4

2

30

16

1,82

695

20,2

3

50

22

2,29

703

35,4

4

90

11

5,23

729

41,9

Т=500 К

Таблица 6

Состав NbC %

Температуропров-сть, а·10-6, м2

Плотность, ρ·103, кг/м3

Теплоёмкость, СP, Дж/кг·К

Теплопроводность, λ, Вт/м·К

1

10

10

1,68

682

11,5

2

30

5

1,82

695

6,3

3

50

7

2,29

703

11,2

4

90

9

5,23

729

34,3

Таблица теплопроводности кирпича, его плотность, морозостойкость и теплоемкость

Сфера применения материала определяется его эксплуатационными характеристиками. Комплекс рассматриваемых свойств должны соответствовать требованиям, предъявляемых строительному кирпичу при сооружении внешних стен, перекрытий, фундамента. Возведение конструкций подразумевает выбор изделий различного назначения:

  • Силикатный – рядовой, лицевой, пустотелый, полнотелый.
  • Керамический – жаростойкий и все разновидности предыдущего вида.
  • Клинкерный – для облицовки фасадов.

Оглавление:

  1. Коэффициент теплопроводности
  2. Что такое теплоемкость?
  3. Значение морозостойкости

Теплотехнические характеристики

Показатели определяют энергопотребление дома, затраты на обогрев помещений. Проектирование сооружений, расчеты ограждающих конструкций учитывают эти параметры.

Коэффициент теплопроводности

Материалы обладают свойством проводить тепло от нагретой поверхности в более холодную область. Процесс происходит в результате электромагнитного взаимодействия атомов, электронов и квазичастиц (фононы). Основной показатель величины – коэффициент теплопроводности (λ, Вт/), определяемый как количество теплоты, проходящее через единицу площади сечения за единичный интервал времени. Малое значение положительно влияет на сохранение теплового режима.

Согласно ГОСТ 530-2012 эффективность кладки в сухом состоянии характеризуется коэффициентом теплопроводности:

  • ≤ 0.20 – высокая;
  • 0.2 < λ ≤ 0.24 – повышенная;
  • 0.24 — 0.36 – эффективная;
  • 0.36 — 0.46 – условно-эффективная;
  • ˃ 0.46 – обыкновенная (малоэффективная).

Чем больше плотность, тем выше теплопроводность – не совсем верное утверждение. Структура содержит закрытые поры и полости (пустотелый), наполненные воздухом с коэффициентом ≈ 0,026. Благодаря этому, изделия со щелевыми отверстиями лучше поддерживают тепловой режим внутри сооружений. В инженерных расчетах необходимо учитывать величину теплопроводности кладочной смеси, значение показателя выбирают от 0.47 и выше, в зависимости от состава.

Видλ, Вт/м°C
Красный полнотелый0,56 ~ 0,81
-//- пустотелый0,35 ~ 0,87
Силикатный кирпич полнотелый0,7 ~ 0,87
-//- пустотелый0,52 ~ 0,81

Теплопроводность красного изделия ниже, чем у силикатного.

Физические процессы нагрева и удержания тепла можно охарактеризовать величинами:

  • Коэффициент теплоотдачи – теплообмен на границе поверхности твердого тела и воздушной среды. Это мощность теплового потока, приходящаяся на плоскость 1 м², обратно пропорциональная разнице температур тела и теплоносителя (воздух). Чем выше теплопроводность, тем больше теплоотдача.
  • Полное тепловое сопротивление – способность противостоять передаче тепла. Значение обратно пропорционально коэффициенту теплопередачи. Исходя из расчетной формулы R = L/λ, легко рассчитать оптимальную толщину кладки. λ – постоянный параметр, R – тепловое сопротивление указано в таблице 4 СП 131.13330.2012 для климатических зон России.

Теплоемкость

Необходимое количество тепла, подведенного к телу для увеличения температуры на 1 Кельвин – определение понятия «полная теплоемкость». Единица измерения: Дж/К или Дж/°C. Чем больше объем и масса тела (толщина стен и перекрытий), тем выше теплоемкость материала, лучше поддерживается благоприятный температурный режим. Наиболее точно это свойство подтверждают характеристики:

  • Удельная теплоемкость кирпича – количество тепла, необходимое для нагрева единичной массы вещества за единичный интервал времени. Единица измерения: Дж/кг*К или Дж/кг*°C. Используется для инженерных расчетов.
  • Объемная теплоемкость – количество тепла, потребляемое телом единичного объема для нагрева за единицу времени. Измеряется в Дж/м³*К или Дж/кг*°C.
Вид изделияУдельная теплоемкость, Дж/кг*°С
Красный полнотелый880
пустотелый840
Силикатный полнотелый840
пустотелый750

Тепловая конвекция непрерывна: радиаторы нагревают воздух, который передает тепло стенам. При понижении температуры в помещениях происходит обратный процесс. Увеличение удельной теплоемкости, снижение коэффициента теплопроводности стен обеспечивают сокращение затрат на обогрев дома. Толщина кладки может быть оптимизирована рядом действий:

  • Применение теплоизоляции.
  • Нанесение штукатурки.
  • Использование пустотного кирпича или камня (исключено для фундамента здания).
  • Кладочный раствор с оптимальными теплотехническими параметрами.

Таблица с характеристиками различных видов кладок. Использованы данные СП 50.13330.2012:

Плотность, кг/м³Удельная теплоемкость, кДж/кг*°СКоэффициент теплопроводности, Вт/м*°C

Обыкновенный глиняный кирпич на различном кладочном растворе

Цементно-песчаный18000.880.56
Цементно-перлитовый16000.880.47

Силикатный

Цементно-песчаный18000.880.7

Пустотный красный различной плотности (кг/м³) на ЦПС

140016000.880.47
130014000.880.41
100012000.880.35

Морозостойкость кирпичной кладки

Устойчивость к воздействию отрицательных температур – показатель, влияющий на прочность и долговечность конструкции. Кладка в процессе эксплуатации насыщается влагой. В зимний период вода, проникая в поры, превращается в лед, увеличивается в объеме и разрывает полость, в которой находится – происходит разрушение. Морозоустойчивость, как правило, низкая, водопоглощение не должно превышать 20 %.

Определение количества циклов замораживания и оттаивания без потери прочности каждого вида изделия позволяет выявить морозоустойчивость (F). Значение получают опытным путем. В лаборатории проводят многократную заморозку в холодильных камерах и естественное оттаивание образцов.

Коэффициент морозостойкости – отношение прочности на сжатие опытного и исходного элемента. Изменение показателя более 5 %, наличие трещин, отколов сигнализируют об окончании испытаний. Марки изделий содержат характеристики по морозостойкости: F15 (20, 25, 35, 50, 75, 100, 150). Цифровой параметр указывает на количество циклов: чем выше число, тем надежнее возводимая система.

Приобретение кирпича высокой марки морозостойкости опустошит бюджет, заложенный на строительство. Меры по улучшению свойств конструкций, продлению срока эксплуатации в зонах холодного климата без увеличения расходов:

  • Применение паро- и гидроизоляции.
  • Обработка кладки гидрофобными составами.
  • Контроль, своевременное исправление дефектов.
  • Надежная гидроизоляция фундамента.

От выбора материала для кладки, его удельной теплоемкости, теплопроводности, морозостойкости зависит срок и комфорт эксплуатации дома. Сложные расчеты, составление сметы расходов лучше доверить опытным специалистам, имеющим опыт в строительстве и проектировании.

Теплопроводность каменного SPC ламината Stone Floor

При выборе материала для укладки в качестве напольного покрытия, немаловажным фактором является такой показатель, как теплопроводность материала, то есть его способность быстро (или медленно) терять накопленное внутреннее тепло. Современный интернет «пестрит» большим количеством сводных таблиц, где приводятся абсолютно разные и неточные данные по теплопроводности разных материалов.

Потребитель при оценке часто вводится в заблуждение и совершает простую ошибку, полагая, что чем выше показатель теплопроводности, тем лучше. На самом деле, все происходит с точностью до наоборот: чем ниже коэффициент теплопроводности, тем дольше материл сохраняет текущую температуру.

Лабораторные испытания SPC плиты Stone Floor

Компания Stone Floor совместно с испытательным центром CERTIFICATION GROUP провела  лабораторные испытания  образцов своей продукции на такие показатели, как  теплопроводность и термическое сопротивление.  Замеры проводились несколько раз при НОРМАЛЬНЫХ бытовых условиях: комнатная температура составляла 20 С при относительной влажности 70 %.

Все испытания проводились согласно стандарту ГОСТ 7076-99 по симметричной (1 тепломер) и ассиметричной (2 тепломера) схемам, распространяющийся на строительные материалы. Сущность ГОСТ 7076-99 заключается в создании стационарного теплового потока, проходящего через плоский образец SPC плиты определенной толщины и направленного перпендикулярно к лицевым граням образца, измерении плотности теплового потока и температуры противоположных лицевых граней.

По результатам испытаний, опытные образцы StoneFloor получили следующие результаты:

Теплопроводность, λ: 0,062 Вт/м*К 
Термическое сопротивление, R: 0,081 м2*К/Вт

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла

Сравнительная таблица по теплопроводности самых популярных напольных покрытий в Вт/м*С
1 место SPC ламинат 0.062
2 место Паркет и деревянные плиты (при плотности 800 кг/м3) 0.13
3 место HDF ламинат 0.17
4 место Линолеум (при плотности 1600 кг/м3) 0.75
5 место Керамическая плитка 1.2

При этом, несмотря на свою высокую плотность, сопоставимую с керамической плиткой, коэффициент термического сопротивления у SPC Stone Floor ниже, чем у большинства замковых покрытий, и, соответственно, его свойства, в эксплуатации намного более комфортны и высоко экономичны.

Как видно из приведенной ниже таблицы, каменный SPC ламинат Stone Floor является одним из лучших вариантов для использования в тандеме с теплыми полами, так как по своим свойствам быстро проводить тепло и сохранять его длительное время, является одним из лучших в классе бытовых покрытий.

Термическое сопротивление и экономия электричества

Согласно нормам для укладки напольного покрытия на теплый пол, общее тепловое сопротивление финишного «пирога» (покрытие + подложка)  не должно превышать 0,15 м²*К/Вт.  Если эти показатели превышены, то нарушается энергоэффективность системы теплый пол и возрастают траты на обогрев, что особенно актуально в загородном доме.

Сравнительная таблица по термическому сопротивлению самых популярных напольных покрытий в м²*К/Вт
1 место Керамическая плитка 0.011
2 место Линолеум (при плотности 1600 кг/м3) 0.062
3 место Паркет и деревянные плиты (при плотности 800 кг/м3) 0.07
4 место SPC ламинат 0.081
5 место HDF ламинат 0.25

Самым эффективным покрытием для теплого пола будет керамическая плитка, самым не эффективным — HDF ламинат.

Заключение

Компания Stone Floor всегда стремится к предоставлению самой достоверной информации о своих напольных покрытиях. Вы всегда можете запросить протокол испытаний на теплопроводность SPC Stone Floor в напечатанном виде у официального представителя марки в вашем городе. Проверить приведенную нами испытательную информацию на подлинность Вы также сможете в испытательном центре РФ CERTIFICATION GROUP по телефону: 8-800-100-18-14

Теплопроводность стройматериалов – таблица 2

Продолжаем выкладывать таблицы теплопроводности материалов, которые встречаются в конструкции частного дома и могут быть использованы при строительстве. Также, некоторые вещества могут образовываться при эксплуатации частного дома и будут включаться в общую схему теплопроводности ограждающих конструкций дома. К таким веществам, например, будет относиться вода в виде инея, наледи, замерзшего конденсата и снега на кровле.

Сама Таблица 2 по теплопроводности материалов – вы видите ее ниже:

Здесь самыми характерными строительными материалами являются кирпич и керамзит (керамзитобетон).

Сначала разберемся с кирпичом. Понятно, что пустотелый или щелевой кирпич обладает меньшей теплопроводностью, чем полнотелый кирпич. Ведь в пустотах пустотелого кирпича присутствует воздух, который при определенных условиях является лучшим теплоизолятором. Самым главным условием его теплоизолирующей способности будет полное отсутствие движения воздуха. Когда воздух недвижим внутри пустот строительного материала, он отлично теплоизолирует ограждающую конструкцию. Именно по этой причине отличным теплоизолятором будет так называемая «теплая керамика» — толстые кирпичи с пустотами, которые в ходе кладки оказываются изолированными. Воздух в этих пустотах также оказывается изолированным, находится без движения и обеспечивает стене из «теплой керамики» хорошие теплоизоляционные свойства.

Теперь второй момент – почему кирпичная кладка обладает большей теплопроводность, чем кирпич? Потому что кладка кирпича производится на цементный кладочный раствор, который обладает превосходной теплопроводностью и снижает общее теплосопротивление кирпичной стены.

Выходом из этой ситуации является применение кладочных растворов с уменьшенной теплопроводностью. Для кладки обычного кирпича используют специальные «теплые растворы» с мелкой керамзитной крошкой. А «теплую керамику» кладут на тонкий слой плиточного клея, снижая, таким образом, общую площадь клеевых швов с плохим теплосопротивлением.

Силикатный белый кирпич обладает в 2 раза лучшей теплопроводностью, чем пустотелый красный кирпич. Именно поэтому современными СНиПами запрещено использование белого силикатного кирпича при возведении ограждающих конструкций зданий в холодных регионах России.

Керамзит – это вспученная глина, отличный теплоизолирующий материал. Его теплопроводность составляет 0,1 Вт/(м*С), что соответствует теплопроводности дерева хвойных пород поперек волокон.

Однако при использовании его в связке с бетоном, общая теплопроводность материала под названием «керамзитобетон» существенно увеличивается. Керамзитобетонные блоки (КББ) могут быть использованы как основа для стен дома, но будут нуждаться в утеплении. Плотный керамзитобетон обладает теплопроводностью в 0,2-0,5 Вт/(м*С), что является уже слишком высоким показателем для материала для изготовления стен дома.

Однако есть и плюсы в такой теплопроводности керамзитобетона. Если возвести из этого материала несущие внутренние стены здания, то весь дом приобретет достаточную теплоемкость, чтобы не остывать чрезмерно быстро при отключении отопления в зимний период.

Теплопроводность керамики

Керамика все чаще используется в корпусах и печатных платах, потому что она имеет ряд преимуществ перед пластмассами: гораздо более высокая теплопроводность, возможное соответствие коэффициента теплового расширения и герметичность. К сожалению, стоимость керамики по-прежнему намного выше, чем стоимость пластмасс, что запрещает их использование в недорогих крупносерийных продуктах. Тем не менее, их использование в будущих продуктах кажется неизбежным, учитывая тенденции в полупроводниковой промышленности в отношении ожидаемого гораздо более низкого теплового сопротивления корпусов и одновременной конструкции корпусов и плат для облегчения распространения тепла.

Проблема с теплопроводностью керамики заключается в ее зависимости от состава, размера зерна и процесса изготовления, что затрудняет получение надежных значений только из литературы. Глядя на значения, указанные в различных справочниках, документах и ​​технических паспортах, можно заметить две вещи. 1) существуют большие вариации и 2) многие авторы копируют значения из одних и тех же, но не отслеживаемых источников.

Интересным примером является нитрид алюминия (AIN), все более популярная керамика.Чаще всего указывается значение около 180 Вт / мК. Однако в ссылке 1 можно найти некоторые интересные данные на графике, на котором значения теплопроводности от семи производителей отображаются в зависимости от температуры. Наибольшее значение при комнатной температуре составляет 200 Вт / мК; самый низкий — 80 Вт / мК. Кроме того, эти значения снижаются более чем на 30% от 20 ° до 100 ° C. Такое же падение, кстати, наблюдается и для других керамик, таких как BeO и Al 2 0 3 . (См. Также раздел «Технические данные» в предыдущем выпуске.)

Теплопроводность (Вт / мК) при 20 ° C
AIN Нитрид алюминия 80-200, 180, 260
A1 2 0 3 Оксид алюминия 18-36
BeO Оксид бериллия 184, 200, 220, 242, 250, 300
БН Нитрид бора 15-40, 250-300, 600
SiC Карбид кремния 90-160, 70-200, 80, 210

В таблице показан диапазон значений при комнатной температуре для ряда часто используемых керамических материалов из различных источников.Обратите внимание, что большой разброс значений

Таким образом, опубликованные значения теплопроводности керамики идеально подходят для согласования экспериментальных результатов с численным моделированием, и я боюсь, что именно это и происходит на практике. Измерения на месте с использованием хорошо разработанных экспериментальных тестов являются предпочтительным способом получения точных значений.

Артикул

1. Р. Диндвидди, Advanced Electronic Packaging Materials, Vo1.167, Бостон, 1989.

Теплопроводность — выбранные материалы и газы

Теплопроводность — это свойство материала, которое описывает способность проводить тепло. Теплопроводность может быть определена как

«количество тепла, передаваемого через единицу толщины материала в направлении, нормальном к поверхности единицы площади — из-за градиента единичной температуры в стационарных условиях»

Теплопроводность единицы — [Вт / (м · К)] в системе СИ и [БТЕ / (час фут ° F)] в британской системе мер.

См. Также изменения теплопроводности в зависимости от температуры и давления , для: воздуха, аммиака, двуокиси углерода и воды

Теплопроводность для обычных материалов и продуктов:

Теплопроводность
k —
Вт / (м · К)

Материал / вещество Температура
25 o C
(77 o F)
125 C580 o
(257 o F)
167 9010 900 (газ) Углерод 9016 900 Фтор (газ) Стекло, Жемчуг 900 900 90 Молибден пена021 0,606
225 o C
(437 o F)
Ацетали 0.23
Ацетон 0,16
Ацетилен (газ) 0,018
Акрил 0,2
Воздух, атмосфера 0,02 0,0333 0,0398
Воздух, высота 10000 м 0,020
Агат 10,9
Спирт 0.17
Глинозем 36 26
Алюминий
Алюминий Латунь 121
Оксид алюминия
30 Аммиак 30 (газ) 0,0249 0,0369 0,0528
Сурьма 18,5
Яблоко (85.6% влаги) 0,39
Аргон (газ) 0,016
Асбестоцементная плита 1) 0,744
Асбестоцементные листы 1) 0,166
Асбестоцемент 1) 2,07
Асбест в рыхлой упаковке 1) 0.15
Асбестовая плита 1) 0,14
Асфальт 0,75
Древесина бальзы 0,048
Слои битума / войлока 0,5
Говядина постная (влажность 78,9%) 0.43 — 0,48
Бензол 0,16
Бериллий
Висмут 8,1
Битум 0,17 0,02
Шкала котла 1,2 — 3,5
Бор 25
Латунь
Бриз 0.10 — 0,20
Кирпич плотный 1,31
Кирпич огневой 0,47
Кирпич изоляционный 0,15
Кирпичная кладка обыкновенная ) 0,6 -1,0
Кирпичная кладка плотная 1,6
Бром (газ) 0,004
Бронза
Коричневая железная руда 0.58
Масло (влажность 15%) 0,20
Кадмий
Силикат кальция 0,05
Углерод5
5 901,7
Двуокись углерода (газ) 0,0146
Окись углерода 0,0232
Чугун
Целлюлоза, хлопок, древесная масса и регенерированная 0.23

Ацетат целлюлозы, формованный, лист

0,17 — 0,33
Нитрат целлюлозы, целлулоид 0,12 — 0,21
Цемент, Портленд
Цемент, раствор 1,73
Керамические материалы
Мел 0.09
Древесный уголь 0,084
Хлорированный полиэфир 0,13
Хлор (газ) 0,0081
Хром Никель Хром 16,3
Хром
Оксид хрома 0,42
Глина, от сухой до влажной 0.15 — 1,8
Глина насыщенная 0,6 — 2,5
Уголь 0,2
Кобальт
Треска (влажность 83% содержание) 0,54
Кокс 0,184
Бетон, легкий 0,1 — 0,3
Бетон, средний 0.4 — 0,7
Бетон, плотный 1,0 — 1,8
Бетон, камень 1,7
Константан 23,3
Медь
Кориан (керамический наполнитель) 1,06
Пробковая плита 0,043
Пробка повторно гранулированная 0.044
Пробка 0,07
Хлопок 0,04
Вата 0,029
Углеродистая сталь 900 Изоляция 0,029
Мельхиор 30% 30
Алмаз 1000
Диатомовая земля (Sil-o-cel) 0.06
Диатомит 0,12
Дуралий
Земля, сухая 1,5
Эбонит
11,6
Моторное масло 0,15
Этан (газ) 0.018
Эфир 0,14
Этилен (газ) 0,017
Эпоксидная смола 0,35
Этиленгликоль 16
Перья 0,034
Войлок 0,04
Стекловолокно 0.04
Волокнистая изоляционная плита 0,048
Древесноволокнистая плита 0,2
Огнеупорный кирпич 500 o C 1,4
0,0254
Пеностекло 0,045
Дихлордифторметан R-12 (газ) 0.007
Дихлордифторметан R-12 (жидкость) 0,09
Бензин 0,15
Стекло 1,05
0,18
Стекло, жемчуг, насыщенный 0,76
Стекло, окно 0.96
Стекловата Изоляция 0,04
Глицерин 0,28
Золото
Гранит4 1,7 — 4,0
Графит 168
Гравий 0,7
Земля или почва, очень влажная зона 1.4
Земля или почва, влажная зона 1,0
Земля или почва, сухая зона 0,5
Земля или почва, очень засушливая зона 0,33
Гипсокартон 0,17
Волос 0,05
ДВП высокой плотности 0.15
Твердая древесина (дуб, клен …) 0,16
Hastelloy C 12
Гелий (газ) 0,142
Мед ( 12,6% влажности) 0,5
Соляная кислота (газ) 0,013
Водород (газ) 0,168
Сероводород (газ) 0.013
Лед (0 o C, 32 o F) 2,18
Инконель 15
Слиток чугуна 47-586
Изоляционные материалы 0,035 — 0,16
Йод 0,44
Иридий 147
Железо
Оксид железа .58
Капок изоляция 0,034
Керосин 0,15
Криптон (газ) 0,0088
Свинец
Свинец , сухой 0,14
Известняк 1,26 — 1,33
Литий
Магнезиальная изоляция (85%) 0.07
Магнезит 4,15
Магний
Магниевый сплав 70 — 145
Мрамор 2,016 — 2,94
Ртуть, жидкость
Метан (газ) 0,030
Метанол 0.21
Слюда 0,71
Молоко 0,53
Изоляционные материалы из минеральной ваты, шерстяные одеяла .. 0,04
Монель
Неон (газ) 0,046
Неопрен 0.05
Никель
Оксид азота (газ) 0,0238
Азот (газ) 0,024
Закись азота (газ)
Нейлон 6, Нейлон 6/6 0,25
Масло, машинное смазывание SAE 50 0,15
Оливковое масло 0.17
Кислород (газ) 0,024
Палладий 70,9
Бумага 0,05
Парафиновый воск
Торф 0,08
Перлит, атмосферное давление 0,031
Перлит, вакуум 0.00137
Фенольные литые смолы 0,15
Формовочные смеси фенол-формальдегид 0,13 — 0,25
Фосфорбронза 9016 159
Пек 0,13
Карьерный уголь 0.24
Штукатурка светлая 0,2
Штукатурка, металлическая планка 0,47
Штукатурка песочная 0,71
Гипс деревянная планка
Пластилин 0,65 — 0,8
Пластмассы вспененные (изоляционные материалы) 0.03
Платина
Плутоний
Фанера 0,13
Поликарбонат 0,19
Полиэтилен низкой плотности, PEL 0,33
Полиэтилен высокой плотности, PEH 0.42 — 0,51
Полиизопреновый каучук 0,13
Полиизопреновый каучук 0,16
Полиметилметакрилат 0,17 — 0,25 Полипропилен 0,1 — 0,22
Полистирол вспененный 0,03
Полистирол 0.043
Пенополиуретан 0,03
Фарфор 1,5
Калий 1
Картофель, сырая мякоть Пропан (газ) 0,015
Политетрафторэтилен (ПТФЭ) 0,25
Поливинилхлорид, ПВХ 0.19
Стекло Pyrex 1,005
Кварц минеральный 3
Радон (газ) 0,0033
Красный металл
Рений
Родий
Порода, твердая 2-7
Порода вулканическая (туф) 0.5 — 2,5
Изоляция из каменной ваты 0,045
Канифоль 0,32
Резина, ячеистая 0,045
Резина натуральная 0,13
Рубидий
Лосось (влажность 73%) 0,50
Песок сухой 0.15 — 0,25
Песок влажный 0,25 — 2
Песок насыщенный 2 — 4
Песчаник 1,7
Опилки 0,08
Селен
Овечья шерсть 0,039
Аэрогель кремнезема 0.02
Кремниевая литьевая смола 0,15 — 0,32
Карбид кремния 120
Кремниевое масло 0,1
Шлаковата 0,042
Сланец 2,01
Снег (температура <0 o C) 0.05 — 0,25
Натрий
Хвойные породы (ель, сосна ..) 0,12
Почва, глина 1,1
Почва, с органическими вещество 0,15 — 2
Грунт, насыщенный 0,6 — 4

Припой 50-50

50

Сажа

0.07

Пар, насыщенный

0,0184
Пар низкого давления 0,0188
Стеатит 2
Сталь углеродистая
Сталь, нержавеющая
Изоляция из соломенных плит, сжатая 0,09
Пенополистирол 0.033
Диоксид серы (газ) 0,0086
Сера кристаллическая 0,2
Сахар 0,087 — 0,22
Тантал
Смола 0,19
Теллур 4,9
Торий
Древесина, ольха 0.17
Древесина, ясень 0,16
Древесина, береза ​​ 0,14
Древесина, лиственница 0,12
Древесина, клен
Древесина дубовая 0,17
Древесина смоляная 0,14
Древесина осина 0.19
Древесина, бук красный 0,14
Древесина, сосна красная 0,15
Древесина, сосна белая 0,15
Древесина ореха 0,15
Олово
Титан
Вольфрам
Уран
Вакуум 0
Гранулы вермикулита 0,065
Виниловый эфир 0,25
Вода, пар (пар) 0,0267 0,0359
Пшеничная мука 0.45
Белый металл 35-70
Древесина поперек волокон, сосна белая 0,12
Древесина поперек волокон, бальза 0,055
Древесина поперек волокон, сосна желтая, древесина 0,147
Древесина дуба 0,17
Шерсть, войлок 0.07
Древесная вата, плита 0,1 — 0,15
Ксенон (газ) 0,0051
Цинк
2 Асбест 1) плохо для здоровья человека, когда крошечные абразивные волокна попадают в легкие, где они могут повредить легочную ткань. Это, по-видимому, усугубляется курением сигарет, в результате чего возникают мезотелиома и рак легких.

Пример — Проводящая теплопередача через алюминиевый горшок по сравнению с горшком из нержавеющей стали

Кондуктивная теплопередача через стенку горшка может быть рассчитана как

q = (k / s) A dT (1)

или, альтернативно,

q / A = (к / с) dT

где

q = теплопередача (Вт, БТЕ / ч)

A = площадь поверхности (м 2 , фут 2 )

q / A = теплопередача на единицу площади (Вт / м 2 , Btu / (h ft 2 ))

k = теплопроводность ( Вт / мК, БТЕ / (час фут ° F) )

dT = t 1 — t 2 = разница температур ( o C, o F)

с = толщина стены (м, фут)
9000 3

Калькулятор теплопроводности

k = теплопроводность (Вт / мК, БТЕ / (час фут ° F) )

s = толщина стенки (м, фут)

A = площадь поверхности (м 2 , фут 2 )

dT = t 1 — t 2 = разница температур ( o C, o F)

Примечание! — общая теплопередача через поверхность определяется «общим коэффициентом теплопередачи », который в дополнение к кондуктивной теплопередаче зависит от

Кондуктивная теплопередача через алюминиевую стенку горшка толщиной 2 мм — разница температур 80
o C

Теплопроводность алюминия составляет 215 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как

q / A = [(215 Вт / (м · K)) / (2 10 -3 м)] (80 o C)

= 8600000 (Вт / м 2 )

= 8600 (кВт / м 2 )

Кондуктивная теплопередача через стенку емкости из нержавеющей стали толщиной 2 мм — разница температур 80
o C

Теплопроводность нержавеющей стали 17 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как

q / A = [(17 Вт / (м · K)) / (2 10 -3 м) ] (80 o C)

= 680000 (Вт / м 2 )

= 680 (кВт / м 2 )

Измерение теплопроводности керамики с помощью портативного измерителя TLS-100

Возможность точного измерения теплового Проводимость материалов имеет решающее значение для определения областей применения, для которых их свойства идеально подходят.Существует множество способов проведения испытаний на теплопроводность керамики, однако не все методы одинаковы. Точность каждого метода является важным решающим фактором в дополнение к более практическим соображениям, таким как длина измерения и простота настройки тестирования.

Портативная измерительная система

Thermtest, TLS-100 (рис. 1), выполняет измерения теплопроводности и удельного сопротивления почвы, твердых тел и порошков в диапазоне от 0,1 до 5 Вт / мК. Измерения выполняются в соответствии со стандартом ASTM D5334 и имеют воспроизводимость 2% и точность 5%.Это оборудование является отличным и удобным выбором для использования в лаборатории и в полевых условиях и может работать при температурах от -40 до 100 ° C. На этой странице приложения мы продемонстрируем способность Thermtest TLS-100 проверять теплопроводность керамического стеатита и глинозема, обожженного бисквитом, двух важных материалов в промышленности.

Рисунок 1. Thermtest TLS-100 — это мощный прибор для тестирования измерителей теплопроводности в удобном портативном корпусе.

Стеатит, также известный как мыльный камень, высоко ценится за его термостойкие изоляционные свойства. Он широко используется в электрических панелях, строительстве дровяных печей, столешницах и в качестве форм для расплавленного металла из-за его способности поглощать и медленно выделять тепло, которому он подвергается, не становясь нестабильным или не разрушаясь. Физические свойства этого материала могут различаться в разных карьерах из-за различий в минеральном составе, а также в условиях давления и температуры во время формации.Как и стеатит, глинозем, обожженный бисквитом, используется в аэрокосмической, автомобильной и крупномасштабной промышленности благодаря своим изоляционным свойствам при высоких температурах. Это материал, который легко поддается формованию и обработке, поэтому он является удобным выбором.

Рисунок 2 . Фотография стеатитовых форм для создания металлических предметов. Стеатит отлично подходит для использования в качестве форм, поскольку он обладает высокой термостойкостью. 1

Методика испытания теплопроводности керамики

TLS-100 работает путем введения игольчатого зонда в образец и выполняет измерения в течение заданного периода времени, когда образец нагревается и остается охлаждаться.Такая установка приводит к минимальному повреждению образца во время испытания. Для этого конкретного испытания ученые Thermtest разрезали образцы глинозема, обожженного бисквитом, и стеатита пополам. Игольчатый зонд TLS-100 был покрыт тонким слоем термопасты, и две части каждого образца были зажаты вокруг зонда, обеспечивая отличный тепловой контакт (Рисунки 3 и 4). Для каждого образца было проведено в общей сложности пять измерений со временем тестирования 120 секунд. TLS-100 одновременно измеряет как теплопроводность, так и удельное тепловое сопротивление.

Рис. 3. Схема, иллюстрирующая метод, используемый для размещения игольчатого датчика TLS-100 между двумя образцами из глинозема и стеатита, обожженного бисквитом.


Рис. 4. Фотографии, показывающие испытательную установку, используемую для измерения теплопроводности керамического стеатита и глинозема, обожженного бисквитом, в лаборатории Thermtest.

Результаты измерений теплопроводности керамики

Значения теплопроводности и теплового сопротивления, измеренные TLS-100, перечислены в таблице 1.Средняя теплопроводность 5,077 Вт / мК была получена для оксида алюминия, обожженного бисквитом, что точно находится в пределах принятого диапазона теплопроводности от 5 до 5,25 Вт / мК для этого материала. Значение 3,107 Вт / мК, полученное для образца стеатита, также хорошо соответствует стандартным материалам, которые обеспечивают теплопроводность стеатита 3 Вт / мК.

Таблица 1. Теплопроводность керамики: теплопроводность и тепловое сопротивление стеатита и глинозема, обожженного бисквитом, полученные с помощью TLS-100 в лаборатории Thermtest Lab.

Глинозем, обожженный бисквитом Стеатит
Тест №

Теплопроводность (Вт / мк)

Термическое сопротивление (мК / Вт)

Тест №

Теплопроводность (Вт / мК)

Термическое сопротивление (мК / Вт)

1 5.005 0,199 1 3,098 0,322
2 4,953 0,201 2 3,076 0,325
3 5,137 0,194 3 3,203 0,312
4 5,181 0,192 4 3,085 0,324
5 5.108 0,195 5 3,075 0,325
Среднее значение 5,077 0,196 Среднее 3,107 0,322

Эти тесты демонстрируют способность Thermtest TLS-100 быстро и точно измерять теплопроводность керамики с минимальным повреждением самого образца. При поиске оборудования для измерения теплопроводности TLS-100 — отличный выбор, который можно использовать как в лаборатории, так и в полевых условиях для анализа широкого спектра образцов.

Сохранение теплых напитков теплыми — подход к тепловым свойствам

В нашей серии статей о теплопроводности мы представляем различные контексты, в которых теплопроводность играет роль при выполнении наших повседневных задач. Число раз, когда средний человек размышляет о влиянии теплопроводности при принятии повседневных решений, практически отсутствует. Вы не поверите, но теплопроводность более важна для вашего распорядка дня, чем вы думаете, особенно когда речь идет о вашей кофейной кружке.Некоторые люди предпочитают керамическую кружку стеклянной, а другие предпочитают сталь. Что за рассуждение? Скорее всего, этот выбор кружек основан на эстетических предпочтениях, а не на научной основе.

Рисунок 1 . Какая из трех кружек сохранит ваш кофе самым теплым: из нержавеющей стали, керамики или стекла?

Теплопередача, в частности теплопроводность, является важной идеологией среди производителей кружек, поскольку они стремятся производить качественный материал, привлекательный для клиентов.Существует три различных метода передачи тепла: теплопроводность, излучение и конвекция. Процесс теплопроводности — это способность тепла перемещаться от среды с более высокой температурой (жидкость) к среде с более низкой температурой (кружка), пока не будет достигнуто температурное равновесие между двумя материалами. Итак, какой из трех предложенных материалов для кружек больше всего замедлит этот процесс равновесия и дольше сохранит более теплую жидкость?

Рисунок 2 . Три метода теплопередачи: теплопроводность, конвекция и излучение.

Стальная кружка имеет самую высокую теплопроводность из трех предложенных материалов — 14,3 Вт / мК. Эта высокая теплопроводность связана с относительно быстрым температурным равновесием между кружкой и жидкостью, что означает, что жидкость будет довольно быстро остывать. Теплопроводность керамической кружки составляет примерно 3,8 Вт / мК, тогда как теплопроводность стеклянной кружки составляет примерно 1,1 Вт / мК. Из-за относительно низкой теплопроводности стеклянной кружки жидкость должна поддерживать более высокую температуру в течение максимально длительного времени.

Основываясь на упомянутых выше знаниях о теплопроводности, следует использовать стеклянную кружку для сохранения самых горячих жидкостей в течение длительного периода, затем керамическую, а затем стальную кружку. Низкая теплопроводность стеклянной кружки не позволяет теплу жидкости быстро проникать в кружку и рассеиваться. Благодаря высокой теплопроводности стали тепло от жидкости быстро передается кружке, а затем и ладоням.

Хотя, исходя из знаний об теплоемкости, керамическая кружка получает награду за теплый напиток.Теплоемкость — это способность материала удерживать тепло на единицу объема. Из-за более низкой плотности керамики, благодаря небольшим порам в материале, тепло может накапливаться внутри самой кружки, а не выделяться в область вокруг кружки, то есть в ладонь. Пока тепло остается в пределах барьера кружки, между кружкой и жидкостью поддерживается равновесная реакция, предотвращая слишком быстрое охлаждение жидкости.

В следующий раз, когда вы будете покупать новую любимую кружку, вспомните, как теплопроводность и теплоемкость могут повлиять на теплоту вашего напитка, и выбирайте с умом!

Свойства материалов и сравнительные таблицы | Керамика, металлы с высокой температурой плавления | Прецизионная обработка керамики, кварца, вольфрама и молибдена

Удельный вес

На этой диаграмме отображается удельный вес материалов, который представляет собой плотность материала по отношению к плотности воды.
По сравнению с металлами, керамика имеет менее половины плотности. Кроме того, вольфрам тяжелее свинца и примерно такого же веса, как золото, что делает его необычно плотным материалом. Поэтому вольфрам часто используется в качестве защиты от излучения.

График сравнительного удельного веса

Hardnes

На этом графике показана твердость различных материалов, измеренная по твердости по Виккерсу.
Керамика, как правило, намного тверже, чем обычно используемые металлы. Это означает, что они обладают более высокой износостойкостью и широко используются в качестве износостойких материалов.

График сравнительной твердости

Модуль Юнга

Чем выше модуль Юнга определенного материала, тем он жестче и лучше выдерживает возникающее растяжение.
По сравнению с другими материалами керамика, вольфрам и молибден имеют очень высокий модуль Юнга.

Сравнительный график модуля Юнга

Вязкость разрушения

Вязкость разрушения можно определить как сопротивление росту трещин.
Как правило, керамика очень хрупкая.Однако среди них диоксид циркония обладает высокой прочностью на излом и часто используется в кухонных ножах, ножницах и шарах для разрушения.

График сравнительной вязкости разрушения

Макс. использовать темп.

Максимальная температура использования определяет диапазон температур, в котором материал можно использовать. Это зависит от атмосферы.Материалы с высокой температурой плавления, такие как вольфрам, молибден и керамика, имеют различные применения, требующие высокой термостойкости. Например, материалы для мебели, тигли и теплозащита.

Сравнительный график максимальной температуры использования

Термостойкость

Температурный диапазон, в котором материал может выдерживать резкие перепады температуры.Чем выше сопротивление термическому удару, тем меньше риск разрушения материала из-за резких перепадов температуры. Стекло и керамика легко ломаются при резком изменении температуры. Однако нитрид бора, кварц и нитрид кремния обладают очень высокой термостойкостью. Эти материалы часто используются в деталях, которые должны выдерживать экстремальные колебания температуры.

График сравнительной термостойкости

Теплопроводность

Этот график показывает, насколько хорошо тепло передается через различные материалы.
Некоторые керамические материалы, такие как нитрид алюминия и карбид кремния, обладают высокой теплопроводностью, тогда как другие, такие как диоксид циркония, имеют очень низкую проводимость. Вольфрам и молибден сравнительно хорошо проводят тепло.

График сравнения теплопроводности

Коэффициент теплового расширения

Скорость расширения материала при изменении температуры.
Поскольку керамика, вольфрам и молибден имеют низкий коэффициент теплового расширения, изменение формы при изменении температуры незначительно.

Сравнительный график коэффициента теплового расширения

Удельное электрическое сопротивление

Удельное электрическое сопротивление, также известное как объемное сопротивление, — это свойство, объясняющее, насколько трудно электричеству проходить через материал.Керамика в целом имеет высокое электрическое сопротивление. Поэтому они обычно используются в качестве изоляционных материалов. Некоторые керамические материалы, например SiC, обладают электропроводящими свойствами.

График удельного электрического сопротивления

Относительная диэлектрическая проницаемость

Диэлектрическая проницаемость описывает, насколько велика диэлектрическая поляризация материала при приложении к нему электрического поля.Относительная диэлектрическая проницаемость (также известная как диэлектрическая проницаемость) — это диэлектрическая проницаемость материала по отношению к диэлектрической проницаемости вакуума. Чем ниже относительная диэлектрическая проницаемость, тем меньшая диэлектрическая поляризация устанавливается в материале. Таким образом, на материал практически не влияют окружающие электрические поля. Вот почему его популярное применение — в оборудовании для обработки полупроводников.

Коррозионная стойкость

Коррозионная стойкость описывает, насколько хорошо материал может противостоять химическим или биологическим воздействиям без ухудшения его свойств или структуры.Поскольку керамика обладает высокой коррозионной стойкостью, ее можно использовать в протезах конечностей и различных других коррозионно-стойких деталях. Вольфрам противостоит кислотам и щелочам так же, как керамика.

Электропроводность

В общем, современная керамика — это изоляционные материалы, не проводящие электричество. В зависимости от напряжения или температуры некоторые из них могут стать полупроводниками.

Пьезоэлектричество

После приложения механического напряжения к материалам некоторые из них генерируют электрический заряд.И наоборот, обратный пьезоэлектрический эффект возникает, когда электрическое поле прикладывается и создается деформация материала. Пьезоэлектрическая керамика имеет поликристаллическую структуру. Примером пьезоэлектрического материала является цирконат титанат свинца (сокращенно PTZ).

Теплопроводящая керамика | Precision Ceramics USA

Использование керамики в приложениях с высокой теплопроводностью — это растущий специализированный рынок. Оксидная керамика — наиболее распространенный материал основы.Но большинство из них ограничены 26-30 Вт / мК, что по сравнению с двумя наиболее распространенными металлами с высокой теплопроводностью, медью около 385 Вт / мК и алюминием около 150-185 Вт / мК, оставляет большой зазор.

Цель состоит в том, чтобы увеличить теплопроводность, сохранив при этом другую ключевую особенность керамики — электрическую изоляцию.

Недавние разработки в области глинозема увеличили теплопроводность некоторых марок до 39 Вт / мК, что все еще намного меньше, чем у обычно используемых металлов, но значительно выше базового уровня.

Керамические материалы, выбранные для достижения этой более высокой теплопроводности, представляют собой специализированную группу. У всех есть свои сильные и слабые стороны, и не все обладают основным свойством электроизоляции.

Давайте посмотрим на четырех претендентов, включая композиты из нитрида бора, нитрида алюминия (AlN), оксида бериллия и нитрида алюминия. Первым претендентом является Shapal Hi-M Soft, композит из нитрида алюминия и нитрида бора, который дает значительное увеличение теплопроводности, более 92 Вт / мК, и улучшает электрическую изоляцию.Комбинация этих двух материалов также дает материалу второе преимущество — его обрабатываемость. Для обработки не требуется алмазный инструмент. Но получение этого поддающегося механической обработке композита нитрид алюминия / нитрид бора требует горячего прессования, что ограничивает доступный размер материала.

Нитрид бора, еще один материал горячего прессования, также поддается механической обработке и доступен в более крупных размерах. Плюс есть много доступных сортов. Но только самая высокая чистота может сравниться с обрабатываемым композитом AlN / нитрид бора по теплопроводности и, в некоторых случаях, превзойти его.Сплавы высокой чистоты механически слабее и мягче, чем обрабатываемый композит нитрид алюминия / нитрид бора.

Оксид бериллия на протяжении многих лет является предпочтительным материалом для некоторых высокотехнологичных проектов. Этот материал имеет теплопроводность 285 Вт / мК, хорошую электрическую изоляцию и, как оксидная керамика, не имеет специальных требований к азотной печи, предъявляемых к нитриду алюминия. Главный недостаток — требования к здоровью и безопасности, связанные с этим материалом, в результате чего его используют только специализированные приложения, например, в военных целях.

Нитрид алюминия (AlN), как правило, используется в основном в форме подложки, поскольку это следующий шаг по сравнению с подложками из оксида алюминия. Большая часть мирового производства AlN находится в этой форме. Теплопроводность AlN зависит от марки и качества. Промышленный стандарт обычно составляет 170–180 Вт / мК, более низкие оценки — до 150 Вт / мК, а сверхвысокая чистота — примерно до 220 Вт / мК. Компоненты AlN в трехмерной геометрии встречаются гораздо реже. Многие инженеры предпочитают использовать обрабатываемый композит из нитрида алюминия, особенно на начальных этапах проектирования, но часто также и в производственных объемах, даже несмотря на то, что он имеет более низкую теплопроводность.

Если вам нужна максимальная теплопроводность и действительно глубокие карманы, то синтетический алмаз с мощностью более 2000 Вт / мК — для вас. Но ваши требования к теплопроводности должны быть экстремальными.

В приведенной ниже таблице сравнивается теплопроводность 3 электрических изоляторов (нитрид алюминия, Shapal и оксид алюминия) и 2 проводников (алюминий и медь):

(PDF) Высокотемпературная теплопроводность керамических волокон

JMEPEG (2001) 10: 475–478 䉷 ASM International

Высокотемпературная теплопроводность керамических волокон

В.Гумен, А. уль Хак, Б. Ильяс и А. Максуд

(Представлено 3 марта 2000 г .; в пересмотренной форме 5 января 2001 г.)

Керамические волокна ВК-60, АБК и ВК-80, полученные методом паровой продувки и Методы распыления сопла

были исследованы на предмет влияния содержания неволокнистого материала, давления и температуры на теплопроводность

при температуре окружающей среды и более высоких температурах. Было замечено, что с увеличением содержания алюминия

в керамических волокнах теплопроводность материала снизилась, а изоляционные свойства

улучшились.Волокна ВК-80 имеют самое низкое, а волокна ВК-60 — самое высокое значение теплопроводности

при температуре окружающей среды. При температуре окружающей среды значение теплопроводности

увеличивалось с увеличением давления для всех анализируемых волокон. Волокна ABK показали наименьшее увеличение, а

VK-80 зарегистрировало увеличение значений теплопроводности примерно на 10% для давлений в диапазоне

от 0,6 до 6,6 кН /

2

. Однако за пределами давления 6.6 кН / м

2

, теплопроводность всех образцов

увеличилась. Для оценки изоляционных свойств исследуемых волокон была измерена теплопроводность

при различных температурах до 800 ⴗС. На основании полученных результатов был сделан вывод, что все три типа волокон

имеют хороший потенциал для будущих применений, показывая хорошие характеристики в исследованном диапазоне температур

.

галстуков из материала и др., влияют на теплопроводность.

Ключевые слова оксид алюминия, керамика, волокна, термический

Основной целью данного исследования было изучение влияния

проводимости

этих факторов и влияния высокотемпературной обработки

на теплопроводность исследуемого глинозема. -silica

Введение

волокна. В результате стало возможным идентифицировать материал

, имеющий оптимальные характеристики, т.е.е., более низкое тепловое расширение

Усовершенствованные керамические волокнистые материалы обладают потенциальной проводимостью при высоких температурах, поэтому изоляция с

подходит для высокотемпературных применений из-за их малого веса, высокого запаса прочности и более низкой стоимости. полученный. Conse-

и отличные теплоизоляционные свойства. Тот факт, что это подходящее керамическое волокно может быть рекомендовано в соответствии с

,

волокнистые материалы были в первую очередь разработаны для внутреннего танца для его конкретных применений.

изоляция космических аппаратов и ракет, а также в качестве армирования Среди прочих, наиболее часто используемыми материалами являются базальт,

для металлической матрицы и композиты с керамической матрицей, в состав которых входит бор, и волокна карбида кремния. Они относительно недорогие —

используются в экстремальных условиях окружающей среды, точны и просты в изготовлении. Однако керамические волокна имеют

. Информация об их теплопередающих свойствах является самым большим преимуществом перед этими волокнами, поскольку они обладают более высоким значением

, необходимым для их правильного использования.В последнее время эти волокна обладают также термической стабильностью и улучшенными изоляционными свойствами. Такие волокна

используются в промышленных котлах, печах, химических реакторах и т. Д. Волокна могут быть получены либо методом экстракции из расплава.

В данной работе подчеркиваются тепловые свойства дифракционного раствора, либо из коллоидного раствора методом распыления через сопло.

различных типов керамических волокон (алюмосиликат на неорганической основе В зависимости от содержания оксида алюминия продукт

волокна) в широком диапазоне температур.Различие может быть аморфным или кристаллическим. Волокна с ориентированными зернами

термические свойства различных волокон могут коррелировать с более низкими значениями теплопроводности и лучше для

по изменению их структуры и химического состава. Это высокотемпературные приложения.

общеизвестно, что различные факторы, такие как технология производства

, поведение конструкции, плотность, приложенное давление, примеси

Материалы и методы

V.Гумен, Б. Ильяс и А.

About Author


alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

ЮК «Эгида-Сочи» - недвижимость.

Наш принцип – Ваша правовая безопасность и совместный успех!

2021 © Все права защищены.