Теплопроводность материалов снип: Расчет толщины наружной стены по СНиП

Расчет толщины наружной стены по СНиП

Для условий утепления стен жилого здания в Пермском крае (температура воздуха в помещении + 21 oС), требуемое сопротивление теплопередаче составляет
     Rreq = 3.56 м2oС/Вт.

Сопротивление теплопередаче ограждающей конструкции должно быть не ниже требуемого и определяется по формуле:
     R0 = 1/aint + R + 1/aext,
где
  aint – коэффициент теплоотдачи внутренней поверхности ограждающих конструкций;
  aext – коэффициент теплоотдачи (для зимних условий) наружной поверхности ограждающей конструкции;
  R – термическое сопротивление ограждающей конструкции, определяемое по формуле:
     R = d1 / l1 + d2 / l2 + d3 / l3 + ⋯,
где
  d — толщина слоя;

  l — расчетный коэффициент теплопроводности материала слоя.

Коэффициент теплопроводности материала слоя принимается по следующим данным.

Утеплитель — минеральная вата

Согласно производителю минераловатной теплоизоляции
Коэффициент теплопроводности:

  • Минеральная вата — 0.04 Вт/м/oС

Утеплитель — гранулированное пеностекло

Согласно протокола испытаний на теплопроводность
Коэффициент теплопроводности:

  • Гранулированное пеностекло — 0.048 Вт/м/oС

Газобетонные стены

Согласно СП 23-101-2004 «ПРОЕКТИРОВАНИЕ ТЕПЛОВОЙ ЗАЩИТЫ ЗДАНИЙ»:
Коэффициент теплопроводности:

  • Газобетонные блоки D500 — 0.20 Вт/м/oС — приложение Д

Согласно СТО 501-52-01-2007 «ПРОЕКТИРОВАНИЕ И ВОЗВЕДЕНИЕ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ ЖИЛЫХ И ОБЩЕСТВЕННЫХ ЗДАНИЙ С ПРИМЕНЕНИЕМ ЯЧЕИСТЫХ БЕТОНОВ В РОССИЙСКОЙ ФЕДЕРАЦИИ»:

Коэффициент теплопроводности:

  • Газобетонные блоки D500 — 0. 20 Вт/м/oС — табл.4.7
  • Кладка блоков на клею — 0.23 Вт/м/oС — табл. 7.1
  • Кладка блоков на растворе — 0.30 Вт/м/oС — табл 7.1

Согласно производителю газобетонных блоков
Коэффициент теплопроводности:

  • Газобетонные блоки D500 — 0.148 Вт/м/oС

Даже при условии, что современные выпускаемые газобетонные блоки имеют более низкий коэффициент теплопроводности по сравнению с приведенными нормативными документами, минимальный коэффициент теплопроводности кладки стен из газобетонных блоков с учетом кладки на клей следует принимать не менее 0.175 Вт/м/oС.

Пеностеклобетонные стены

Согласно немецкому аналогу пеностеклобетонных блоков Dennert Calimax 11

Коэффициент теплопроводности:

  • Пеностеклобетонные стены — 0.11 Вт/м/oС

Назад к сравнению стен

Как построить теплый дом в Сибири

  1. Берем строительные нормы и рассчитываем потери тепла

Сопротивление теплопередаче стен

 Насколько хорошо наружные стены «хранят» тепло внутри дома показывает значение сопротивления теплопередаче. Рекомендуемое значение сопротивления теплопередаче внешней стены дома согласно Таблице  из СНиП 23-02-2003 зависит от размера градусо-суток отопительного периода данного района, т.е. зависит от региона, в котором строится дом.

  Значения сопротивления теплопередаче наружных стен для жилых зданий некоторых регионов:                                          

           Город                      Необходимое сопротивление теплопередаче по новому СНИП, м2·°C/Вт
Москва3,28
Краснодар2,44
Сочи1,79
Ростов-на-Дону2,75
Санкт-Петербург3,23
Красноярск4,84
Воронеж3,12
Якутск4,05
Волгоград2,91
Астрахань2,76
Екатеринбург3,65
Нижний Новгород3,63
Владивосток3,25
Магадан 4,33
Челябинск3,64
Тверь 3,31
Новосибирск3,93
Самара3,33
Пермь3,64
Уфа 3,48
Казань3,45
Омск 3,82

 

 Таблица плотности и теплопроводности некоторых стеновых строительных материалов

 

Материал     Плотность кг/м3            Теплопроводность (Вт/м·0C)      
Теплоизоляционные материалы
Минераловата
-плиты  2000,08
-плиты1250,07
Пенополистирол
-Пенопласт ПСБ-С 15 До 150,043
-Пенопласт ПСБ-С 2515,1-250,041
-Пенопласт ПСБ-С 3525,1-350,038
-Пенопласт ПСБ-С 5035,1-500,041
Бетоны и растворы
Железобетон25002,04
Бетон 25001,30
Цементо-песч.18000,93
Керамзитобетон12000,58
Пенобетон1000,37
Гипсокартон800 0,21
Газосиликат5000,12
Кирпичная кладка на цементно-песчаном растворе
Керамический кирпич:  
-сплошной 1800   0,81
-пустотный 1600    0,64
-пустотный14000,58
-пустотный 12000,52
Селикатный кирпич:  
-сплошной 18000,87
-14 пустот 14000,76
 Глинянный кирпич:   
-обыкновенный 14000,56
 Дерево и другие органические материалы
Сосна и ель   
-поперек волокон 5000,18


          Из таблицы теплопроводности материалов видно, что пенополистирол обладает очень хорошими теплоизоляционными свойствами. При таких теплоизоляционных свойствах пенопласт, имеет хорошие физические свойства — прочность, упругость, легкость. Пенополистирол намного дешевле остальных утеплителей и экологически безвреден.

 

 Как вычислить реальное сопротивление теплопередаче внешней стены дома R0?

  Чтобы определить сопротивление теплопередаче стены, нужно разделить толщину материала (м) на коэффициент теплопроводности материала (Вт/(м·°C)). Если стена многослойная, то полученные значения всех материалов нужно сложить, чтобы получить общее значение сопротивления теплопередаче всей стены.

 Допустим, у нас стена построена из крупноформатных керамических блоков (коэффициент теплопроводности 0,14 Вт/(м·°C)) толщиной 50 см, внутри гипсовая штукатурка 4 см (коэффициент теплопроводности 0,31 Вт/(м·°C)), снаружи цементно-песчаная штукатурка 5 см (коэффициент теплопроводности 1,1 Вт/(м·°C)). Считаем:

  R0 = 0,5 / 0,14 + 0,04 / 0,31 + 0,05 / 1,1 = 3,57 + 0,13 + 0,04 = 3,74 м2·°C/Вт

  Рекомендуемое значение Rreq для Красноярска 4,84, таким образом наша стена не удовлетворяет для нашего региона СНиП 23-02-2003.

         

      Наша компания предлагает строительство теплых домов из 3D-панелей.

 

 

Принцип строительства несъемной опалубки.

 

 Армированный блок, состоящий из 2-х армированных панелей, размер блока 1,2 м на 3 м.

 

Толщина стены 0,55 м, коэффициент сопротивления теплопередачи стены 8,8 Вт/(м·°C). Расход тепла 15 Вт на 1 м2 площади пола.

 

 

Наши дома комплектуются приточно-вытяжной вентиляцией, в окна ставятся двойные рамы (см. фото здесь) с коэффициентом сопротивления теплопроводности 2,2, от земли цокольный этаж и пол утепляется пенополистиролом 20 см, потолок — 40 см, этим мы добиваемся минимальной потери тепла, дом получается комфортный и теплый

Теплотехнические расчеты | Теплый дом

Теплотехнические расчеты

Когда мы принимаем решение построить загородный дом, то обычно начинаем продумывать архитектуру дома, то где он будет стоять на участке, из чего будет построен.

А приходила ли нам в голову мысль, сколько будет стоить эксплуатация дома в будущем?

Как правило, лишь построив загородный дом, мы начинаем понимать, что за счастье жить на свежем воздухе в гармонии с природой нам придется регулярно платить. И платить немалые деньги. В среднем содержание комфортабельного коттеджа со всеми удобствами обходится от 500 до полутора тысяч долларов в месяц, и более 50% этих средств идет на оплату расходов по отоплению. Поначалу эти затраты кажутся мизерными по сравнению со стоимостью самого дома. Но рано или поздно эйфория проходит и наступает момент истины, когда даже самый состоятельный домовладелец начинает задумываться о сокращении затрат на эксплуатацию своего жилища.

И эти затраты можно сократить если на начальной стадии уделить особое внимание тому — как и из чего будет построен дом.

Наружные стены, окна, крыша, то есть ограждающие конструкции здания, защищают живущих в доме людей от холода, ветра, дождя, снега, сырости, жары и шума (рисунок 1).

Благодаря способности ограждений препятствовать прохождению через них тепла, в доме в холодное время года сохраняются условия теплового комфорта.

Посмотрев на рисунок 2, вы можете увидеть откуда тепло уходит из дома. Величина теплопотерь на прямую зависит от площади ограждающих конструкции и от теплоизолирующей способности материала из которых они состоят. В связи с тем, что самая большая площадь ограждающих конструкций у наружных стен, то только через них потери тепла достигают 30–40 %.

Ниже мы попробуем разобраться от чего зависят потери тепла через стены и в чем это выражается. Для этого вспомним немного физики.

Способность ограждающих конструкций оказывать сопротивление потоку тепла, проходящему из помещения наружу, характеризуется сопротивлением теплопередачи1 R0:

(1) R0 = 1/αв +R+1/αн, где

αв — коэффициент теплообмена2 у внутренней поверхности ограждения. В соответствии со СНиП 23-02-2003 «Тепловая защита зданий» равен 8,7 Вт/м2 °С;
αн — коэффициент теплообмена у наружной поверхности ограждения. В соответствии со СНиП 23-02-2003 «Тепловая защита зданий» равен 23 Вт/м2 °С;
R — термическое сопротивление3 конструкций.

(2) R = δ/λ, где

δ — толщина теплоизоляционного материала;
λ — коэффициент теплопроводности4 теплоизоляционного материала.

Подставляя в формулу (1) значения αв и αн получаем:

(3) R0 = 0,1149 + δ/λ + 0,0434 = 0,1583 + δ/λ

Конструкции из материалов с низким значением коэффициента теплопроводности λ обладают высоким сопротивлением теплопередаче R0, а значит, и высокими теплозащитными качествами.

Таким образом, чем выше R0 конструкции, тем лучшими теплозащитными свойствами она обладает.

В связи с этим, для снижения теплопотерь, что естественно приводит к экономии будущих эксплуатационных расходов необходимо выбирать материал с высоким R0, но при этом сравнивать его по стоимости и по другим параметрам с другими материалами с близким R0.

На сегодняшний день требуемое сопротивление теплопередаче R0 наружных ограждающих конструкций по новому СНиП 23-02-2003 «Тепловая защита зданий» для Ленинградской области должен быть не менее 3,15 (R0 = 3,15). При таком коэффициенте сопротивления теплопередаче температура на внутренней поверхности стены дома будет не менее +20°С, при температуре наружного воздуха –26°С.

Подставляя значение R0 = 3,15 в формулу (3) имеем 3,15 = 0,1583 + δ/λ.

(4) Или δ = 2,9917λ.

Таким образом зная значение коэффициента теплопроводности λ для разных строительных материалов, мы можем используя формулу (4) рассчитать какую толщину стен дома δ нам необходимо иметь при сопротивлении теплопередачи R0 = 3,15. Это позволит нам оценить объем и стоимость материала, который пойдет на строительство стен дома.


  1. Сопротивление теплопередачи характеризует количество тепла в ваттах (Вт), которое проходит через один квадратный метр конструкции при разности температур по обе стороны в один градус.
  2. Теплообмен — процесс необратимого распространения тепла от более нагретых тел к менее нагретым.
  3. Термическое сопротивление — способность тела (его поверхности или какого-либо слоя) препятствовать распространению теплового движения молекул.
  4. Коэффициент теплопроводности — это способность материала передавать через свою толщину тепловой поток, возникающий из-за разности температур на противоположных поверхностях.

Сделаем расчеты для нескольких материалов которые наиболее часто используются для строительства загородных домов:
Кирпич:

  1. Кирпичная кладка из строительного плотнотелого кирпича (производитель ОАО «Победа ЛСР»). Теплопроводность такой кладки λ равна 0,72. Используя формулу (4) получаем δ = 2,154 м
  2. Кирпичная кладка из строительного кирпича, пустотностью 22% (производитель ОАО «Победа ЛСР»). Теплопроводность λ такой кладки равна 0,53 , получаем δ = 1,586 м
  3. Кирпичная кладка из строительного кирпича, пустотностью 42–45 % (производитель ОАО «Победа ЛСР»). Теплопроводность такой кладки λ равна 0,26. получаем δ = 0,777 м

Газобетон, (производитель ЗАО «Силбетиндустрия» марка Д 400). Его теплопроводность λ равна 0,14, получаем δ = 0,42 м
Газобетон Aeroc (производитель ООО «Аэрок Санкт-Петербург», марка Д 400). Его теплопроводность λ равна 0,096, получаем δ = 0.29 м
Сосна или ель. Их теплопроводность λ (согласно СНиП 23-02-2003 «Тепловая защита зданий») равна 0,18, получаем δ = 0,54 м.
Технология монолитного строительства в несъемной опалубке Velox (далее—Velox). Cтена, возводимая по технологии Velox не однородна, она состоит из четырех элементов: внутренняя плита Velox WS (λ = 0,11), внешняя двухслойная плита Velox WS-EPS (λ = 0,11 + 0,038), бетон марки В-20 (λ = 1,87).

Для расчетов используем формулу (4) в виде 2,9917 = δ/λ.

Предположим, что все слои равны, тогда 2,9917 = δ/0,11 + δ/0,11 + δ/0,038 + δ/1,87.

Выполнив вычисления получаем δ = 0,0664 м. Но так как стена Velox не однородна и состоит из четырех элементов, то δ=0,0664×4=0,265 м.

Анализируя сделанные выше расчеты мы видим, что для того чтобы получить теплый дом, удовлетворяющий СНиП 23-02-2003 «Тепловая защита зданий» в Ленинградской области (R0 = 3,15 ), необходимо выложить стену:

  • из сплошного строительного плотнотелого кирпича толщиной 215 см.;
  • из строительного кирпича, пустотностью 22 % толщиной 159 см.;
  • из строительного кирпича, пустотностью 42–45% толщиной 77см.;
  • из сосны или ели толщиной 54 см.;
  • из газобетона толщиной 42 см.
  • из газобетона Aeroc толщиной 29 см.
  • из Velox — толщиной 27 см.

Если посмотреть на эти результаты, то материалы можно разделить на две группы. К первой группе относятся:

  • строительный плотнотелый кирпич,
  • строительный кирпич (пустотностью 22 % и пустотностью 42–45 %),
  • газобетон Hebel,
  • сосна и ель.

Если вы решите строить загородный дом из этих материалов, то для того чтобы дом был теплый, необходимо выполнить одно из трех условий:

  • Возвести стену расчетной толщины.
  • Возвести стену меньшей толщины, но затем обязательно ее утеплить (сделав предварительные расчеты по утеплению).
  • Возвести стену меньшей толщины, но отапливать дом в усиленном режиме.

К сожалению, выполнив любое из этих трех условий — стоимость вашего дома возрастет по сравнению с тем, если бы вы строили дом из материалов второй группы или в будущем вы будете тратить средства на дополнительное отопление.

Во вторую группу материалов вошли газобетон Aeroc и Velox. Сравнивая материалы-победители между собой можно отметить следующее:

  • По цене готового изделия, то есть стоимости коробки дома, стоимость этих материалов приблизительно одинакова.
  • По срокам строительства они имеют примерно равные сроки.
  • Если строить дом из газобетона Aeroc, то необходимо помнить, что он абсорбирует (поглощает) влагу, в связи с чем резко снижаются его теплотехнические характеристики, что может привести к деформации. Поэтому газобетон обязательно необходимо изолировать от влаги.
  • Газобетон обладает низкой механической прочностью, поэтому для такой кладки необходим монолитный фундамент, чтобы исключить усадочные деформации и возникновение трещин в стенах.
  • По приведенным выше расчетам толщина стены, возведенной по технологии Velox должна равняться 27 см. Но при создании технологии Velox была заложена стандартная толщина стены размером в 32 см. Это на 20 % больше расчетной величины. Используя формулу (1) мы получаем R0 = 4,2. Это на 30 % больше коэффициента теплопередачи для Северо-Западного региона и равно коэффициенту теплопередачи для крайнего северо-востока Европейской части РФ (Республика Коми), где среднегодовая температура воздуха не поднимается выше +1°С, и где Velox также успешно используется для строительства.

Теплопроводность строительных материалов. Теплопроводность основных строительных материалов Теплопроводность железобетонной плиты

Строительство коттеджа или дачного дома — это сложный и трудоемкий процесс. И для того, чтобы будущее строение простояло не один десяток лет, нужно соблюдать все нормы и стандарты при его возведении. Поэтому каждый этап строительства требует точных расчетов и качественного выполнения необходимых работ.

Одним из самых важных показателей при строительстве и отделке строения является теплопроводность строительных материалов. СНИП (строительные нормы и правила) дает полный спектр информации по данному вопросу. Ее необходимо знать, чтобы будущее здание было комфортным для проживания как в летний, так и в зимний период.

Идеальный теплый дом

От конструктивных особенностей строения и применяемых при его возведении материалов зависит комфорт и экономичность проживания в нем. Комфорт заключается в создании оптимального микроклимата внутри вне зависимости от внешних погодных условий и температуры окружающей среды. Если материалы подобраны правильно, а котельное оборудование и вентиляция установлены согласно нормам, то в таком доме будет комфортная прохладная температура летом и тепло зимой. К тому же если все материалы, используемые при строительстве, обладают хорошими теплоизоляционными свойствами, то расходы на энергоносители при отоплении помещений будут минимальны.

Понятие теплопроводности

Теплопроводность — это передача тепловой энергии между непосредственно соприкасающимися телами или средами. Простыми словами теплопроводность — это способность материала проводить температуру. То есть, попадая в какую-то среду с отличающейся температурой, материал начинает принимать температуру этой среды.

Этот процесс имеет большое значение и в строительстве. Так, в доме с помощью отопительного оборудования поддерживается оптимальная температура (20-25°C). Если температура на улице будет ниже, то когда отключается отопление, все тепло из дома через некоторое время выйдет на улицу, и температура понизится. Летом происходит обратная ситуация. Чтобы сделать температуру в доме ниже уличной, приходится использовать кондиционер.

Коэффициент теплопроводности

Потеря тепла в доме неизбежна. Она происходит постоянно, когда температура снаружи меньше, чем в помещении. А вот ее интенсивность — это переменная величина. Она зависит от множества факторов, главными среди которых являются:

  • Площадь поверхностей, участвующих в теплообмене (крыша, стены, перекрытия, пол).
  • Показатель теплопроводности строительных материалов и отдельных элементов здания (окна, двери).
  • Разница между температурами на улице и внутри дома.
  • И другие.

Для количественной характеристики теплопроводности строительных материалов используют специальный коэффициент. Используя этот показатель, можно довольно просто рассчитать необходимую теплоизоляцию для всех частей дома (стены, крыша, перекрытия, пол). Чем выше коэффициент теплопроводности строительных материалов, тем больше интенсивность потери тепла. Таким образом, для постройки теплого дома лучше применять материалы с более низким показателем этой величины.

Коэффициент теплопроводности строительных материалов, как и любых других веществ (жидких, твердых или газообразных), обозначается греческой буквой λ. Единицей его измерения является Вт/(м*°C). При этом расчет ведется на один квадратный метр стены толщиной в один метр. Разница температур здесь берется 1°. Практически в любом строительном справочнике имеется таблица теплопроводности строительных материалов, в которой можно посмотреть значение этого коэффициента для различных блоков, кирпичей, бетонных смесей, пород дерева и других материалов.

Определение потерь тепла

Потери тепла в любом здании всегда есть, но в зависимости от материала они могут изменять свое значение. В среднем потеря тепла происходит через:

  • Крышу (от 15 % до 25 %).
  • Стены (от 15 % до 35 %).
  • Окна (от 5 % до 15 %).
  • Дверь (от 5 % до 20 %).
  • Пол (от 10 % до 20 %).

Для определения потерь тепла применяют специальный тепловизор, который определяет наиболее проблемные места. Они выделяются на нем красным цветом. Меньшая потеря тепла происходит в желтых зонах, далее — в зеленых. Зоны с наименьшей потерей тепла выделяются синим цветом. А определение теплопроводности строительных материалов должно проводиться в специальных лабораториях, о чем должен свидетельствовать сертификат качества, прилагаемый к продукции.

Пример расчета потерь тепла

Если взять, к примеру, стену из материала с коэффициентом теплопроводности 1, то при разности температур с двух сторон этой стены в 1°, потери тепла составят 1 Вт. Если же толщину стены взять не 1 метр, а 10 см, то потери составят уже 10 Вт. В случае, если разность температур будет 10°, то тепловые потери также составят 10 Вт.

Рассмотрим теперь на конкретном примере расчет потери тепла целого здания. Высоту его возьмем 6 метров (8 с коньком), ширину — 10 метров, а длину — 15 метров. Для простоты расчетов берем 10 окон площадью 1 м 2 . Температуру внутри помещения будем считать равную 25°C, а на улице -15°C. Вычисляем площадь всех поверхностей, через которые происходит потеря тепла:

  • Окна — 10 м 2 .
  • Пол — 150 м 2 .
  • Стены — 300 м 2 .
  • Крыша (со скатами по длинной стороне) — 160 м 2 .

Формула теплопроводности строительных материалов позволяет вычислить коэффициенты для всех частей здания. Но проще использовать уже готовые данные из справочника. Там есть таблица теплопроводности строительных материалов. Рассмотрим каждый элемент по отдельности и определим его тепловое сопротивление. Оно рассчитывается по формуле R = d/λ, где d — толщина материала, а λ — коэффициент его теплопроводности.

Пол — 10 см бетона (R=0,058 (м 2 *°C)/Вт) и 10 см минеральной ваты (R=2,8 (м 2 *°C)/Вт). Теперь складываем эти два показателя. Таким образом, тепловое сопротивление пола равняется 2,858 (м 2 *°C)/Вт.

Аналогично считаются стены, окна и кровля. Материал — ячеистый бетон (газобетон), толщина 30 см. В таком случае R=3,75 (м 2 *°C)/Вт. Тепловое сопротивление пластового окна — 0,4 (м 2 *°C)/Вт.

Следующая формула позволяет выяснить потери тепловой энергии.

Q = S * T / R, где S — площадь поверхности, T — разница температур снаружи и внутри (40°C). Рассчитаем потери тепла для каждого элемента:

  • Для крыши: Q = 160*40/2,8=2,3 кВт.
  • Для стен: Q = 300*40/3,75=3,2 кВт.
  • Для окон: Q = 10*40/0,4=1 кВт.
  • Для пола: Q = 150*40/2,858=2,1 кВт.

Далее все эти показатели суммируются. Таким образом, для данного коттеджа тепловые потери составят 8,6 кВт. А для поддержания оптимальной температуры потребуется котельное оборудование мощностью не менее 10 кВт.

Материалы для внешних стен

На сегодняшний день существует множество стеновых строительных материалов. Но наибольшей популярностью в частном домостроении по-прежнему пользуются строительные блоки, кирпичи и дерево. Основные отличия — это плотность и теплопроводность строительных материалов. Сравнение дает возможность выбрать золотую середину в соотношении плотность/теплопроводность. Чем выше плотность материала, тем выше его несущая способность, а следовательно, и прочность конструкции в целом. Но при этом ниже его тепловое сопротивление, а как следствие, расходы на энергоносители выше. С другой стороны, чем выше тепловое сопротивление, тем ниже плотность материала. Меньшая плотность, как правило, подразумевает наличие пористой структуры.

Чтобы взвесить все за и против, необходимо знать плотность материала и его коэффициент теплопроводности. Следующая таблица теплопроводности строительных материалов для стен дает значение этого коэффициента и его плотность.

Материал

Теплопроводность, Вт/(м*°C)

Плотность, т/м 3

Железобетон

Керамзитобетонные блоки

Керамический кирпич

Силикатный кирпич

Газобетонные блоки

Утеплители для стен

При недостаточной тепловой сопротивляемости внешних стен могут применяться различные утеплители. Так как значения теплопроводности строительных материалов для утепления могут иметь весьма низкий показатель, то чаще всего толщины в 5-10 см будет достаточно для создания комфортной температуры и микроклимата в помещениях. Широкое применение на сегодняшний день получили такие материалы, как минеральная вата, пенополистирол, пенопласт, пенополиуритан и пеностекло.

Следующая таблица теплопроводности строительных материалов, используемых для утепления наружных стен, дает значение коэффициента λ.

Особенности применения стеновых утеплителей

Применение утеплителей для наружных стен имеет некоторые ограничения. Это прежде всего связанно с таким параметром, как паропроницаемость. Если стена сделана из пористого материала, такого как газобетон, пенобетон или керамзитобетон, то применять лучше минеральную вату, так как этот параметр у них практически одинаковый. Использование пенополистирола, пенополиуритана или пеностекла возможно только при наличии специального вентиляционного зазора между стеной и утеплителем. Для дерева это также критично. А вот для кирпичных стен данный параметр не так критичен.

Теплая кровля

Утепление кровли позволяет избежать ненужных перерасходов при отоплении дома. Для этого могут применяться все виды утеплителей как листового формата, так и напыляемые (пенополиуритан). При этом не следует забывать про пароизоляцию и гидроизоляцию. Это весьма важно, так как мокрый утеплитель (минеральная вата) теряет свои свойства по тепловой сопротивляемости. Если же кровля не утепляется, то необходимо основательно утеплить перекрытие между чердаком и последним этажом.

Пол

Утепление пола весьма важный этап. При этом также необходимо применять пароизоляцию и гидроизоляцию. В качестве утеплителя используется более плотный материал. Он, соответственно, имеет более высокий коэффициент теплопроводности, чем кровельный. Дополнительной мерой для утепления пола может послужить подвал. Наличие воздушной прослойки позволяет повысить тепловую защиту дома. А оборудование системы теплого пола (водяного или электрического) дает дополнительный источник тепла.

Заключение

При строительстве и отделке фасада необходимо руководствоваться точными расчетами по тепловым потерям и учитывать параметры используемых материалов (теплопроводность, паропроницаемость и плотность).

Строительство любого дома, будь то коттедж или скромный дачный домик, должно начинаться с разработки проекта. На этом этапе закладывается не только архитектурный облик будущего строения, но и его конструктивные и теплотехнические характеристики.

Основной задачей на этапе проекта будет не только разработка прочных и долговечных конструктивных решений, способных поддерживать наиболее комфортный микроклимат с минимальными затратами. Помочь определиться с выбором может сравнительная таблица теплопроводности материалов.

Понятие теплопроводности

В общих чертах процесс теплопроводности характеризуется передачей тепловой энергии от более нагретых частиц твердого тела к менее нагретым. Процесс будет идти до тех пор, пока не наступит тепловое равновесие. Другими словами, пока не сравняются температуры.

Применительно к ограждающим конструкциям дома (стены, пол, потолок, крыша) процесс теплопередачи будет определяться временем, в течение которого температура внутри помещения сравняется с температурой окружающей среды.

Чем более продолжителен по времени будет этот процесс, тем помещение будет более комфортным по ощущениям и экономичным по эксплуатационным расходам.

Численно процесс переноса тепла характеризуется коэффициентом теплопроводности. Физический смысл коэффициента показывает, какое количество тепла за единицу времени проходит через единицу поверхности. Т.е. чем выше значение этого показателя, тем лучше проводится тепло, значит, тем быстрее будет происходить процесс теплообмена.

Соответственно, на этапе проектных работ необходимо спроектировать конструкции, теплопроводность которых должна иметь по возможности наименьшее значение.

Вернуться к оглавлению

Факторы, влияющие на величину теплопроводности

Теплопроводность материалов, используемых в строительстве, зависит от их параметров:

  1. Пористость — наличие пор в структуре материала нарушает его однородность. При прохождении теплового потока часть энергии передается через объем, занятый порами и заполненный воздухом. Принято за отсчетную точку принимать теплопроводность сухого воздуха (0,02 Вт/(м*°С)). Соответственно, чем больший объем будет занят воздушными порами, тем меньше будет теплопроводность материала.
  2. Структура пор — малый размер пор и их замкнутый характер способствуют снижению скорости теплового потока. В случае использования материалов с крупными сообщающимися порами в дополнение к теплопроводности в процессе переноса тепла будут участвовать процессы передачи тепла конвекцией.
  3. Плотность — при больших значениях частицы более тесно взаимодействуют друг с другом и в большей степени способствуют передаче тепловой энергии. В общем случае значения теплопроводности материала в зависимости от его плотности определяются либо на основе справочных данных, либо эмпирически.
  4. Влажность — значение теплопроводности для воды составляет (0,6 Вт/(м*°С)). При намокании стеновых конструкций или утеплителя происходит вытеснение сухого воздуха из пор и замещение его каплями жидкости или насыщенным влажным воздухом. Теплопроводность в этом случае значительно увеличится.
  5. Влияние температуры на теплопроводность материала отражается через формулу:

λ=λо*(1+b*t), (1)

где, λо — коэффициент теплопроводности при температуре 0 °С, Вт/м*°С;

b — справочная величина температурного коэффициента;

t — температура.

Вернуться к оглавлению

Практическое применение значения теплопроводности строительных материалов

Из понятия теплопроводности напрямую вытекает понятие толщины слоя материала для получения необходимого значения сопротивления теплового потока. Тепловое сопротивление — нормируемая величина.

Упрощенная формула, определяющая толщину слоя, будет иметь вид:

где, H — толщина слоя, м;

R — сопротивление теплопередаче, (м2*°С)/Вт;

λ — коэффициент теплопроводности, Вт/(м*°С).

Данная формула применительно к стене или перекрытию имеет следующие допущения:

  • ограждающая конструкция имеет однородное монолитное строение;
  • используемые стройматериалы имеют естественную влажность.

При проектировании необходимые нормируемые и справочные данные берутся из нормативной документации:

  • СНиП23-01-99 — Строительная климатология;
  • СНиП 23-02-2003 — Тепловая защита зданий;
  • СП 23-101-2004 — Проектирование тепловой защиты зданий.

Вернуться к оглавлению

Теплопроводность материалов: параметры

Принято условное разделение материалов, применяемых в строительстве, на конструкционные и теплоизоляционные.

Конструкционные материалы применяются для возведения ограждающих конструкций (стен, перегородок, перекрытий). Они отличаются большими значениями теплопроводности.

Значения коэффициентов теплопроводности сведены в таблицу 1:

Таблица 1

Подставляя в формулу (2) данные, взятые из нормативной документации, и данные из Таблицы 1, можно получить требуемую толщину стен для конкретного климатического района.

При выполнении стен только из конструкционных материалов без использования теплоизоляции их необходимая толщина (в случае использования железобетона) может достигать нескольких метров. Конструкция в этом случае получится непомерно большой и громоздкой.

Допускают возведение стен без использования дополнительного утепления, пожалуй, только пенобетон и дерево. И даже в этом случае толщина стены достигает полуметра.

Теплоизоляционные материалы имеют достаточно малые величины значения коэффициента теплопроводности.

Основной их диапазон лежит в пределах от 0,03 до 0,07 Вт/(м*°С). Наиболее распространенные материалы — это экструдированный пенополистирол, минеральная вата, пенопласт, стекловата, утепляющие материалы на основе пенополиуретана. Их использование позволяет значительно снизить толщину ограждающих конструкций.

Теплопроводность — способность материала передавать тепло от одной своей части к другой в силу теплового движения молекул. Передача тепла в материале осуществляется кондукцией (путем контакта частиц материала), конвекцией (движением воздуха или другого газа в порах материала) и лучеиспусканием.

Теплопроводность зависит от средней плотности материала, его структуры, пористости, влажности и средней температуры слоя материала. С увеличением средней плотности материала, теплопроводность возрастает. Чем выше пористость, т.е. меньше средняя плотность материала, тем ниже теплопроводность. С увеличением влажности материала теплопроводность резко возрастает, при этом понижаются его теплоизоляционные свойства. Поэтому все теплоизоляционные материалы в теплоизоляционной конструкции защищают от попадания влаги покровным слоем — пароизоляция.

Сравнительные данные строительных материалов с одинаковой теплопроводностью

Коэффициент теплопроводности материалов

Материал

Коэффициент теплопроводности, Вт/м*К

Алебастровые плиты0,47
Асбест (шифер)0,35
Асбест волокнистый0,15
Асбестоцемент1,76
Асбоцементные плиты0,35
Бетон термоизоляционный0,18
Битум0,47
Бумага0,14
Вата минеральная легкая0,045
Вата минеральная тяжелая0,055
Вата хлопковая0,055
Вермикулитовые листы0,1
Войлок шерстяной0,045
Гипс строительный0,35
Глинозем2,33
Гравий (наполнитель)0,93
Гранит, базальт3,5
Грунт 10% воды1,75
Грунт 20% воды2,1
Грунт песчаный1,16
Грунт сухой0,4
Грунт утрамбованный1,05
Гудрон0,3
Древесина — доски0,15
Древесина — фанера0,15
Древесина твердых пород0,2
Древесно-стружечная плита ДСП0,2
Зола древесная0,15
Ипорка (вспененная смола)0,038
Камень1,4
Картон строительный многослойный0,13
Каучук вспененный0,03
Каучук натуральный0,042
Каучук фторированный0,055
Керамзитобетон0,2
Кирпич кремнеземный0,15
Кирпич пустотелый0,44
Кирпич силикатный0,81
Кирпич сплошной0,67
Кирпич шлаковый0,58
Кремнезистые плиты0,07
Опилки — засыпка0,095
Опилки древесные сухие0,065
ПВХ0,19
Пенобетон0,3
Пенопласт0,037
Пенополистирол ПС-Б0,04
Пенополиуретановые листы0,035
Пенополиуретановые панели0,025
Пеностекло легкое0,06
Пеностекло тяжелое0,08
Пергамин0,17
Перлит0,05
Перлито-цементные плиты0,08
Песок
0% влажности0,33
10% влажности0,97
20% влажности1,33
Песчаник обожженный1,5
Плитка облицовочная105
Плитка термоизоляционная0,036
Полистирол0,082
Поролон0,04
Пробковая плита0,043
Пробковые листы легкие0,035
Пробковые листы тяжелые0,05
Резина0,15
Рубероид0,17
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности)0,15
Сосна смолистая (600…750 кг/куб.м, 15% влажности)0,23
Стекло1,15
Стекловата0,05
Стекловолокно0,036
Стеклотекстолит0,3
Толь бумажный0,23
Цементные плиты1,92
Цемент-песок раствор1,2
Чугун56
Шлак гранулированный0,15
Шлак котельный0,29
Шлакобетон0,6
Штукатурка сухая0,21
Штукатурка цементная0,9
Эбонит0,16
Эбонит вспученный0,03
Липа, береза, клен, дуб (15% влажности)0,15

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материалаКоэффициент теплопроводности Вт/(м·°C)
В сухом состоянииПри нормальной влажностиПри повышенной влажности
Войлок шерстяной0,036-0,0410,038-0,0440,044-0,050
Каменная минеральная вата 25-50 кг/м30,0360,0420,045
Каменная минеральная вата 40-60 кг/м30,0350,0410,044
Каменная минеральная вата 80-125 кг/м30,0360,0420,045
Каменная минеральная вата 140-175 кг/м30,0370,0430,0456
Каменная минеральная вата 180 кг/м30,0380,0450,048
Стекловата 15 кг/м30,0460,0490,055
Стекловата 17 кг/м30,0440,0470,053
Стекловата 20 кг/м30,040,0430,048
Стекловата 30 кг/м30,040,0420,046
Стекловата 35 кг/м30,0390,0410,046
Стекловата 45 кг/м30,0390,0410,045
Стекловата 60 кг/м30,0380,0400,045
Стекловата 75 кг/м30,040,0420,047
Стекловата 85 кг/м30,0440,0460,050
Пенополистирол (пенопласт, ППС)0,036-0,0410,038-0,0440,044-0,050
Экструдированный пенополистирол (ЭППС, XPS)0,0290,0300,031
Пенобетон, газобетон на цементном растворе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементном растворе, 400 кг/м30,110,140,15
Пенобетон, газобетон на известковом растворе, 600 кг/м30,150,280,34
Пенобетон, газобетон на известковом растворе, 400 кг/м30,130,220,28
Пеностекло, крошка, 100 — 150 кг/м30,043-0,06
Пеностекло, крошка, 151 — 200 кг/м30,06-0,063
Пеностекло, крошка, 201 — 250 кг/м30,066-0,073
Пеностекло, крошка, 251 — 400 кг/м30,085-0,1
Пеноблок 100 — 120 кг/м30,043-0,045
Пеноблок 121- 170 кг/м30,05-0,062
Пеноблок 171 — 220 кг/м30,057-0,063
Пеноблок 221 — 270 кг/м30,073
Эковата0,037-0,042
Пенополиуретан (ППУ) 40 кг/м30,0290,0310,05
Пенополиуретан (ППУ) 60 кг/м30,0350,0360,041
Пенополиуретан (ППУ) 80 кг/м30,0410,0420,04
Пенополиэтилен сшитый0,031-0,038
Вакуум0
Воздух +27°C. 1 атм0,026
Ксенон0,0057
Аргон0,0177
Аэрогель (Aspen aerogels)0,014-0,021
Шлаковата0,05
Вермикулит0,064-0,074
Вспененный каучук0,033
Пробка листы 220 кг/м30,035
Пробка листы 260 кг/м30,05
Базальтовые маты, холсты0,03-0,04
Пакля0,05
Перлит, 200 кг/м30,05
Перлит вспученный, 100 кг/м30,06
Плиты льняные изоляционные, 250 кг/м30,054
Полистиролбетон, 150-500 кг/м30,052-0,145
Пробка гранулированная, 45 кг/м30,038
Пробка минеральная на битумной основе, 270-350 кг/м30,076-0,096
Пробковое покрытие для пола, 540 кг/м30,078
Пробка техническая, 50 кг/м30,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Название материала, плотностьКоэффициент теплопроводности
в сухом состояниипри нормальной влажностипри повышенной влажности
ЦПР (цементно-песчаный раствор)0,580,760,93
Известково-песчаный раствор0,470,70,81
Гипсовая штукатурка0,25
Пенобетон, газобетон на цементе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементе, 800 кг/м30,210,330,37
Пенобетон, газобетон на цементе, 1000 кг/м30,290,380,43
Пенобетон, газобетон на извести, 600 кг/м30,150,280,34
Пенобетон, газобетон на извести, 800 кг/м30,230,390,45
Пенобетон, газобетон на извести, 1000 кг/м30,310,480,55
Оконное стекло0,76
Арболит0,07-0,17
Бетон с природным щебнем, 2400 кг/м31,51
Легкий бетон с природной пемзой, 500-1200 кг/м30,15-0,44
Бетон на гранулированных шлаках, 1200-1800 кг/м30,35-0,58
Бетон на котельном шлаке, 1400 кг/м30,56
Бетон на каменном щебне, 2200-2500 кг/м30,9-1,5
Бетон на топливном шлаке, 1000-1800 кг/м30,3-0,7
Керамическийй блок поризованный0,2
Вермикулитобетон, 300-800 кг/м30,08-0,21
Керамзитобетон, 500 кг/м30,14
Керамзитобетон, 600 кг/м30,16
Керамзитобетон, 800 кг/м30,21
Керамзитобетон, 1000 кг/м30,27
Керамзитобетон, 1200 кг/м30,36
Керамзитобетон, 1400 кг/м30,47
Керамзитобетон, 1600 кг/м30,58
Керамзитобетон, 1800 кг/м30,66
ладка из керамического полнотелого кирпича на ЦПР0,560,70,81
Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3)0,350,470,52
Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3)0,410,520,58
Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3)0,470,580,64
Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3)0,70,760,87
Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот0,640,70,81
Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот0,520,640,76
Известняк 1400 кг/м30,490,560,58
Известняк 1+600 кг/м30,580,730,81
Известняк 1800 кг/м30,70,931,05
Известняк 2000 кг/м30,931,161,28
Песок строительный, 1600 кг/м30,35
Гранит3,49
Мрамор2,91
Керамзит, гравий, 250 кг/м30,10,110,12
Керамзит, гравий, 300 кг/м30,1080,120,13
Керамзит, гравий, 350 кг/м30,115-0,120,1250,14
Керамзит, гравий, 400 кг/м30,120,130,145
Керамзит, гравий, 450 кг/м30,130,140,155
Керамзит, гравий, 500 кг/м30,140,150,165
Керамзит, гравий, 600 кг/м30,140,170,19
Керамзит, гравий, 800 кг/м30,18
Гипсовые плиты, 1100 кг/м30,350,500,56
Гипсовые плиты, 1350 кг/м30,230,350,41
Глина, 1600-2900 кг/м30,7-0,9
Глина огнеупорная, 1800 кг/м31,4
Керамзит, 200-800 кг/м30,1-0,18
Керамзитобетон на кварцевом песке с поризацией, 800-1200 кг/м30,23-0,41
Керамзитобетон, 500-1800 кг/м30,16-0,66
Керамзитобетон на перлитовом песке, 800-1000 кг/м30,22-0,28
Кирпич клинкерный, 1800 — 2000 кг/м30,8-0,16
Кирпич облицовочный керамический, 1800 кг/м30,93
Бутовая кладка средней плотности, 2000 кг/м31,35
Листы гипсокартона, 800 кг/м30,150,190,21
Листы гипсокартона, 1050 кг/м30,150,340,36
Фанера клеенная0,120,150,18
ДВП, ДСП, 200 кг/м30,060,070,08
ДВП, ДСП, 400 кг/м30,080,110,13
ДВП, ДСП, 600 кг/м30,110,130,16
ДВП, ДСП, 800 кг/м30,130,190,23
ДВП, ДСП, 1000 кг/м30,150,230,29
Линолеум ПВХ на теплоизолирующей основе, 1600 кг/м30,33
Линолеум ПВХ на теплоизолирующей основе, 1800 кг/м30,38
Линолеум ПВХ на тканевой основе, 1400 кг/м30,20,290,29
Линолеум ПВХ на тканевой основе, 1600 кг/м30,290,350,35
Линолеум ПВХ на тканевой основе, 1800 кг/м30,35
Листы асбоцементные плоские, 1600-1800 кг/м30,23-0,35
Ковровое покрытие, 630 кг/м30,2
Поликарбонат (листы), 1200 кг/м30,16
Полистиролбетон, 200-500 кг/м30,075-0,085
Ракушечник, 1000-1800 кг/м30,27-0,63
Стеклопластик, 1800 кг/м30,23
Черепица бетонная, 2100 кг/м31,1
Черепица керамическая, 1900 кг/м30,85
Черепица ПВХ, 2000 кг/м30,85
Известковая штукатурка, 1600 кг/м30,7
Штукатурка цементно-песчаная, 1800 кг/м31,2

Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

НаименованиеКоэффициент теплопроводности
В сухом состоянииПри нормальной влажностиПри повышенной влажности
Сосна, ель поперек волокон0,090,140,18
Сосна, ель вдоль волокон0,180,290,35
Дуб вдоль волокон0,230,350,41
Дуб поперек волокон0,100,180,23
Пробковое дерево0,035
Береза0,15
Кедр0,095
Каучук натуральный0,18
Клен0,19
Липа (15% влажности)0,15
Лиственница0,13
Опилки0,07-0,093
Пакля0,05
Паркет дубовый0,42
Паркет штучный0,23
Паркет щитовой0,17
Пихта0,1-0,26
Тополь0,17

Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

НазваниеКоэффициент теплопроводностиНазваниеКоэффициент теплопроводности
Бронза22-105Алюминий202-236
Медь282-390Латунь97-111
Серебро429Железо92
Олово67Сталь47
Золото318

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих
конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.


Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.

Таблица теплопроводности строительных материалов необходима при проектировании защиты здания от теплопотерь согласно нормативам СНиП от 2003 года под номером 23-02. Этими мероприятиями обеспечивается снижение эксплуатационного бюджета, поддержание круглогодичного комфортного микроклимата внутри помещений. Для удобства пользователей все данные сведены в таблицы, даны параметры для нормальной эксплуатации, условий повышенной влажности, так как, некоторые материалы при увеличении этого параметра резко снижают свойства.

Теплопроводность является одним из способов потерь тепла жилыми помещениями. Эта характеристика выражается количеством тепла, способным проникнуть сквозь единицу площади материала (1 м 2) за секунду при стандартной толщине слоя (1 м). Физики объясняют выравнивание температур различных тел, объектов путем теплопроводности природным стремлением к термодинамическому равновесию всех материальных веществ.

Таким образом, каждый индивидуальный застройщик, отапливая помещение в зимний период, получает потери тепловой энергии, уходящей из жилища сквозь наружные стены, полы, окна, кровлю. Чтобы сократить расход энергоносителя для обогрева помещений, сохранив внутри них комфортный для эксплуатации микроклимат, необходимо рассчитать толщину всех ограждающих конструкций на этапе проектирования. Это позволит сократить бюджет строительства.

Таблица теплопроводности строительных материалов позволяет использовать точные коэффициенты для стеновых конструкционных материалов. Нормативы СНиП регламентируют сопротивление фасадов коттеджа передаче тепла холодному воздуху улицы в пределах 3,2 единиц. Перемножив эти значения, можно получить необходимую толщину стены, чтобы определиться с количеством материала.

Например, при выборе ячеистого бетона с коэффициентом 0,12 единиц достаточно кладки в один блок длиной 0,4 м. используя более дешевые блоки из этого же материала с коэффициентом 0,16 единиц, потребуется сделать стену толще – 0,52 м. Коэффициент теплопроводности сосны, ели составляет 0,18 единиц. Поэтому, для соблюдения условия сопротивления теплопередаче 3,2, потребуется 57 см брус, которого не существует в природе. При выборе кирпичной кладки с коэффициентом 0,81 единица толщина наружных стен грозит увеличением до 2,6 м, железобетонных конструкций – до 6,5 м.

На практике стены изготавливают многослойными, закладывая внутрь слой утеплителя или обшивая теплоизолятором наружную поверхность. У этих материалов коэффициент теплопроводности гораздо ниже, что позволяет уменьшить толщину многократно. Конструкционный материал обеспечивает прочность здания, теплоизолятор снижает теплопотери до приемлемого уровня. Современные облицовочные материалы, используемые на фасадах, внутренних стенах, так же обладают сопротивлением теплопотерям. Поэтому, в расчетах учитываются все слои будущих стен.

Вышеуказанные расчеты будут неточными если не учесть наличие в каждой стене коттеджа светопрозрачных конструкций. Таблица теплопроводности строительных материалов в нормативах СНиП обеспечивает легкий доступ к коэффициентам теплопроводности данных материалов.

Пример расчета толщины стены по теплопроводности

При выборе типового или индивидуального проекта застройщик получает комплект документации, необходимый для возведения стен. Силовые конструкции в обязательном порядке просчитаны на прочность с учетом ветровых, снеговых, эксплуатационных, конструкционных нагрузок. Толщина стен учитывает характеристики материала каждого слоя, поэтому, теплопотери гарантированно будут ниже допустимых норм СНиП. В этом случае заказчик может предъявить претензии организации, занимавшейся проектированием, при отсутствии необходимого эффекта в процессе эксплуатации жилища.

Однако, при строительстве дачи, садового домика многие владельцы предпочитают экономить на приобретении проектной документации. В этом случае расчеты толщины стен можно произвести самостоятельно. Специалисты не рекомендуют пользоваться сервисами на сайтах компаний, реализующих конструкционные материалы, утеплители. Многие из них завышают в калькуляторах значения коэффициентов теплопроводности стандартных материалов для представления собственной продукции в выгодном свете. Подобнее ошибки в расчетах чреваты для застройщика снижением комфортности внутренних помещений в холодный период.

Самостоятельный расчет не представляет сложностей, используется ограниченное количество формул, нормативных значений:

  • теплосопротивление стены – 3,5 либо больше этого числа (согласно СНиП), является суммой теплосопротивлений всех слоев, из которых состоит несущая стена
  • коэффициент теплопроводности строительных материалов – каждый производитель конструкционного материала, светопрозрачных конструкций, утеплителя указывает его в обязательном порядке, однако, лучше дополнительно свериться с таблицей в нормативах СНиП
  • теплосопротивление отдельного слоя стены – вычисляется путем умножения толщины слоя (м) на коэффициент теплопроводности материала

Например, чтобы привести толщину кирпичной стены в соответствие с нормативным теплосопротивлением, потребуется умножить коэффициент для этого материала, взятый из таблицы на нормативное теплосопротивление:

0,76 х 3,5 = 2,66 м

Подобная крепость излишне затратна для любого застройщика, поэтому, следует снизить толщину кладки до приемлемых 38 см, добавив утеплитель:

  • облицовка в полкирпича 12,5 см
  • внутренняя стена в кирпич 25 см

Теплосопротивление кирпичной кладки в этом случае составит 0,38/0,76 = 0,5 единиц. Вычитая из нормативного параметра полученный результат, получаем необходимое теплосопротивление слоя утеплителя:

3,5 – 0,5 = 3 единицы

При выборе базальтовой ваты с коэффициентом 0,039 единиц, получаем слой толщиной:

3 х 0,039 = 11,7 см

Отдав предпочтение экструдированному пенополистиролу с коэффициентом 0,037 единиц, снижаем слой утеплителя до:

3 х 0,037 = 11,1 см

На практике, можно выбрать 12 см для гарантированного запаса либо обойтись 10 см, учитывая наружные, внутренние облицовки стен, так же обладающие теплосопротивлением. Необходимый запас можно добрать без использования конструкционных материалов либо утеплителей, изменив конструкцию кладки. Замкнутые пространства воздушных прослоек внутри некоторых типов облегченных кладок так же обладают теплосопротивлением.

Их теплопроводность можно узнать из нижеприведенной таблицы, находящейся в СНиП.

Сравнение теплопроводности строительных материалов для строительства стен. Расчет теплопотерь. Что такое теплопроводность

Необходимость использования Систем теплоизоляции WDVS вызвана высокой экономической эффективностью.

Вслед за странами Европы, в Российской Федерации приняли новые нормы теплосопротивления ограждающих и несущих конструкций, направленные на снижение эксплуатационных расходов и энергосбережение. С выходом СНиП II-3-79*, СНиП 23-02-2003 «Тепловая защита зданий» прежние нормы теплосопротивления устарели. Новыми нормами предусмотрено резкое возрастание требуемого сопротивления теплопередаче ограждающих конструкций. Теперь прежде использовавшиеся подходы в строительстве не соответствуют новым нормативным документам, необходимо менять принципы проектирования и строительства, внедрять современные технологии.

Как показали расчёты, однослойные конструкции экономически не отвечают принятым новым нормам строительной теплотехники. К примеру, в случае использования высокой несущей способности железобетона или кирпичной кладки, для того, чтобы этим же материалом выдержать нормы теплосопротивления, толщину стен необходимо увеличить соответственно до 6 и 2,3 метров, что противоречит здравому смыслу. Если же использовать материалы с лучшими показателями по теплосопротивлению, то их несущая способность сильно ограничена, к примеру, как у газобетона и керамзитобетона, а пенополистирол и минвата, эффективные утеплители, вообще не являются конструкционными материалами. На данный момент нет абсолютного строительного материала, у которого бы была высокая несущая способность в сочетании с высоким коэффициентом теплосопротивления.

Чтобы отвечать всем нормам строительства и энергосбережения необходимо здание строить по принципу многослойных конструкций, где одна часть будет выполнять несущую функцию, вторая — тепловую защиту здания. В таком случае толщина стен остаётся разумной, соблюдается нормированное теплосопротивление стен. Системы WDVS по своим теплотехническим показателям являются самыми оптимальными из всех представленных на рынке фасадных систем.

Таблица необходимой толщины утеплителя для выполнения требований действующих норм по теплосопротивлению в некоторых городах РФ:


Таблица, где: 1 — географическая точка 2 — средняя температура отопительного периода 3 — продолжительность отопительного периода в сутках 4 — градусо-сутки отопительного периода Dd, °С * сут 5 — нормируемое значение сопротивления теплопередаче Rreq, м2*°С/Вт стен 6 — требуемая толщина утеплителя

Условия выполнения расчётов для таблицы:

1. Расчёт основывается на требованиях СНиП 23-02-2003
2. За пример расчёта взята группа зданий 1 — Жилые, лечебно-профилактические и детские учреждения, школы, интернаты, гостиницы и общежития.
3. За несущую стену в таблице принимается кирпичная кладка толщиной 510 мм из глиняного обыкновенного кирпича на цементно-песчаном растворе l = 0,76 Вт/(м * °С)
4. Коэффициент теплопроводности берётся для зон А.
5. Расчётная температура внутреннего воздуха помещения + 21 °С «жилая комната в холодный период года» (ГОСТ 30494-96)
6. Rreq рассчитано по формуле Rreq=aDd+b для данного географического места
7. Расчёт: Формула расчёта общего сопротивления теплопередаче многослойных ограждений:
R0= Rв + Rв.п + Rн.к + Rо.к + Rн Rв — сопротивление теплообмену у внутренней поверхности конструкции
Rн — сопротивление теплообмену у наружной поверхности конструкции
Rв.п — сопротивление теплопроводности воздушной прослойки (20 мм)
Rн.к — сопротивление теплопроводности несущей конструкции
Rо.к — сопротивление теплопроводности ограждающей конструкции
R = d/l d — толщина однородного материала в м,
l — коэффициент теплопроводности материала, Вт/(м * °С)
R0 = 0,115 + 0,02/7,3 + 0,51/0,76 + dу/l + 0,043 = 0,832 + dу/l
dу — толщина теплоизоляции
R0 = Rreq
Формула расчёта толщины утеплителя для данных условий:
dу = l * (Rreq — 0,832)

а) — за среднюю толщину воздушной прослойки между стеной и теплоизоляцией принято 20 мм
б) — коэффициент теплопроводности пенополистирола ПСБ-С-25Ф l = 0,039 Вт/(м * °С) (на основании протокола испытаний)
в) — коэффициент теплопроводности фасадной минваты l = 0,041 Вт/(м * °С) (на основании протокола испытаний)

* в таблице даны усреднённые показатели необходимой толщины этих двух типов утеплителя.

Примерный расчёт толщины стен из однородного материала для выполнения требований СНиП 23-02-2003 «Тепловая защита зданий».

* для сравнительного анализа используются данные климатической зоны г. Москвы и Московской области.

Условия выполнения расчётов для таблицы:

1. Нормируемое значение сопротивления теплопередаче Rreq = 3,14
2. Толщина однородного материала d= Rreq * l

Таким образом, из таблицы видно, что для того, чтобы построить здание из однородного материала, отвечающее современным требованиям теплосопротивления, к примеру, из традиционной кирпичной кладки, даже из дырчатого кирпича, толщина стен должна быть не менее 1,53 метра.

Чтобы наглядно показать, какой толщины необходим материал для выполнения требований по теплосопротивлению стен из однородного материала, выполнен расчёт, учитывающий конструктивные особенности применения материалов, получились следующие результаты:

В данной таблице указаны расчётные данные по теплопроводности материалов.

По данным таблицы для наглядности получается следующая диаграмма:

Страница в разработке

  • Утеплённая Шведская Плита

    Утеплённая Шведская плита (УШП) — один из видов мелкозаглублённого фундамента. Технология пришла с Европы.Данный тип фундамента имеет два основных слоя. Нижний, теплоизоляционный слой, препятствует промерзанию грунта под домом. Верхний слой…

  • Фильм — пошаговая инструкция по технологии СФТК («мокрый фасад»)

    При поддержке компании СИБУР, Ассоциации Производителей и Продавцов Пенополистирола, а также при сотрудничестве с компаниями «КРАЙЗЕЛЬ РУС», «ТЕРМОКЛИП» и «АРМАТ-ТД» создан уникальный обучающий фильм по технологии производства штукатурных теплоизоляционных фасадных…

    В феврале 2015 года выпущен очередной обучающий видеофильм по фасадным системам. Как правильно изготавливать декор-элементы для украшения коттеджа — об этом пошагово в видеофильме.

    • При поддержке СИБУРа состоялась I практическая конференция «Полимеры в теплоизоляции»

      27 мая в Москве состоялась I практическая конференция «Полимеры в теплоизоляции», организованная информационно-аналитическим центром Rupec и журналом «Нефтегазовая вертикаль» при поддержке СИБУРа. Главными темами конференции стали тенденции в области нормативной…

    • Справочник — вес, диаметр, ширина чёрного металлопроката (арматура, уголок, швеллер, двутавр, трубы)

      1. Справочник: диаметр, вес погонного метра арматуры, сечение, класс стали

    • Системы «БОЛАРС ТВД-1» и «БОЛАРС ТВД-2» абсолютно пожаробезопасны!

      Системы «БОЛАРС ТВД-1» и «БОЛАРС ТВД-2» абсолютно пожаробезопасны!К такому выводу пришли специалисты, проведя огневые испытания на фасадных теплоизоляционных системах ТМ «БОЛАРС». Системам присвоен класс пожарной опасности К0 – самые безопасные. Огромную…

    Prev Next

    Что такое теплопроводность? Знать об этой величине необходимо не только профессионалам-строителям, но и простым обывателям, решившим самостоятельно построить дом.

    Каждый материал, используемый в строительстве, имеет свой показатель этой величины. Самое низкое его значение – у утеплителей, самое высокое – у металлов. Поэтому необходимо знать формулу, которая поможет рассчитать толщину как возводимых стен, так и теплоизоляции, чтобы получить в итоге уютный дом.

    Сравнение проводимости тепла у самых распространённых утеплителей

    Чтобы иметь представление о проводимости тепла разных материалов, предназначенных для утепления, нужно сравнить их коэффициенты (Вт/м*К), приведённые в следующей таблице:

    Как видно из вышеприведённых данных, показатель проводимости тепла таких строительных материалов, как теплоизоляционные, варьируется от минимального (0,019) до максимального (0,5). Все теплоизоляционные материалы имеют определённый разброс показаний. СНиПы описывают каждый из них в нескольких видах – в сухом, нормальном и влажном. Минимальный коэффициент проводимости тепла соответствует сухому состоянию, максимальный – влажному.

    Если задумано индивидуальное строительство

    При возведении дома важно учитывать технические характеристики всех составляющих (материала для стен, кладочного раствора, будущего утепления, гидроизоляционных и пароотводящих плёнок, финишной отделки).

    Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:

    Номер п/п Материал для стен, строительный раствор Коэффициент теплопроводности по СНиП
    1.Кирпич0,35 – 0,87
    2.Саманные блоки0,1 – 0,44
    3.Бетон1,51 – 1,86
    4.Пенобетон и газобетон на основе цемента0,11 – 0,43
    5.Пенобетон и газобетон на основе извести0,13 – 0,55
    6.Ячеистый бетон0,08 – 0,26
    7.Керамические блоки0,14 – 0,18
    8.Строительный раствор цементно-песчаный0,58 – 0,93
    9.Строительный раствор с добавлением извести0,47 – 0,81

    Важно . Из приведённых в таблице данных видно, что у каждого строительного материала довольно большой разброс в показателях коэффициента теплопроводности.

    Это связано с несколькими причинами:

    • Плотность. Все утеплители выпускаются или укладываются (пеноизол, эковата) различной плотности. Чем ниже плотность (больше присутствует воздуха в теплоизоляционной структуре), тем ниже проводимость тепла. И, наоборот, у очень плотных утеплителей этот коэффициент выше.
    • Вещество, из которого производят (основа). Например, кирпич бывает силикатным, керамическим, глиняным. От этого зависит и коэффициент теплопроводности.
    • Количество пустот. Это касается кирпича (пустотелый и полнотелый) и теплоизоляции. Воздух – самый худший проводник тепла. Коэффициент его теплопроводимости – 0,026. Чем больше пустот, тем ниже этот показатель.

    Строительный раствор хорошо проводит тепло, поэтому любые стены рекомендуется утеплять.

    Если объяснять на пальцах

    Для наглядности и понимания, что такое теплопроводность, можно сравнить кирпичную стену, толщиной 2 м 10 см с другими материалами. Таким образом, 2,1 метра кирпича, сложенного в стену на обычном цементно-песчаном растворе равны:

    • стене толщиной 0,9 м из керамзитобетона;
    • брусу, диаметром 0,53 м;
    • стене, толщиной 0,44 м из газобетона.

    Если речь заходит от таких распространённых утеплителях, как минеральная вата и пенополистирол, то потребуется всего 0,18 м первой теплоизоляции или 0,12 м второй, чтобы значения теплопроводности огромной кирпичной стены оказались равными тонюсенькому слою теплоизоляции.

    Сравнительная характеристика теплопроводности утеплительных, строительных и отделочных материалов, которую можно произвести, изучив СНиПы, позволяет проанализировать и правильно составить утеплительный пирог (основание, утеплитель, финишная отделка). Чем ниже теплопроводность, тем выше цена. Ярким примером могут послужить стены дома, сложенные из керамических блоков или обычного высококачественного кирпича. Первые имеют теплопроводность всего 0,14 – 0,18 и стоят намного дороже любого, самого лучшего кирпича.

    Прочный и теплый дом – это основное требование, которое предъявляется проектировщикам и строителям. Поэтому еще на стадии проектирования зданий в конструкцию закладываются две разновидности стройматериалов: конструкционные и теплоизоляционные. Первые обладают повышенной прочностью, но большой теплопроводностью, и именно их чаще всего и используют для возведения стен, перекрытий, оснований и фундаментов. Вторые – это материалы с низкой теплопроводностью. Их основное назначение – закрыть собой конструкционные материалы, чтобы понизить их показатель тепловой проводимости. Поэтому для облегчения расчетов и выбора используется таблица теплопроводности строительных материалов.

    Читайте в статье:

    Что такое теплопроводность

    Законы физики определяют один постулат, который гласит, что тепловая энергия стремится от среды с высокой температурой к среде с низкой температурой. При этом, проходя через строительный материал, тепловая энергия затрачивает какое-то время. Переход не состоится лишь в том случае, если температура на разных сторонах от стройматериала одинаковая.

    То есть, получается так, что процесс перехода тепловой энергии, к примеру, через стену, это время проникновения тепла. И чем больше времени на это затрачивается, тем ниже теплопроводность стены. Вот такое соотношение. К примеру, теплопроводность различных материалов:

    • бетон –1,51 Вт/м×К;
    • кирпич – 0,56;
    • древесина – 0,09-0,1;
    • песок – 0,35;
    • керамзит – 0,1;
    • сталь – 58.

    Чтобы было понятно, о чем идет речь, надо обозначить, что бетонная конструкции не будет ни под каким предлогом пропускать через себя тепловую энергию, если ее толщина будет в пределах 6 м. Понятно, что это просто невозможно в домостроении. А значит, придется для снижения теплопроводности использовать другие материалы, у которых показатель ниже. И ими облицовывать бетонное сооружение.


    Что такое коэффициент теплопроводности

    Коэффициент теплоотдачи или теплопроводности материалов, который также обозначен в таблицах, это характеристика тепловой проводимости. Он обозначает количество тепловой энергии, проходящий через толщу стройматериала за определенный промежуток времени.

    В принципе, коэффициент обозначает именно количественный показатель. И чем он меньше, тем теплопроводность материала лучше. Из сравнения выше видно, что стальные профили и конструкции обладают самым высоким коэффициентом. А значит, они практически не держат тепло. Из строительных материалов,сдерживающих тепло, которые используются для сооружения несущих конструкций, это древесина.

    Но надо обозначить и другой момент. К примеру, все та же сталь. Этот прочный материал используют для отведения тепла, где есть необходимость сделать быстрый перенос. К примеру, радиаторы отопления. То есть, высокий показатель теплопроводности – это не всегда плохо.


    Что влияет на теплопроводность строительных материалов

    Есть несколько параметров, которые сильно влияют на тепловую проводимость.

    1. Структура самого материала.
    2. Его плотность и влажность.

    Что касается структуры, то здесь огромное разнообразие: однородная плотная, волокнистая, пористая, конгломератная (бетон), рыхлозернистая и прочее. Так вот надо обозначить, что чем неоднороднее структура у материала, тем ниже у него теплопроводность. Все дело в том, что проходить сквозь вещество, в котором большой объем занимают поры разного размера, тем сложнее энергии через нее перемещаться. А ведь в данном случае тепловая энергия – это излучение. То есть, оно не проходит равномерно, а начинает изменять направления, теряя силу внутри материала.


    Теперь о плотности. Этот параметр обозначает, на каком расстоянии между собой располагаются частички материала внутри его самого. Исходя из предыдущей позиции, можно сделать вывод: чем меньше это расстояние, а значит, больше плотность, тем тепловая проводимость выше. И наоборот. Тот же пористый материал имеет плотность меньше, чем однородный.


    Влажность – это вода, которая имеет плотную структуру. И ее теплопроводность равна 0,6 Вт/м*К. Достаточно высокий показатель, сравнимый с коэффициентом теплопроводности кирпича. Поэтому когда она начинает проникать в структуру материала и заполнять собой поры, это увеличение тепловой проводимости.

    Коэффициент теплопроводности строительных материалов: как применяется на практике и таблица

    Практические значение коэффициента – это правильно проведенный расчет толщины несущих конструкций с учетом используемых утеплителей. Необходимо отметить, что возводимое здание – это несколько ограждающих конструкций, через которые происходит утечка тепла. И у каждой их них свой процент теплопотерь.

    • через стены уходит до 30% тепловой энергии общего расхода.
    • Через полы – 10%.
    • Через окна и двери – 20%.
    • Через крышу – 30%.

    То есть, получается так, что если неправильно рассчитать теплопроводность всех ограждений, то проживающим в таком доме людям придется довольствоваться лишь 10% тепловой энергии, которое выделяет отопительная система. 90% – это, как говорят, выброшенные на ветер деньги.


    Мнение эксперта

    Инженер-проектировщик ОВиК (отопление, вентиляция и кондиционирование) ООО «АСП Северо-Запад»

    Спросить у специалиста

    “Идеальный дом должен быть построен из теплоизоляционных материалов, в котором все 100% тепла будут оставаться внутри. Но по таблице теплопроводности материалов и утеплителей вы не найдете тот идеальный стройматериал, из которого можно было бы возвести такое сооружение. Потому что пористая структура – это низкие несущие способности конструкции. Исключением может быть древесина, но и она не идеал.”


    Поэтому при строительстве домов стараются использовать разные строительные материалы, дополняющие друг друга по теплопроводности. При этом очень важно соотносить толщину каждого элемента в общей строительной конструкции. В этом плане идеальным домом можно считать каркасный. У него деревянная основа, уже можно говорить о теплом доме, и утеплители, которые закладываются между элементами каркасной постройки. Конечно, с учетом средней температуры региона придется точно рассчитать толщину стен и других ограждающих элементов. Но, как показывает практика, вносимые изменения не столь значительны, чтобы можно было бы говорить о больших капитальных вложениях.


    Рассмотрим несколько часто используемых строительных материалов и проведем сравнение их теплопроводность по толщине.

    Теплопроводность кирпича: таблица по разновидностям

    ФотоВид кирпичаТеплопроводность, Вт/м*К
    Керамический полнотелый0,5-0,8
    Керамический щелевой0,34-0,43
    Поризованный0,22
    Силикатный полнотелый0,7-0,8
    Силикатный щелевой0,4
    Клинкерный0,8-0,9

    Теплопроводность дерева: таблица по породам

    Коэффициент теплопроводности пробкового дерева самый низкий из всех пород древесины. Именно пробка часто используется в качестве теплоизоляционного материала при проведении утеплительных мероприятий.


    Теплопроводность металлов: таблица

    Данный показатель у металлов изменяется с изменением температуры, в которой они применяются. И здесь соотношение такое – чем выше температура, тем ниже коэффициент. В таблице покажем металлы, которые используются в строительной сфере.

    Теперь, что касается соотношения с температурой.

    • У алюминия при температуре -100°С теплопроводность составляет 245 Вт/м*К. А при температуре 0°С – 238. При +100°С – 230, при +700°С – 0,9.
    • У меди: при -100°С –405, при 0°С – 385, при +100°С – 380, а при +700°С – 350.

    Таблица теплопроводности других материалов

    В основном нас будет интересовать таблица теплопроводности изоляционных материалов. Необходимо отметить, что если у металлов данный параметр зависит от температуры, то у утеплителей от их плотности. Поэтому в таблице будут расставлены показатели с учетом плотности материалом.

    Теплоизоляционный материалПлотность, кг/м³Теплопроводность, Вт/м*К
    Минеральная вата (базальтовая)500,048
    1000,056
    2000,07
    Стекловата1550,041
    2000,044
    Пенополистирол400,038
    1000,041
    1500,05
    Пенополистирол экструдированный330,031
    Пенополиуретан320,023
    400,029
    600,035
    800,041

    И таблица теплоизоляционных свойств строительных материалов. Основные из них уже рассмотрены, обозначим те, которые в таблицы не вошли, и которые относятся к категории часто используемых.

    Строительный материалПлотность, кг/м³Теплопроводность, Вт/м*К
    Бетон24001,51
    Железобетон25001,69
    Керамзитобетон5000,14
    Керамзитобетон18000,66
    Пенобетон3000,08
    Пеностекло4000,11

    Коэффициент теплопроводности воздушной прослойки

    Всем известно, что воздух, если его оставить внутри строительного материала или между слоями стройматериалов, это великолепный утеплитель. Почему так происходит, ведь сам воздух, как таковой, не может сдерживать тепло. Для этого надо рассмотреть саму воздушную прослойку, огражденную двумя слоями стройматериалов. Один из них соприкасается с зоной положительных температур, другой с зоной отрицательный.


    Тепловая энергия движется от плюса к минусу, и встречает на своем пути слой воздуха. Что происходит внутри:

    1. Конвекция теплого воздуха внутри прослойки.
    2. Тепловое излучение от материала с плюсовой температурой.

    Поэтому сам тепловой поток – это сумма двух факторов с добавлением теплопроводности первого материала. Необходимо сразу отметить, что излучение занимает большую часть теплового потока. Сегодня все расчеты теплосопротивления стен и других несущих ограждающих конструкций проводят на онлайн-калькуляторах. Что касается воздушной прослойки, то такие расчеты провести сложно, поэтому берутся значения, которые в 50-х годах прошлого столетия были получены лабораторными исследованиями.


    В них четко оговаривается, что если разница температур стен, ограниченных воздухом, составляет 5°С, то излучение возрастает с 60% до 80%, если увеличить толщину прослойки с 10 до 200 мм. То есть, общий объем теплового потока остается тот же, излучение вырастает, а значит, теплопроводность стены падает. И разница значительная: с 38% до 2%. Правда, возрастает конвекция с 2% до 28%. Но так как пространство замкнутое, то движение воздуха внутри него никак не действует на внешние факторы.

    Расчет толщины стены по теплопроводности вручную по формулам или калькулятором

    Рассчитать толщину стены не так просто. Для этого нужно сложить все коэффициенты теплопроводности материалов, которые были использованы для сооружения стены. К примеру, кирпич, штукатурный раствор снаружи, плюс наружная облицовка, если такая будет использоваться. Внутренние выравнивающие материалы, это может быть все та же штукатурка или гипсокартонные листы, другие плитные или панельные покрытия. Если есть воздушная прослойка, то учитывают и ее.


    Есть так называемая удельная теплопроводность по регионам, которую берут за основу. Так вот расчетная величина не должна быть больше удельной. В таблице ниже по городам дана удельная тепловая проводимость.

    То есть, чем южнее, тем общая теплопроводность материалов должна быть меньше. Соответственно, можно уменьшать и толщину стены. Что касается онлайн-калькулятора, то предлагаем ниже посмотреть видео, на котором разбирается, как правильно пользоваться таким расчетным сервисом.

    Если у вас возникли вопросы, на которые, как вам показалось, вы не нашли ответы в этой статье, пишите их в комментариях. Наша редакция постарается на них ответить.

    Строительство частного дома – очень непростой процесс от начала и до конца. Одним из основных вопросов данного процесса является выбор строительного сырья. Этот выбор должен быть очень грамотным и обдуманным, ведь от него зависит большая часть жизни в новом доме. Особняком в этом выборе стоит такое понятие, как теплопроводность материалов. От неё будет зависеть, насколько в доме будет тепло и комфортно.

    Теплопроводность – это способность физических тел (и веществ, из которых они изготовлены) передавать тепловую энергию. Объясняя более простым языком, это перенос энергии от тёплого места к холодному. У некоторых веществ такой перенос будет происходить быстро (например, у большинства металлов), а у некоторых, наоборот – очень медленно (резина).

    Если говорить ещё более понятно, то в некоторых случаях, материалы, имея толщину в несколько метров, будут проводить тепло гораздо лучше, чем другие материалы, с толщиной в несколько десятков сантиметров. Например, несколько сантиметров гипсокартона смогут заменить внушительную стену из кирпича.

    Основываясь на этих знаниях, можно предположить, что наиболее правильным будет выбор материалов с низкими значениями этой величины , чтобы дом быстро не остывал. Для наглядности, обозначим процентное соотношение потерь тепла в разных участках дома:

    От чего зависит теплопроводность?

    Значения данной величины могут зависеть от нескольких факторов . Например, коэффициент теплопроводности, о котором мы поговорим отдельно, влажность строительного сырья, плотность и так далее.

    • Материалы, имеющие высокие показатели плотности, имеют, в свою очередь, и высокую способность к теплоотдаче, за счёт плотного скопления молекул внутри вещества. Пористые материалы, наоборот, будут нагреваться и остывать медленнее.
    • На теплопередачу оказывает влияние и влажность материалов. Если материалы промокнут, то их теплоотдача возрастёт.
    • Также, сильно влияет на этот показатель структура материала. Например, дерево с поперечными и продольными волокнами будет иметь разные значения теплопроводности.
    • Показатель изменяется и при изменениях таких параметров, как давление и температура. С ростом температуры он увеличивается, а с ростом давления, наоборот – уменьшается.

    Коэффициент теплопроводности

    Для количественной оценки такого параметра, используются специальные коэффициенты теплопроводности , строго задекларированные в СНИП. Например, коэффициент теплопроводности бетона равен 0,15-1,75 ВТ/(м*С) в зависимости от типа бетона. Где С – градусы Цельсия. На данный момент расчёт коэффициентов есть практически для всех существующих типов строительного сырья, применяющихся при строительстве. Коэффициенты теплопроводности строительных материалов очень важны в любых архитектурно-строительных работах.

    Для удобного подбора материалов и их сравнения, используются специальные таблицы коэффициентов теплопроводности, разработанные по нормам СНИП(строительные нормы и правила). Теплопроводность строительных материалов , таблица на которых будет приведена ниже, очень важна при строительстве любых объектов.

    • Древесные материалы. Для некоторых материалов параметры будут приведены как вдоль волокон(Индекс 1, так и поперёк – индекс 2)
    • Различные типы бетона.
    • Различные виды строительного и декоративного кирпича.

    Расчёт толщины утеплителя

    Из вышеприведённых таблиц мы видим, насколько могут отличаться коэффициенты проводимости тепла у разных материалов. Для расчёта теплосопротивления будущей стены, существует нехитрая формула , которая связывает толщину утеплителя и коэффициент его теплопроводности.

    R = p / k , где R -показатель теплосопротивления, p -толщина слоя, k – коэффициент.

    Из этой формулы несложно выделить и формулу расчёта толщины слоя утеплителя для требуемого теплосопротивления. P = R * k . Значение теплосопротивление разное для каждого региона. Для этих значений тоже существует специальная таблица, где их и можно посмотреть при расчёте толщины утеплителя.

    Теперь приведём примеры некоторых наиболее популярных утеплителей и их технических характеристик.

    Строительство любого дома, будь то коттедж или скромный дачный домик, должно начинаться с разработки проекта. На этом этапе закладывается не только архитектурный облик будущего строения, но и его конструктивные и теплотехнические характеристики.

    Основной задачей на этапе проекта будет не только разработка прочных и долговечных конструктивных решений, способных поддерживать наиболее комфортный микроклимат с минимальными затратами. Помочь определиться с выбором может сравнительная таблица теплопроводности материалов.

    Понятие теплопроводности

    В общих чертах процесс теплопроводности характеризуется передачей тепловой энергии от более нагретых частиц твердого тела к менее нагретым. Процесс будет идти до тех пор, пока не наступит тепловое равновесие. Другими словами, пока не сравняются температуры.

    Применительно к ограждающим конструкциям дома (стены, пол, потолок, крыша) процесс теплопередачи будет определяться временем, в течение которого температура внутри помещения сравняется с температурой окружающей среды.

    Чем более продолжителен по времени будет этот процесс, тем помещение будет более комфортным по ощущениям и экономичным по эксплуатационным расходам.

    Численно процесс переноса тепла характеризуется коэффициентом теплопроводности. Физический смысл коэффициента показывает, какое количество тепла за единицу времени проходит через единицу поверхности. Т.е. чем выше значение этого показателя, тем лучше проводится тепло, значит, тем быстрее будет происходить процесс теплообмена.

    Соответственно, на этапе проектных работ необходимо спроектировать конструкции, теплопроводность которых должна иметь по возможности наименьшее значение.

    Вернуться к оглавлению

    Факторы, влияющие на величину теплопроводности

    Теплопроводность материалов, используемых в строительстве, зависит от их параметров:

    1. Пористость – наличие пор в структуре материала нарушает его однородность. При прохождении теплового потока часть энергии передается через объем, занятый порами и заполненный воздухом. Принято за отсчетную точку принимать теплопроводность сухого воздуха (0,02 Вт/(м*°С)). Соответственно, чем больший объем будет занят воздушными порами, тем меньше будет теплопроводность материала.
    2. Структура пор – малый размер пор и их замкнутый характер способствуют снижению скорости теплового потока. В случае использования материалов с крупными сообщающимися порами в дополнение к теплопроводности в процессе переноса тепла будут участвовать процессы передачи тепла конвекцией.
    3. Плотность – при больших значениях частицы более тесно взаимодействуют друг с другом и в большей степени способствуют передаче тепловой энергии. В общем случае значения теплопроводности материала в зависимости от его плотности определяются либо на основе справочных данных, либо эмпирически.
    4. Влажность – значение теплопроводности для воды составляет (0,6 Вт/(м*°С)). При намокании стеновых конструкций или утеплителя происходит вытеснение сухого воздуха из пор и замещение его каплями жидкости или насыщенным влажным воздухом. Теплопроводность в этом случае значительно увеличится.
    5. Влияние температуры на теплопроводность материала отражается через формулу:

    λ=λо*(1+b*t), (1)

    где, λо – коэффициент теплопроводности при температуре 0 °С, Вт/м*°С;

    b – справочная величина температурного коэффициента;

    t – температура.

    Вернуться к оглавлению

    Практическое применение значения теплопроводности строительных материалов

    Из понятия теплопроводности напрямую вытекает понятие толщины слоя материала для получения необходимого значения сопротивления теплового потока. Тепловое сопротивление – нормируемая величина.

    Упрощенная формула, определяющая толщину слоя, будет иметь вид:

    где, H – толщина слоя, м;

    R – сопротивление теплопередаче, (м2*°С)/Вт;

    λ – коэффициент теплопроводности, Вт/(м*°С).

    Данная формула применительно к стене или перекрытию имеет следующие допущения:

    • ограждающая конструкция имеет однородное монолитное строение;
    • используемые стройматериалы имеют естественную влажность.

    При проектировании необходимые нормируемые и справочные данные берутся из нормативной документации:

    • СНиП23-01-99 – Строительная климатология;
    • СНиП 23-02-2003 – Тепловая защита зданий;
    • СП 23-101-2004 – Проектирование тепловой защиты зданий.

    Вернуться к оглавлению

    Теплопроводность материалов: параметры

    Принято условное разделение материалов, применяемых в строительстве, на конструкционные и теплоизоляционные.

    Конструкционные материалы применяются для возведения ограждающих конструкций (стен, перегородок, перекрытий). Они отличаются большими значениями теплопроводности.

    Значения коэффициентов теплопроводности сведены в таблицу 1:

    Таблица 1

    Подставляя в формулу (2) данные, взятые из нормативной документации, и данные из Таблицы 1, можно получить требуемую толщину стен для конкретного климатического района.

    При выполнении стен только из конструкционных материалов без использования теплоизоляции их необходимая толщина (в случае использования железобетона) может достигать нескольких метров. Конструкция в этом случае получится непомерно большой и громоздкой.

    Допускают возведение стен без использования дополнительного утепления, пожалуй, только пенобетон и дерево. И даже в этом случае толщина стены достигает полуметра.

    Теплоизоляционные материалы имеют достаточно малые величины значения коэффициента теплопроводности.

    Основной их диапазон лежит в пределах от 0,03 до 0,07 Вт/(м*°С). Наиболее распространенные материалы – это экструдированный пенополистирол, минеральная вата, пенопласт, стекловата, утепляющие материалы на основе пенополиуретана. Их использование позволяет значительно снизить толщину ограждающих конструкций.

    Теплопроводность

    В последнее время при строительстве или ремонте дома большое внимание уделяется его энергоэффективности. При сложившейся стоимости топлива это очень актуально. Причем, с течением времени, экономия на отоплении получает все большую важность. Чтобы правильно подобрать состав и толщину материалов в структуре ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность используемых строительных материалов. Эта характеристика обычно указывается производителем на упаковках материалов и оценивается обычно при их покупке, однако, знать ее значение  необходимо еще на стадии проектирования строения. Очень важно верно определить, из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой используемого материала.  

    Что такое теплопроводность и термическое сопротивление

    Теплопроводность – одна из ключевых характеристик строительных материалов. Она выражается коэффициентом теплопроводности. Коэффициент теплопроводности материалов стен – это величина, которая показывает удельную теплопроводность материала стены, т.е. сколько теряется тепла при прохождении теплового потока через условный единичный объем с разницей температур на его противоположных поверхностях в 1°С. Чем ниже значение коэффициента теплопроводности стен – тем здание получится теплее, чем выше значение – тем больше придется заложить мощности в систему отопления.

    Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из металлов (алюминия, меди или стали), так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. В случае если стена объекта состоит из нескольких слоев материала, ее теплопроводность определяется как сумма коэффициентов всех материалов. Обычно рассчитывается теплопроводность каждой составляющей строения (пол, стены, крыша) и полученные величины суммируются. В итоге определяется теплоизоляционная способность строения.

    Есть еще такое понятие, как тепловое сопротивление, или сопротивление теплопередаче – это свойство материала, которое показывает, насколько способен удерживать тепло данный материал. Эта удельная величина показывает насколько медленно теряется тепло в ваттах при прохождении теплового потока через единичный объем при перепаде температур на стенках в 1°С. Чем выше значение данного коэффициента – тем «теплее» материал. То есть, это обратная величина по отношению к теплопроводности. Примером теплоизоляционных материалов может случить минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловым сопротивлением обычно используют для отведения или переноса тепла. 

    Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна иметь определенное значение, рассчитываемое для каждого региона. Состав материалов стен, пола и потолка, их толщина выбираются с таким расчетом, чтобы суммарное значение теплопроводности было не меньше  (а лучше — немного больше) рекомендованной для выбранного региона.

    Минимально допустимое термосопротивление рассчитывается для анализа теплотехнических свойств проектируемой стены для различных климатических зон. Это нормируемая (базовая) величина, которая показывает, каким должно быть термосопротивление стены в зависимости от региона. Сначала выбирается материал для конструкции, просчитывается термосопротивление стены, а потом сравнивается с табличными данными, содержащимися в СНиП 23-02-2003. В случае, если полученное значение окажется меньше установленного правилами, то необходимо либо увеличить толщину стены, либо утеплить стену теплоизоляционным слоем (например, минеральной ватой).

    Пример расчета минимальной толщины стены из газобетона с теплопроводностью 0,12 Вт/м°С в Московской области со средней температурой внутри дома в отопительный период +22°С:

    * Рассчитывая толщину стеновой конструкции, берем основную формулу: δ = λ•R, где δ – толщина стены, λ – теплопроводность материала, а R – норма теплосопротивления по СНиП.

    * Берем нормируемое теплосопротивление для стен в Московском регионе для температуры +22°C:

    Rreq= 0,00035•5400 + 1,4 = 3,29 м2°C/Вт

    * Коэффициент теплопроводности λ для газобетона марки D400 (габариты 625х400х250 мм) при влажности 5% равен 0,147 Вт/м∙°С.

    Таким образом, минимальная толщина стены из газобетонного камня D400: R•λ = 3,29•0,147 Вт/м∙°С=0,48 м.

    Вывод: для Москвы и области для возведения стен с заданным параметром теплосопротивления нужен газобетонный блок с габаритом по ширине не менее 500 мм , либо блок с шириной 400 мм и последующим утеплением (например минвата+оштукатуривание ), для обеспечения характеристик и требований СНиП в части энергоэффективности стеновых конструкций.

    Минимальная толщина стен, возводимых из различных материалов, соответствующих нормам теплового сопротивления согласно СНиП.

     

    Таким образом, из приведенных данных можно сделать вывод, что материалом, обладающим наибольшей энергоэффективностью является арболит.

    Теплопроводность и коэффициент теплопроводности. Что это такое

    Строительство коттеджа или дачного дома — это сложный и трудоемкий процесс. И для того, чтобы будущее строение простояло не один десяток лет, нужно соблюдать все нормы и стандарты при его возведении. Поэтому каждый этап строительства требует точных расчетов и качественного выполнения необходимых работ.

    Одним из самых важных показателей при строительстве и отделке строения является теплопроводность строительных материалов. СНИП (строительные нормы и правила) дает полный спектр информации по данному вопросу. Ее необходимо знать, чтобы будущее здание было комфортным для проживания как в летний, так и в зимний период.

    Идеальный теплый дом

    От конструктивных особенностей строения и применяемых при его возведении материалов зависит комфорт и экономичность проживания в нем. Комфорт заключается в создании оптимального микроклимата внутри вне зависимости от внешних погодных условий и температуры окружающей среды. Если материалы подобраны правильно, а котельное оборудование и вентиляция установлены согласно нормам, то в таком доме будет комфортная прохладная температура летом и тепло зимой. К тому же если все материалы, используемые при строительстве, обладают хорошими теплоизоляционными свойствами, то расходы на энергоносители при отоплении помещений будут минимальны.

    Понятие теплопроводности

    Теплопроводность — это передача тепловой энергии между непосредственно соприкасающимися телами или средами. Простыми словами теплопроводность — это способность материала проводить температуру. То есть, попадая в какую-то среду с отличающейся температурой, материал начинает принимать температуру этой среды.

    Этот процесс имеет большое значение и в строительстве. Так, в доме с помощью отопительного оборудования поддерживается оптимальная температура (20-25°C). Если температура на улице будет ниже, то когда отключается отопление, все тепло из дома через некоторое время выйдет на улицу, и температура понизится. Летом происходит обратная ситуация. Чтобы сделать температуру в доме ниже уличной, приходится использовать кондиционер.

    Коэффициент теплопроводности

    Потеря тепла в доме неизбежна. Она происходит постоянно, когда температура снаружи меньше, чем в помещении. А вот ее интенсивность — это переменная величина. Она зависит от множества факторов, главными среди которых являются:

    • Площадь поверхностей, участвующих в теплообмене (крыша, стены, перекрытия, пол).
    • Показатель теплопроводности строительных материалов и отдельных элементов здания (окна, двери).
    • Разница между температурами на улице и внутри дома.
    • И другие.

    Для количественной характеристики теплопроводности строительных материалов используют специальный коэффициент. Используя этот показатель, можно довольно просто рассчитать необходимую теплоизоляцию для всех частей дома (стены, крыша, перекрытия, пол). Чем выше коэффициент теплопроводности строительных материалов, тем больше интенсивность потери тепла. Таким образом, для постройки теплого дома лучше применять материалы с более низким показателем этой величины.

    Коэффициент теплопроводности строительных материалов, как и любых других веществ (жидких, твердых или газообразных), обозначается греческой буквой λ. Единицей его измерения является Вт/(м*°C). При этом расчет ведется на один квадратный метр стены толщиной в один метр. Разница температур здесь берется 1°. Практически в любом строительном справочнике имеется таблица теплопроводности строительных материалов, в которой можно посмотреть значение этого коэффициента для различных блоков, кирпичей, бетонных смесей, пород дерева и других материалов.

    Определение потерь тепла

    Потери тепла в любом здании всегда есть, но в зависимости от материала они могут изменять свое значение. В среднем потеря тепла происходит через:

    • Крышу (от 15 % до 25 %).
    • Стены (от 15 % до 35 %).
    • Окна (от 5 % до 15 %).
    • Дверь (от 5 % до 20 %).
    • Пол (от 10 % до 20 %).

    Для определения потерь тепла применяют специальный тепловизор, который определяет наиболее проблемные места. Они выделяются на нем красным цветом. Меньшая потеря тепла происходит в желтых зонах, далее — в зеленых. Зоны с наименьшей потерей тепла выделяются синим цветом. А определение теплопроводности строительных материалов должно проводиться в специальных лабораториях, о чем должен свидетельствовать сертификат качества, прилагаемый к продукции.

    Пример расчета потерь тепла

    Если взять, к примеру, стену из материала с коэффициентом теплопроводности 1, то при разности температур с двух сторон этой стены в 1°, потери тепла составят 1 Вт. Если же толщину стены взять не 1 метр, а 10 см, то потери составят уже 10 Вт. В случае, если разность температур будет 10°, то тепловые потери также составят 10 Вт.

    Рассмотрим теперь на конкретном примере расчет потери тепла целого здания. Высоту его возьмем 6 метров (8 с коньком), ширину — 10 метров, а длину — 15 метров. Для простоты расчетов берем 10 окон площадью 1 м 2 . Температуру внутри помещения будем считать равную 25°C, а на улице -15°C. Вычисляем площадь всех поверхностей, через которые происходит потеря тепла:

    • Окна — 10 м 2 .
    • Пол — 150 м 2 .
    • Стены — 300 м 2 .
    • Крыша (со скатами по длинной стороне) — 160 м 2 .

    Формула теплопроводности строительных материалов позволяет вычислить коэффициенты для всех частей здания. Но проще использовать уже готовые данные из справочника. Там есть таблица теплопроводности строительных материалов. Рассмотрим каждый элемент по отдельности и определим его тепловое сопротивление. Оно рассчитывается по формуле R = d/λ, где d — толщина материала, а λ — коэффициент его теплопроводности.

    Пол — 10 см бетона (R=0,058 (м 2 *°C)/Вт) и 10 см минеральной ваты (R=2,8 (м 2 *°C)/Вт). Теперь складываем эти два показателя. Таким образом, тепловое сопротивление пола равняется 2,858 (м 2 *°C)/Вт.

    Аналогично считаются стены, окна и кровля. Материал — ячеистый бетон (газобетон), толщина 30 см. В таком случае R=3,75 (м 2 *°C)/Вт. Тепловое сопротивление пластового окна — 0,4 (м 2 *°C)/Вт.

    Следующая формула позволяет выяснить потери тепловой энергии.

    Q = S * T / R, где S — площадь поверхности, T — разница температур снаружи и внутри (40°C). Рассчитаем потери тепла для каждого элемента:

    • Для крыши: Q = 160*40/2,8=2,3 кВт.
    • Для стен: Q = 300*40/3,75=3,2 кВт.
    • Для окон: Q = 10*40/0,4=1 кВт.
    • Для пола: Q = 150*40/2,858=2,1 кВт.

    Далее все эти показатели суммируются. Таким образом, для данного коттеджа тепловые потери составят 8,6 кВт. А для поддержания оптимальной температуры потребуется котельное оборудование мощностью не менее 10 кВт.

    Материалы для внешних стен

    На сегодняшний день существует множество стеновых строительных материалов. Но наибольшей популярностью в частном домостроении по-прежнему пользуются строительные блоки, кирпичи и дерево. Основные отличия — это плотность и теплопроводность строительных материалов. Сравнение дает возможность выбрать золотую середину в соотношении плотность/теплопроводность. Чем выше плотность материала, тем выше его несущая способность, а следовательно, и прочность конструкции в целом. Но при этом ниже его тепловое сопротивление, а как следствие, расходы на энергоносители выше. С другой стороны, чем выше тепловое сопротивление, тем ниже плотность материала. Меньшая плотность, как правило, подразумевает наличие пористой структуры.

    Чтобы взвесить все за и против, необходимо знать плотность материала и его коэффициент теплопроводности. Следующая таблица теплопроводности строительных материалов для стен дает значение этого коэффициента и его плотность.

    Материал

    Теплопроводность, Вт/(м*°C)

    Плотность, т/м 3

    Железобетон

    Керамзитобетонные блоки

    Керамический кирпич

    Силикатный кирпич

    Газобетонные блоки

    Утеплители для стен

    При недостаточной тепловой сопротивляемости внешних стен могут применяться различные утеплители. Так как значения теплопроводности строительных материалов для утепления могут иметь весьма низкий показатель, то чаще всего толщины в 5-10 см будет достаточно для создания комфортной температуры и микроклимата в помещениях. Широкое применение на сегодняшний день получили такие материалы, как минеральная вата, пенополистирол, пенопласт, пенополиуритан и пеностекло.

    Следующая таблица теплопроводности строительных материалов, используемых для утепления наружных стен, дает значение коэффициента λ.

    Особенности применения стеновых утеплителей

    Применение утеплителей для наружных стен имеет некоторые ограничения. Это прежде всего связанно с таким параметром, как паропроницаемость. Если стена сделана из пористого материала, такого как газобетон, пенобетон или керамзитобетон, то применять лучше минеральную вату, так как этот параметр у них практически одинаковый. Использование пенополистирола, пенополиуритана или пеностекла возможно только при наличии специального вентиляционного зазора между стеной и утеплителем. Для дерева это также критично. А вот для кирпичных стен данный параметр не так критичен.

    Теплая кровля

    Утепление кровли позволяет избежать ненужных перерасходов при отоплении дома. Для этого могут применяться все виды утеплителей как листового формата, так и напыляемые (пенополиуритан). При этом не следует забывать про пароизоляцию и гидроизоляцию. Это весьма важно, так как мокрый утеплитель (минеральная вата) теряет свои свойства по тепловой сопротивляемости. Если же кровля не утепляется, то необходимо основательно утеплить перекрытие между чердаком и последним этажом.

    Пол

    Утепление пола весьма важный этап. При этом также необходимо применять пароизоляцию и гидроизоляцию. В качестве утеплителя используется более плотный материал. Он, соответственно, имеет более высокий коэффициент теплопроводности, чем кровельный. Дополнительной мерой для утепления пола может послужить подвал. Наличие воздушной прослойки позволяет повысить тепловую защиту дома. А оборудование системы теплого пола (водяного или электрического) дает дополнительный источник тепла.

    Заключение

    При строительстве и отделке фасада необходимо руководствоваться точными расчетами по тепловым потерям и учитывать параметры используемых материалов (теплопроводность, паропроницаемость и плотность).

    Из чего построить дом? Его стены должны обеспечить здоровый микроклимат без лишней влаги, плесени, холода. Это зависит от их физических свойств: плотности, водостойкости, пористости. Самым главным является теплопроводность строительных материалов, означающая их свойство пропускать сквозь себя тепловую энергию при разнице температур. Для того, чтобы количественно оценить этот параметр, используют коэффициент теплопроводности.

    Для того, чтобы кирпичный дом был таким же теплым, как и деревянный сруб (из сосны), толщина его стен должна втрое превышать толщину стен сруба.

    Что такое коэффициент теплопроводности

    Эта физическая величина равна количеству теплоты (измеряемой в килокалориях), проходящей через материал толщиной 1 м за 1 час. При этом разница температур на противоположных сторонах его поверхности должна быть равной 1 °С. Исчисляется теплопроводность в Вт/м град (Ватт, деленный на произведение метра и градуса).

    Использование данной характеристики продиктовано необходимостью грамотного подбора типа фасада для создания максимальной теплоизоляции. Это необходимое условие для комфорта живущих или работающих в здании людей. Также теплопроводность строительных материалов учитывается при выборе дополнительного утепления дома. В данном случае ее расчет особенно важен, так как ошибки приводят к неправильному смещению точки росы и, как следствие — стены мокнут, в доме сыро и холодно.

    Сравнительная характеристика теплопроводности строительных материалов

    Коэффициент теплопроводности материалов различный. К примеру, у сосны этот показатель равен 0,17 Вт/м град, у пенобетона – 0,18 Вт/м град: то есть, по способности сохранять тепло они примерно идентичны. Коэффициент теплопроводности кирпича – 0,55 Вт/м град, а обыкновенного (полнотелого) – 0,8 Вт/м град. Из всего этого следует, что для того, чтобы кирпичный дом был таким же теплым, как и деревянный сруб (из сосны), толщина его стен должна втрое превышать толщину стен сруба.

    Практическое использование материалов с низкой теплопроводностью

    Современные технологии производства теплоизолирующих материалов предоставляют широкие возможности для строительной индустрии. Сегодня совершенно не обязательно строить дома с большой толщиной стен: можно удачно комбинировать различные материалы для возведения энергоэффективных построек. Не очень высокую теплопроводность кирпича можно компенсировать использованием дополнительного внутреннего или наружного утеплителя, например, пенополистирола, коэффициент теплопроводности которого – всего 0,03 Вт/м град.

    Взамен дорогих домов из кирпича и не эффективных с точки зрения энергосбережения монолитных и каркасно-панельных домов из тяжелого и плотного бетона сегодня строят здания из ячеистого бетона. Его параметры такие же, как у древесины: в доме из данного материала стены не промерзают даже в самые холодные зимы.

    Потери тепла дома в процентном соотношении.

    Такая технология позволяет возводить более дешевые здания. Это связано с тем, что низкий коэффициент теплопроводности строительных материалов упростил возведение минимальными затратами по финансированию. Уменьшается также и время, затрачиваемое на строительные работы. Для более легких сооружений не требуется устраивать тяжелый глубоко заглубленный фундамент: в ряде случаев достаточно легкого ленточного или столбчатого.

    Особенно привлекательным данный принцип строительства стал для возведения легких каркасных домов. Сегодня с использованием материалов низкой теплопроводности возводится все больше коттеджей, супермаркетов, складских помещений и производственных зданий. Такие строения могут эксплуатироваться в любой климатической зоне.

    Принцип каркасно-щитовой технологии строительства заключается в том, что между тонкими листами фанеры или плит OSB помещается теплоизолятор. Это может быть минеральная вата либо пенополистирол. Толщина материала выбирается с учетом его теплопроводности. Тонкие стены вполне справляются с задачей тепловой изоляции. Таким же образом устраивается кровля. Данная технология позволяет в короткие сроки возводить здание с минимальными финансовыми затратами.

    Сравнение параметров популярных материалов для изоляции и возведения домов

    Пенополистирол и минеральная вата заняли лидирующие позиции при утеплении фасадов. Мнения специалистов разделились: одни утверждают, что вата накапливает конденсат и пригодна к эксплуатации лишь при одновременном использовании с паронепроницаемой мембраной. Но тогда стены теряют дышащие свойства, и качественное применение оказывается под вопросом. Другие уверяют, что создание вентилируемых фасадов решает данную проблему. При этом пенополистирол имеет низкую проводимость тепла и хорошо дышит. У него она пропорционально зависит от плотности листов: 40/100/150 кг/м3 = 0,03/0,04/0,05 Вт/м*ºC.

    Еще одна важная характеристика, которую обязательно учитывают при строительстве — паропроницаемость. Она означает возможность стен пропускать изнутри влажность. При этом не происходят потери комнатной температуры и нет необходимости проветривать помещение. Низкая теплопроводность и высокая паропроницаемость стен обеспечивают идеальный для проживания человека микроклимат в доме.

    Исходя из этих условий, можно определить самые эффективные дома для проживания человека. Наиболее низкой проводимостью тепла обладает пенобетон (0,08 Вт
    м*ºC) при плотности 300 кг/м3. Этот строительный материал имеет также одну из самых высоких степеней паропроницаемости (0,26 Мг/м*ч*Па). Второе место по праву занимает древесина, в частности — сосна, ель, дуб. Их теплопроводность достаточно низкая (0,09 Вт/м*ºC) при условии обработки дерева поперек волокон. А паропроницаемость этих сортов наиболее высокая (0,32 Мг/м*ч*Па). Для сравнения: использование сосны, обработанной вдоль волокон, повышает выпуск тепла до 0,17-0,23 Вт/м*ºC.

    Таким образом, для возведения стен подходят лучше всего пенобетон и древесина, так как они обладают лучшими параметрами по обеспечению экологической чистоты и хорошего микроклимата внутри помещений. Для изоляции фасада подходят пенополиуретан, пенополистирол, минеральная вата. Отдельно следует сказать о пакле. Ее закладывают для исключения мостиков холода во время кладки сруба. Она увеличивает и без того отличные свойства деревянного фасада: коэффициент проводимости тепла у пакли самый низкий (0,05 Вт/м*ºC), а паропроницаемость самая высокая (0,49 Мг/м*ч*Па).

    Прочный и теплый дом – это основное требование, которое предъявляется проектировщикам и строителям. Поэтому еще на стадии проектирования зданий в конструкцию закладываются две разновидности стройматериалов: конструкционные и теплоизоляционные. Первые обладают повышенной прочностью, но большой теплопроводностью, и именно их чаще всего и используют для возведения стен, перекрытий, оснований и фундаментов. Вторые – это материалы с низкой теплопроводностью. Их основное назначение – закрыть собой конструкционные материалы, чтобы понизить их показатель тепловой проводимости. Поэтому для облегчения расчетов и выбора используется таблица теплопроводности строительных материалов.

    Читайте в статье:

    Что такое теплопроводность

    Законы физики определяют один постулат, который гласит, что тепловая энергия стремится от среды с высокой температурой к среде с низкой температурой. При этом, проходя через строительный материал, тепловая энергия затрачивает какое-то время. Переход не состоится лишь в том случае, если температура на разных сторонах от стройматериала одинаковая.

    То есть, получается так, что процесс перехода тепловой энергии, к примеру, через стену, это время проникновения тепла. И чем больше времени на это затрачивается, тем ниже теплопроводность стены. Вот такое соотношение. К примеру, теплопроводность различных материалов:

    • бетон –1,51 Вт/м×К;
    • кирпич – 0,56;
    • древесина – 0,09-0,1;
    • песок – 0,35;
    • керамзит – 0,1;
    • сталь – 58.

    Чтобы было понятно, о чем идет речь, надо обозначить, что бетонная конструкции не будет ни под каким предлогом пропускать через себя тепловую энергию, если ее толщина будет в пределах 6 м. Понятно, что это просто невозможно в домостроении. А значит, придется для снижения теплопроводности использовать другие материалы, у которых показатель ниже. И ими облицовывать бетонное сооружение.


    Что такое коэффициент теплопроводности

    Коэффициент теплоотдачи или теплопроводности материалов, который также обозначен в таблицах, это характеристика тепловой проводимости. Он обозначает количество тепловой энергии, проходящий через толщу стройматериала за определенный промежуток времени.

    В принципе, коэффициент обозначает именно количественный показатель. И чем он меньше, тем теплопроводность материала лучше. Из сравнения выше видно, что стальные профили и конструкции обладают самым высоким коэффициентом. А значит, они практически не держат тепло. Из строительных материалов,сдерживающих тепло, которые используются для сооружения несущих конструкций, это древесина.

    Но надо обозначить и другой момент. К примеру, все та же сталь. Этот прочный материал используют для отведения тепла, где есть необходимость сделать быстрый перенос. К примеру, радиаторы отопления. То есть, высокий показатель теплопроводности – это не всегда плохо.


    Что влияет на теплопроводность строительных материалов

    Есть несколько параметров, которые сильно влияют на тепловую проводимость.

    1. Структура самого материала.
    2. Его плотность и влажность.

    Что касается структуры, то здесь огромное разнообразие: однородная плотная, волокнистая, пористая, конгломератная (бетон), рыхлозернистая и прочее. Так вот надо обозначить, что чем неоднороднее структура у материала, тем ниже у него теплопроводность. Все дело в том, что проходить сквозь вещество, в котором большой объем занимают поры разного размера, тем сложнее энергии через нее перемещаться. А ведь в данном случае тепловая энергия – это излучение. То есть, оно не проходит равномерно, а начинает изменять направления, теряя силу внутри материала.


    Теперь о плотности. Этот параметр обозначает, на каком расстоянии между собой располагаются частички материала внутри его самого. Исходя из предыдущей позиции, можно сделать вывод: чем меньше это расстояние, а значит, больше плотность, тем тепловая проводимость выше. И наоборот. Тот же пористый материал имеет плотность меньше, чем однородный.


    Влажность – это вода, которая имеет плотную структуру. И ее теплопроводность равна 0,6 Вт/м*К. Достаточно высокий показатель, сравнимый с коэффициентом теплопроводности кирпича. Поэтому когда она начинает проникать в структуру материала и заполнять собой поры, это увеличение тепловой проводимости.

    Коэффициент теплопроводности строительных материалов: как применяется на практике и таблица

    Практические значение коэффициента – это правильно проведенный расчет толщины несущих конструкций с учетом используемых утеплителей. Необходимо отметить, что возводимое здание – это несколько ограждающих конструкций, через которые происходит утечка тепла. И у каждой их них свой процент теплопотерь.

    • через стены уходит до 30% тепловой энергии общего расхода.
    • Через полы – 10%.
    • Через окна и двери – 20%.
    • Через крышу – 30%.

    То есть, получается так, что если неправильно рассчитать теплопроводность всех ограждений, то проживающим в таком доме людям придется довольствоваться лишь 10% тепловой энергии, которое выделяет отопительная система. 90% – это, как говорят, выброшенные на ветер деньги.


    Мнение эксперта

    Инженер-проектировщик ОВиК (отопление, вентиляция и кондиционирование) ООО «АСП Северо-Запад»

    Спросить у специалиста

    “Идеальный дом должен быть построен из теплоизоляционных материалов, в котором все 100% тепла будут оставаться внутри. Но по таблице теплопроводности материалов и утеплителей вы не найдете тот идеальный стройматериал, из которого можно было бы возвести такое сооружение. Потому что пористая структура – это низкие несущие способности конструкции. Исключением может быть древесина, но и она не идеал.”


    Поэтому при строительстве домов стараются использовать разные строительные материалы, дополняющие друг друга по теплопроводности. При этом очень важно соотносить толщину каждого элемента в общей строительной конструкции. В этом плане идеальным домом можно считать каркасный. У него деревянная основа, уже можно говорить о теплом доме, и утеплители, которые закладываются между элементами каркасной постройки. Конечно, с учетом средней температуры региона придется точно рассчитать толщину стен и других ограждающих элементов. Но, как показывает практика, вносимые изменения не столь значительны, чтобы можно было бы говорить о больших капитальных вложениях.


    Рассмотрим несколько часто используемых строительных материалов и проведем сравнение их теплопроводность по толщине.

    Теплопроводность кирпича: таблица по разновидностям

    ФотоВид кирпичаТеплопроводность, Вт/м*К
    Керамический полнотелый0,5-0,8
    Керамический щелевой0,34-0,43
    Поризованный0,22
    Силикатный полнотелый0,7-0,8
    Силикатный щелевой0,4
    Клинкерный0,8-0,9

    Теплопроводность дерева: таблица по породам

    Коэффициент теплопроводности пробкового дерева самый низкий из всех пород древесины. Именно пробка часто используется в качестве теплоизоляционного материала при проведении утеплительных мероприятий.


    Теплопроводность металлов: таблица

    Данный показатель у металлов изменяется с изменением температуры, в которой они применяются. И здесь соотношение такое – чем выше температура, тем ниже коэффициент. В таблице покажем металлы, которые используются в строительной сфере.

    Теперь, что касается соотношения с температурой.

    • У алюминия при температуре -100°С теплопроводность составляет 245 Вт/м*К. А при температуре 0°С – 238. При +100°С – 230, при +700°С – 0,9.
    • У меди: при -100°С –405, при 0°С – 385, при +100°С – 380, а при +700°С – 350.

    Таблица теплопроводности других материалов

    В основном нас будет интересовать таблица теплопроводности изоляционных материалов. Необходимо отметить, что если у металлов данный параметр зависит от температуры, то у утеплителей от их плотности. Поэтому в таблице будут расставлены показатели с учетом плотности материалом.

    Теплоизоляционный материалПлотность, кг/м³Теплопроводность, Вт/м*К
    Минеральная вата (базальтовая)500,048
    1000,056
    2000,07
    Стекловата1550,041
    2000,044
    Пенополистирол400,038
    1000,041
    1500,05
    Пенополистирол экструдированный330,031
    Пенополиуретан320,023
    400,029
    600,035
    800,041

    И таблица теплоизоляционных свойств строительных материалов. Основные из них уже рассмотрены, обозначим те, которые в таблицы не вошли, и которые относятся к категории часто используемых.

    Строительный материалПлотность, кг/м³Теплопроводность, Вт/м*К
    Бетон24001,51
    Железобетон25001,69
    Керамзитобетон5000,14
    Керамзитобетон18000,66
    Пенобетон3000,08
    Пеностекло4000,11

    Коэффициент теплопроводности воздушной прослойки

    Всем известно, что воздух, если его оставить внутри строительного материала или между слоями стройматериалов, это великолепный утеплитель. Почему так происходит, ведь сам воздух, как таковой, не может сдерживать тепло. Для этого надо рассмотреть саму воздушную прослойку, огражденную двумя слоями стройматериалов. Один из них соприкасается с зоной положительных температур, другой с зоной отрицательный.


    Тепловая энергия движется от плюса к минусу, и встречает на своем пути слой воздуха. Что происходит внутри:

    1. Конвекция теплого воздуха внутри прослойки.
    2. Тепловое излучение от материала с плюсовой температурой.

    Поэтому сам тепловой поток – это сумма двух факторов с добавлением теплопроводности первого материала. Необходимо сразу отметить, что излучение занимает большую часть теплового потока. Сегодня все расчеты теплосопротивления стен и других несущих ограждающих конструкций проводят на онлайн-калькуляторах. Что касается воздушной прослойки, то такие расчеты провести сложно, поэтому берутся значения, которые в 50-х годах прошлого столетия были получены лабораторными исследованиями.


    В них четко оговаривается, что если разница температур стен, ограниченных воздухом, составляет 5°С, то излучение возрастает с 60% до 80%, если увеличить толщину прослойки с 10 до 200 мм. То есть, общий объем теплового потока остается тот же, излучение вырастает, а значит, теплопроводность стены падает. И разница значительная: с 38% до 2%. Правда, возрастает конвекция с 2% до 28%. Но так как пространство замкнутое, то движение воздуха внутри него никак не действует на внешние факторы.

    Расчет толщины стены по теплопроводности вручную по формулам или калькулятором

    Рассчитать толщину стены не так просто. Для этого нужно сложить все коэффициенты теплопроводности материалов, которые были использованы для сооружения стены. К примеру, кирпич, штукатурный раствор снаружи, плюс наружная облицовка, если такая будет использоваться. Внутренние выравнивающие материалы, это может быть все та же штукатурка или гипсокартонные листы, другие плитные или панельные покрытия. Если есть воздушная прослойка, то учитывают и ее.


    Есть так называемая удельная теплопроводность по регионам, которую берут за основу. Так вот расчетная величина не должна быть больше удельной. В таблице ниже по городам дана удельная тепловая проводимость.

    То есть, чем южнее, тем общая теплопроводность материалов должна быть меньше. Соответственно, можно уменьшать и толщину стены. Что касается онлайн-калькулятора, то предлагаем ниже посмотреть видео, на котором разбирается, как правильно пользоваться таким расчетным сервисом.

    Если у вас возникли вопросы, на которые, как вам показалось, вы не нашли ответы в этой статье, пишите их в комментариях. Наша редакция постарается на них ответить.

    Строительство любого дома, будь то коттедж или скромный дачный домик, должно начинаться с разработки проекта. На этом этапе закладывается не только архитектурный облик будущего строения, но и его конструктивные и теплотехнические характеристики.

    Основной задачей на этапе проекта будет не только разработка прочных и долговечных конструктивных решений, способных поддерживать наиболее комфортный микроклимат с минимальными затратами. Помочь определиться с выбором может сравнительная таблица теплопроводности материалов.

    Понятие теплопроводности

    В общих чертах процесс теплопроводности характеризуется передачей тепловой энергии от более нагретых частиц твердого тела к менее нагретым. Процесс будет идти до тех пор, пока не наступит тепловое равновесие. Другими словами, пока не сравняются температуры.

    Применительно к ограждающим конструкциям дома (стены, пол, потолок, крыша) процесс теплопередачи будет определяться временем, в течение которого температура внутри помещения сравняется с температурой окружающей среды.

    Чем более продолжителен по времени будет этот процесс, тем помещение будет более комфортным по ощущениям и экономичным по эксплуатационным расходам.

    Численно процесс переноса тепла характеризуется коэффициентом теплопроводности. Физический смысл коэффициента показывает, какое количество тепла за единицу времени проходит через единицу поверхности. Т.е. чем выше значение этого показателя, тем лучше проводится тепло, значит, тем быстрее будет происходить процесс теплообмена.

    Соответственно, на этапе проектных работ необходимо спроектировать конструкции, теплопроводность которых должна иметь по возможности наименьшее значение.

    Вернуться к оглавлению

    Факторы, влияющие на величину теплопроводности

    Теплопроводность материалов, используемых в строительстве, зависит от их параметров:

    1. Пористость — наличие пор в структуре материала нарушает его однородность. При прохождении теплового потока часть энергии передается через объем, занятый порами и заполненный воздухом. Принято за отсчетную точку принимать теплопроводность сухого воздуха (0,02 Вт/(м*°С)). Соответственно, чем больший объем будет занят воздушными порами, тем меньше будет теплопроводность материала.
    2. Структура пор — малый размер пор и их замкнутый характер способствуют снижению скорости теплового потока. В случае использования материалов с крупными сообщающимися порами в дополнение к теплопроводности в процессе переноса тепла будут участвовать процессы передачи тепла конвекцией.
    3. Плотность — при больших значениях частицы более тесно взаимодействуют друг с другом и в большей степени способствуют передаче тепловой энергии. В общем случае значения теплопроводности материала в зависимости от его плотности определяются либо на основе справочных данных, либо эмпирически.
    4. Влажность — значение теплопроводности для воды составляет (0,6 Вт/(м*°С)). При намокании стеновых конструкций или утеплителя происходит вытеснение сухого воздуха из пор и замещение его каплями жидкости или насыщенным влажным воздухом. Теплопроводность в этом случае значительно увеличится.
    5. Влияние температуры на теплопроводность материала отражается через формулу:

    λ=λо*(1+b*t), (1)

    где, λо — коэффициент теплопроводности при температуре 0 °С, Вт/м*°С;

    b — справочная величина температурного коэффициента;

    t — температура.

    Вернуться к оглавлению

    Практическое применение значения теплопроводности строительных материалов

    Из понятия теплопроводности напрямую вытекает понятие толщины слоя материала для получения необходимого значения сопротивления теплового потока. Тепловое сопротивление — нормируемая величина.

    Упрощенная формула, определяющая толщину слоя, будет иметь вид:

    где, H — толщина слоя, м;

    R — сопротивление теплопередаче, (м2*°С)/Вт;

    λ — коэффициент теплопроводности, Вт/(м*°С).

    Данная формула применительно к стене или перекрытию имеет следующие допущения:

    • ограждающая конструкция имеет однородное монолитное строение;
    • используемые стройматериалы имеют естественную влажность.

    При проектировании необходимые нормируемые и справочные данные берутся из нормативной документации:

    • СНиП23-01-99 — Строительная климатология;
    • СНиП 23-02-2003 — Тепловая защита зданий;
    • СП 23-101-2004 — Проектирование тепловой защиты зданий.

    Вернуться к оглавлению

    Теплопроводность материалов: параметры

    Принято условное разделение материалов, применяемых в строительстве, на конструкционные и теплоизоляционные.

    Конструкционные материалы применяются для возведения ограждающих конструкций (стен, перегородок, перекрытий). Они отличаются большими значениями теплопроводности.

    Значения коэффициентов теплопроводности сведены в таблицу 1:

    Таблица 1

    Подставляя в формулу (2) данные, взятые из нормативной документации, и данные из Таблицы 1, можно получить требуемую толщину стен для конкретного климатического района.

    При выполнении стен только из конструкционных материалов без использования теплоизоляции их необходимая толщина (в случае использования железобетона) может достигать нескольких метров. Конструкция в этом случае получится непомерно большой и громоздкой.

    Допускают возведение стен без использования дополнительного утепления, пожалуй, только пенобетон и дерево. И даже в этом случае толщина стены достигает полуметра.

    Теплоизоляционные материалы имеют достаточно малые величины значения коэффициента теплопроводности.

    Основной их диапазон лежит в пределах от 0,03 до 0,07 Вт/(м*°С). Наиболее распространенные материалы — это экструдированный пенополистирол, минеральная вата, пенопласт, стекловата, утепляющие материалы на основе пенополиуретана. Их использование позволяет значительно снизить толщину ограждающих конструкций.

    Что такое теплопроводность? — Matmatch

    Теплопроводность — это мера способности определенного материала передавать или проводить тепло. Проводимость возникает, когда в материале присутствует градиент температуры. Его единицы измерения (Вт/мК) обозначаются либо λ, либо k.

    Второй закон термодинамики гласит, что тепло всегда будет течь от более высокой температуры к более низкой температуре.

    Уравнение теплопроводности рассчитывается по следующей формуле:

    представляет собой тепловую энергию, передаваемую в единицу времени через материал.Это выражается в джоулях в секунду или ваттах.

      • k – константа теплопроводности.
      • A – площадь поверхности, через которую течет тепловая энергия, измеряется в м2.
      • ∆T — разница температур, измеренная в кельвинах.
      • L относится к толщине материала, через который передается тепло, и измеряется в метрах.
      • Для расчета константы теплопроводности можно использовать следующее уравнение:

    Теплопроводность конкретного материала зависит от его плотности, содержания влаги, структуры, температуры и давления.

    Как измеряется?

    Некоторые распространенные методы измерения теплопроводности:

    Метод защищенной горячей плиты:

    Метод защищенной горячей пластины — это широко используемый стационарный метод измерения теплопроводности. Материал, который необходимо протестировать, помещают между горячей и холодной пластинами. Параметрами, используемыми для расчета теплопроводности, являются установившиеся температуры, тепло, используемое для более теплой пластины, и толщина материала.Его можно использовать в диапазоне температур от 80 до 1500 К и для таких материалов, как пластик, стекло и изоляционные образцы. Это очень точно, но для проведения теста требуется значительное количество времени.

    Метод горячей проволоки:

    Метод горячей проволоки является переходным методом и может использоваться для определения теплопроводности жидкостей, твердых тел и газов. Стандартный метод с горячей проволокой, используемый для жидкостей, заключается в том, что в образец помещается нагретая проволока. Теплопроводность определяется сравнением зависимости температуры проволоки от логарифма времени, когда заданы плотность и емкость.

    В случае с твердыми телами требуется небольшая модификация этого метода, при которой горячая проволока поддерживается на подложке, чтобы не было проникновения в твердое тело. Он работает в диапазоне температур от 298 до 1800 К и является быстрым и точным методом, но имеет ключевое ограничение, заключающееся в том, что он работает только с материалами с низкой проводимостью.

    Сравнительный метод резки бруса:

    Сравнительный метод отрезных стержней представляет собой стационарный метод и может использоваться для испытаний металлов, керамики и пластмасс.Тепловой поток проходит через образцы, теплопроводность которых известна и неизвестна, следовательно, можно провести сравнение температурных градиентов. Он работает в диапазоне температур 293 – 1573 К, но измерения относительно неопределенны.

    Метод лазерной вспышки:

    Метод лазерной вспышки представляет собой переходный метод, при котором лазерный импульс доставляет короткий тепловой импульс к переднему концу образца, а изменение температуры измеряется на заднем конце образца.Он работает в диапазоне температур 373 – 3273 К и может использоваться как для твердых, так и для жидких тел. Его преимущество в том, что он быстрый и имеет высокую точность, но довольно дорогой.

    Метод измерения теплового потока:

    Метод измерения теплового потока представляет собой стационарный метод и аналогичен методу защищенной горячей пластины, за исключением того, что для измерения теплового потока через образец используются датчики теплового потока, а не основной нагреватель. Тепловой поток определяется на основе падения температуры внутри терморезистора.Измерители теплового потока используются в диапазоне температур 373–573 К и могут использоваться для пластмасс, керамики, изоляционных материалов и стекла. Основным преимуществом теплосчетчиков является то, что они относительно просты в настройке, однако измерения не отличаются особой точностью.

    Какие материалы имеют самую высокую/самую низкую теплопроводность?

    Как и ожидалось, материалы, которые хорошо проводят тепло, такие как металлы, имеют более высокую константу теплопроводности, чем материалы, которые не так эффективно проводят тепло, такие как полимеры и дерево.

    В группе металлов серебро имеет самую высокую константу теплопроводности, а висмут — самую низкую.

    Теплопроводность неметаллических жидкостей значительно ниже теплопроводности металлов, а самая низкая теплопроводность наблюдается у газов. Среди газов водород и гелий обладают относительно высокой теплопроводностью.

    Для каких приложений требуется высокая/низкая теплопроводность?

    Материалы с фазовым переходом, используемые для хранения тепловой энергии, таких как системы отопления и охлаждения, должны иметь высокую теплопроводность, чтобы максимизировать эффективность, тогда как материалы с низкой теплопроводностью обычно используются для теплоизоляции.

    Что такое теплопроводность? Обзор

    Изменение теплопроводности

    Теплопроводность конкретного материала сильно зависит от ряда факторов. К ним относятся градиент температуры, свойства материала и длина пути, по которому следует тепло.

    Теплопроводность окружающих нас материалов существенно различается: от материалов с низкой теплопроводностью, таких как воздух со значением 0,024 Вт/м•К при 0°C, до металлов с высокой проводимостью, таких как медь (385 Вт/м•К).

    Теплопроводность материалов определяет, как мы их используем, например, материалы с низкой теплопроводностью отлично подходят для изоляции наших домов и предприятий, в то время как материалы с высокой теплопроводностью идеально подходят для приложений, где необходимо быстро и эффективно перемещать тепло из одной области. к другому, как в кухонной утвари и системах охлаждения в электронных устройствах. Выбирая материалы с теплопроводностью, соответствующей применению, мы можем добиться наилучших возможных характеристик.

    Теплопроводность и температура

    В связи с тем, что молекулярное движение является основой теплопроводности, температура материала оказывает большое влияние на теплопроводность. Молекулы будут двигаться быстрее при более высоких температурах, и поэтому тепло будет передаваться через материал с большей скоростью. Это означает, что теплопроводность одного и того же образца может резко измениться при повышении или понижении температуры.

    Способность понять влияние температуры на теплопроводность имеет решающее значение для обеспечения того, чтобы продукты вели себя должным образом при воздействии термического стресса. Это особенно важно при работе с продуктами, выделяющими тепло, такими как электроника, и при разработке огнезащитных и теплозащитных материалов.

    Теплопроводность и структура

    Значения теплопроводности существенно различаются между материалами и сильно зависят от структуры каждого конкретного материала.Некоторые материалы будут иметь разные значения теплопроводности в зависимости от направления распространения тепла; это анизотропные материалы. В этих случаях тепло легче перемещается в определенном направлении из-за того, как устроена структура.

    При обсуждении тенденций теплопроводности материалы можно разделить на три категории; газы, неметаллические твердые вещества и металлические твердые вещества. Различные способности этих трех категорий с точки зрения передачи тепла можно объяснить различиями в их структурах и движениях молекул.

    Газы имеют более низкую относительную теплопроводность, так как их молекулы не так плотно упакованы, как в твердых телах, и поэтому теплопередача сильно зависит от свободного движения молекул и молекулярной скорости.

    Газы плохо передают тепло. Напротив, молекулы неметаллических твердых тел связаны в сеть решеток, и поэтому теплопроводность в основном возникает за счет колебаний в этих решетках. Непосредственная близость этих молекул по сравнению с молекулами газов означает, что неметаллические твердые вещества имеют более высокую теплопроводность из двух, однако внутри этой группы существуют большие различия.

    Это изменение частично связано с количеством воздуха, присутствующего в твердом теле. Материалы с большим количеством воздушных карманов являются отличными изоляторами, а материалы с более плотной упаковкой будут иметь более высокое значение теплопроводности.

    Теплопроводность металлических твердых тел еще раз отличается от предыдущих примеров. Металлы обладают самой высокой теплопроводностью среди всех материалов, за исключением графена, и обладают уникальным сочетанием тепло- и электропроводности.Оба этих атрибута передаются одними и теми же молекулами, и связь между ними объясняется законом Видемана-Франца. Этот закон свидетельствует о том, что при определенной температуре электропроводность будет пропорциональна теплопроводности, однако с повышением температуры теплопроводность материала будет расти, а электропроводность уменьшаться.

    Испытание и измерение теплопроводности

    Теплопроводность является важнейшим компонентом взаимосвязи между материалами, и способность понять ее позволяет нам добиться наилучших результатов от материалов, которые мы используем во всех аспектах нашей жизни.Эффективное тестирование и измерение теплопроводности имеют решающее значение для этой цели. Методы измерения теплопроводности можно разделить на стационарные и переходные. Это разграничение является определяющей характеристикой того, как работает каждый метод. Методы стационарного состояния требуют, чтобы образец и эталонные образцы находились в тепловом равновесии до начала измерений. Переходные методы не требуют выполнения этого правила и поэтому дают результаты быстрее.

    Исследовательские работы

    Приготовление пористой муллитовой керамики с низкой теплопроводностью

    В этом исследовании анализируется муллитовая керамика, образованная в результате вспенивания и отверждения крахмалом порошка муллита, а также то, как изменяется ее теплопроводность в зависимости от пористости керамики.По мере увеличения пористости муллитовой керамики увеличивается и теплопроводность.

    Нанографит/парафиновый материал с фазовым переходом и высокой теплопроводностью

    Композиты нанографита (НГ)/парафина были приготовлены в качестве композиционных материалов с фазовым переходом. Добавление ПГ повысило теплопроводность композиционного материала. Материал, содержащий 10 % NG, имел теплопроводность 0,9362 Вт/м•K

    .

    Каталожные номера:

    Неф, р.Гиперфизика. «Теплопроводность». Государственный университет Джорджии.
    Доступно по адресу: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thercond.html#c1

    Учебный материал по неразрушающему контролю. «Теплопроводность». Ресурсный центр по неразрушающему контролю.
    Доступно по адресу: https://www.ndeed.org/EducationResources/CommunityCollege/Materials/Physical_Chemical/ThermalConductivity.htm

    Уильямс, М. «Что такое теплопроводность?». Физ.орг. 9 декабря 2014 г.
    Режим доступа: http://phys.org/news/2014-12-what-is-heat-conduction.html

    Что вы подразумеваете под теплопроводностью? Получено из определения теплопроводности

    .

    Thermtest База данных тепловых свойств материалов. Перечень теплопроводностей

    Схема коррекции для измерения теплопроводности с использованием сравнительного метода отрезков на основе трехмерного численного моделирования

    Измерительная наука и техника, том 25, номер 5. 2014 г.

    Чанху Син1, Чарльз Фолсом1, Колби Дженсен1, Хен Бан1 и Дуглас В. Маршалл2

    1 Отделение машиностроения и аэрокосмической техники, Университет штата Юта, Логан, Юта, 84322, США
    2 Национальная лаборатория Айдахо, Айдахо-Фолс, ID, 83415, США .

     

    РЕЗЮМЕ

    Метод сравнительного осевого теплового потока (срезной брус) представляет собой стационарный метод измерения теплопроводности твердых тел. С момента своего появления в 1950-х годах он был в значительной степени заменен более быстрыми методами измерения переходных процессов. Однако некоторые характеристики пробы могут ограничивать применение методов измерения переходных процессов, таких как определенная геометрия пробы и/или композитные материалы пробы, требующие объемного измерения.В методе отрезных стержней образец помещается между двумя эталонными материалами (метровыми стержнями) с известной теплопроводностью, чтобы сформировать испытательный пакет. Путем измерения распределения температуры испытательного штабеля, который контролируется системой нагревателей и «защиты», можно рассчитать неизвестную теплопроводность образца, применяя одномерный (1D) закон Фурье (см. рисунок). . В прошлом были выявлены три основных недостатка этого метода, в том числе: неопределенность данных эталонного материала, влияние межфазного теплового контактного сопротивления и влияние несоответствия теплопроводности между эталоном и образцом.Первый подразумевает, что неопределенность измерения никогда не может превышать неопределенность эталонного материала. Остальные эффекты, по существу, сводятся к повышенному отклонению от предполагаемого одномерного теплового потока, даже с защитой. Сочетание экспериментальных и расчетных исследований показало, что использование рекомендуемых в настоящее время схем защиты не может дать точных результатов, когда теплопроводность образца заметно отличается от теплопроводности эталонного материала. Однако для линейного распределения защитной температуры, примененного к данной конфигурации, ошибка смещения, вызванная несоответствием теплопроводности, может быть минимизирована при конкретном профиле защитной температуры, называемом оптимальным условием защиты.С помощью моделирования был объяснен механизм оптимальной защиты: по сути, он создает одномерный тепловой поток через тестовую трубу. Экспериментально разработанная схема ограждения проверена на ряд несоответствий теплопроводности. В качестве альтернативы использованию оптимального условия защиты была разработана схема коррекции для минимизации ошибки смещения, вызванной системой. Схема коррекции компенсирует любой трехмерный тепловой поток, вызванный неоптимальной защитой, посредством параллельного моделирования измерительной системы.Схема была проверена экспериментально путем измерения четырех образцов, охватывающих диапазон коэффициентов теплопроводности между образцом и измерительным стержнем ~ 0,15-4. Образцы в крайних пределах диапазона измеряемых отношений были сертифицированными эталонными материалами. Применение оптимального ограждающего условия или методики коррекции может обеспечить погрешность измерения до уровня неопределенности теплопроводности метра-метра и становится все более важным при большем отклонении несоответствия теплопроводности образца-метра-стержня.

    Перейти к журналу

     

     

    (PDF) Определение теплопроводности сплавов Ga-In для проектирования материалов с тепловым интерфейсом

    Thermo 2022,212

    W.X.; визуализация, П.М. и С.С.; надзор, WX; администрирование проекта, WX; приобретение финансирования,

    W.X. Все авторы прочитали и согласились с опубликованной версией рукописи.

    Финансирование:

    Данное исследование финансировалось Национальным научным фондом США, номер гранта

    DMR-1808082.

    Заявление Институционального наблюдательного совета: Не применимо.

    Заявление об информированном согласии: Не применимо.

    Заявление о доступности данных: Неприменимо.

    Благодарности:

    P.M. выражает благодарность Академии Шейди Сайд за предоставленную ему возможность пройти летнюю стажировку

    на кафедре машиностроения и материаловедения Инженерной школы Суонсона

    Университета Питтсбурга.

    Конфликт интересов: Авторы заявляют об отсутствии конфликта интересов.

    Ссылки

    1. Gwinn, J.P.; Уэбб, Р.Л. Характеристики и испытания материалов теплового интерфейса. Микроэлектрон. Дж. 2003, 34, 215–222. [CrossRef]

    2. Чанг, Д.Д.Л. Материалы теплового интерфейса. Дж. Электрон. Матер. 2020, 49, 268–270. [CrossRef]

    3.

    Чжан, К.; Ду, Ю.; Лю, С .; Лю, Ю.; Сандман, Б. Теплопроводность сплавов Al-Cu-Mg-Si: экспериментальное измерение и моделирование CALPHAD. Термохим. Acta 2016, 635, 8–16. [Перекрестная ссылка]

    4.

    Хуанг, Л.; Лю, С .; Ду, Ю.; Чжан, К. Теплопроводность сплавов Mg-Al-Zn: экспериментальное измерение и моделирование CALPHAD

    . Кальфад 2018, 62, 99–108. [CrossRef]

    5.

    Чжао, Д.; Цянь, X .; Гу, Х .; Джаджа, С.А.; Ян, Р. Методы измерения теплопроводности и межфазной теплопроводности

    объемных и тонкопленочных материалов. Дж. Электрон. Упак. 2016, 138, 040802. [CrossRef]

    6.

    Сондерс, Н.; Миодовник, А.P. CALPHAD (Расчет фазовых диаграмм): Полное руководство; Elsevier: Амстердам,

    Нидерланды, 1998.

    7.

    Лукас, Х.; Фрайс, С.Г.; Сандман, Б. Вычислительная термодинамика: метод Калфада; Издательство Кембриджского университета: Кембридж,

    Великобритания, 2007 г.

    8.

    Гериби, А.Е.; Chartrand, P. Применение метода CALPHAD для прогнозирования теплопроводности в диэлектрических и полупроводниковых кристаллах. Кальфад 2012, 39, 70–79.[CrossRef]

    9.

    Xin, J.; Ган, Л.; Цзяо, Л.; Лай, К. Точный расчет плотности расплавленных шлаков в системах SiO

    2

    -Al

    2

    O

    3

    -CaO-MgO. ISIJ Междунар.

    2017

    ,57,

    1340–1349. [CrossRef]

    10. Чжан, Б.; Ли, Х .; Ли Д. Оценка коэффициента теплового расширения чистых металлов. Кальфад 2013, 43, 7–17. [CrossRef]

    11.

    Хак, К.; Ву, Г.; Яженских, Э.; Янцен, Т .; Мюллер, М. Подход CALPHAD к моделированию вязкости шлака. Calphad

    2019

    ,

    65, 101–110. [CrossRef]

    12. Андерсон Т.Дж.; Ансара, И. Система Ga-In (галлий-индий). Дж. Фазовые равновесия 1991, 12, 64–72. [CrossRef]

    13.

    Прохоренко В.Ю.; Рощупкин, В.В.; Покрасин, М.А.; Прохоренко, С.В.; Котов, В.В. Жидкий галлий: возможное использование в качестве теплоносителя

    . Высокий темп. 2000, 38, 954–968.[CrossRef]

    14.

    Ассаэль М.Дж.; Чацимихайлидис, А .; Антониадис, К.Д.; Уэйкхэм, Вашингтон; Хубер, М.Л.; Фукуяма, Х. Справочные корреляции для

    теплопроводности жидкой меди, галлия, индия, железа, свинца, никеля и олова. Высокая температура.-Высокое давление.

    2017

    ,46, 391–416.

    [PubMed]

    15.

    Powell, R.W.; Вудман, MJ; Тай Р.П. Дальнейшие измерения анизотропной теплопроводности галлия.бр. Дж.

    Заявл. физ. 1963, 14, 432–435. [CrossRef]

    16.

    Марашли, Н.; Акбулут, С .; Окак, Ю .; KeŸslio

    ˇ

    глу, К.; Бёюк, У .; Кая, Х .; Чадирли, Э. Измерение межфазной энергии твердое тело-жидкость в

    эвтектическом сплаве In-Bi при низкой температуре плавления. Дж. Физ. Конденс. Matter 2007, 19, 506102. [CrossRef]

    17.

    Редлих О.; Кистер, А.Т. Алгебраическое представление термодинамических свойств и классификация решений.Инд.Инж.

    Хим. 1948, 40, 345–348. [CrossRef]

    18.

    ДеСорго, М. Материалы для термоинтерфейса. Доступно в Интернете: https://www.electronics-cooling.com/1996/09/thermal-interface-

    material-2/ (по состоянию на 19 ноября 2021 г.).

    19.

    Чиу, К.-П.; Солбреккен, Г.Л.; ЛеБонёр, В.; Сюй, Ю.Э. Применение материалов с фазовым переходом в процессорных картриджах Pentium (R) III и Pentium

    (R) III Xeon/sup TM/. В материалах Международного симпозиума по передовым упаковочным материалам

    Процессы, свойства и интерфейсы, Бразелтон, Джорджия, США, 6–8 августа 2000 г .; стр.265–270.

    20.

    Вишванат Р.; Вахаркар, В.; Ватве, А .; Лебонер, В. Проблемы с тепловыми характеристиками от кремния до систем. Технология Intel. J.

    2000, Q3, 1–16.

    21.

    Оллила, Т. Навигация по лабиринту материалов для термоинтерфейса. Доступно в Интернете: https://www.electronicproducts.com/navigating-

    the-maze-of-thermal-interface-materials/# (по состоянию на 19 ноября 2021 г.).

    22.

    Раух, Б. Понимание рабочих характеристик материалов теплового интерфейса с фазовым переходом.В материалах

    ITHERM 2000. Седьмая межобщественная конференция по тепловым и термомеханическим явлениям в электронных системах, Лас

    Вегас, Невада, США, 23–26 мая 2000 г .; стр. 42–47.

    Высокая теплопроводность нового материала позволит создать энергоэффективные устройства — ScienceDaily

    Исследователи из Бристольского университета успешно продемонстрировали высокую теплопроводность нового материала, проложив путь к более безопасным и эффективным электронным устройствам, в том числе мобильным телефоны, радары и даже электромобили.

    Команда под руководством профессора Мартина Кубалла из Центра термографии и надежности устройств (CDTR) обнаружила, что создание сверхчистой версии нитрида бора позволило впервые продемонстрировать его потенциал теплопроводности, который составляет 550 Вт. /mk в два раза больше, чем у меди.

    Статья: Модуляция теплопроводности в гексагональном нитриде бора с помощью контролируемой концентрации изотопа бора опубликована сегодня в Communications Physics .

    проф.Кубалл объяснил:

    «Большая часть полупроводниковой электроники нагревается при использовании. Чем горячее они становятся, тем быстрее они разлагаются, и их производительность снижается. По мере того, как мы все больше и больше полагаемся на наши электронные устройства, становится все более важным находить материалы с высокими тепловыми проводимость, которая может извлекать отработанное тепло

    «Нитрид бора — один из таких материалов, теплопроводность которого, по прогнозам, составляет 550 Вт/мК, что вдвое больше, чем у меди. Однако все измерения на сегодняшний день показали, что его теплопроводность намного ниже.Удивительно, но, сделав этот материал «сверхчистым», мы смогли впервые продемонстрировать его очень высокий потенциал теплопроводности».

    Профессор Кубалл сказал, что следующим шагом будет создание активных электронных устройств из нитрида бора, а также его интеграция с другими полупроводниковыми материалами.

    «Демонстрируя потенциал сверхчистого нитрида бора, мы получили материал, который можно будет использовать в ближайшем будущем для создания высокопроизводительной и энергоэффективной электроники.»

    «Последствия этого открытия значительны. Безусловно, наша зависимость от электроники будет только возрастать вместе с использованием мобильных телефонов и внедрением электромобилей. Использование более эффективных материалов, таких как нитрид бора, для удовлетворения этих потребностей приведет к к более производительным сетям мобильной связи, более безопасному транспорту и, в конечном счете, к меньшему количеству электростанций».

    Источник истории:

    Материалы предоставлены Бристольским университетом . Примечание. Содержимое можно редактировать по стилю и длине.

    Теплопроводность | Фторохимикаты | Дайкин Глобал

    Полимерные смолы являются универсальными материалами благодаря таким свойствам, как технологичность и относительная прочность. Однако их относительно низкая теплопроводность может представлять собой инженерную проблему при применении вблизи источника тепла или при замене металла.

    Требуемые электрические свойства смол варьируются в зависимости от применения.Daikin предлагает как электроизоляционные, так и электропроводящие решения.

    • — Производительность и охлаждение полупроводников / надежной электроники

    Стремление упаковать все большее количество вычислительной мощности во все меньшие полупроводниковые корпуса приводит к возрастающей инженерной задаче по отводу рассеиваемого тепла от электронных компонентов.

    С развитием 5G и высокочастотных сигналов необходимо улучшить теплопроводность материалов подложки при сохранении низких диэлектрических свойств для целостности сигнала.

    • — Электрификация автомобилей

    Компоненты электронной трансмиссии, такие как двигатели, инверторы и аккумуляторные батареи, выделяют меньше тепла, чем двигатели внутреннего сгорания; однако их производительность и безопасность также более чувствительны к повышению температуры.

    При проектировании этих компонентов необходимо учитывать тепловые свойства каждого слоя, чтобы обеспечить достаточный поток тепла от источника к стоку.

    Пластмассы являются хорошей альтернативой металлам из-за более низкой стоимости инструментов и универсальности конструкции. В некоторых применениях, заменяющих металл стандартными пластиками, ухудшается теплопроводность. Требуются пластмассы с высокой теплопроводностью.

    Анизотропная теплопроводность

    ПредыдущийСледующий

    Когда в материале присутствует температурный градиент, тепло всегда будет течь от более горячей области к более холодной для достижения теплового равновесия.Как упоминалось во введении, теплопроводность — это свойство, связывающее поток тепла с температурным градиентом. В изотропном материале:

    \[J = k{{dT} \over {dr}}\]

    , где J = тепловой поток, k = теплопроводность и dT/dr = температурный градиент.

    Анизотропная теплопроводность в кварце

    .

    В кварце, перпендикулярном оси с, теплопроводность составляет 6,5 Вт·м -1 К -1 . Однако теплопроводность, параллельная c, равна 11.3 Wm -1 K -1 .

    Анизотропную теплопроводность кварца можно легко увидеть с помощью простого демонстрация. Две секции, вырезанные из кристалла кварца, одна перпендикулярна ось с и одна параллельная ей, в свою очередь, установлены, как показано на схеме ниже. Кусочки пластика, содержащие термочувствительный жидкий кристалл, затем приклеиваются к верхние поверхности и секции нагреваются из точки в их центре, используя паяльник. При нагревании кварца термочувствительная пленка меняет цвет. что позволяет нам видеть, как быстро тепло отводится от центра.Цвета обозначают контуры постоянной температуры.

    Схема экспериментального аппарата

    При нагреве сечения, вырезанного перпендикулярно оси с, наблюдаемая форма представляет собой круг, что свидетельствует о том, что теплопроводность одинакова во всех направлениях в этой плоскости. Однако при использовании сечения, вырезанного параллельно оси с, видимая форма представляет собой эллипс, что показывает, что теплопроводность в этой плоскости зависит от направления.

    Ваш браузер не поддерживает видео тег.

    Видео среза кварца, вырезанного перпендикулярно оси с, нагреваемого из точки в его центре

    Ваш браузер не поддерживает видео тег.

    Видео среза кварца, вырезанного параллельно оси с, нагреваемого из точки в его центре

    Тепловой поток не обязательно должен быть параллелен тепловому градиенту. Результат в этом можно убедиться, рассмотрев одномерную проводимость в длинном стержне и тонкая пластина из одного и того же анизотропного материала, расположенная так, что нормаль к пластине и длина стержня ориентированы в произвольном общем направление.

    Тонкая пластина


    Здесь геометрия установки ограничивает градиент температуры перпендикулярным к тарелке. Из-за анизотропности материала тепловой поток Дж , будет в указанном направлении, скажем. Однако теплопроводность перпендикулярно пластине определяется как составляющая теплового потока, параллельная к градиенту температуры, Дж || , разделить на величину этого градиента. Таким образом:

    \[{k_{||}} = {{{j_{||}}} \over {gradT}}\]

    Стержень


    Теперь тепло должно течь по стержню, и градиент температуры будет в другом направление, как показано.Здесь тепловое удельное сопротивление определяется как составляющая градиента температуры параллельно стержню, градТ || , деленная на величину теплового потока. Таким образом:

    \[{\rho _{||}} = {{град{T_{||}}} \over J}\]

    , где ρ — удельное сопротивление.

    Важно понимать, что в анизотропных материалах

    \[{\rho _{||}} \ne {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 {{k_{||}}}}}\right.\kern 0.01em} \!\lower0.7ex\hbox{${{k_{||}}}$}}\]

    , кроме как вдоль главных осей. Только в изотропных материалах удельное сопротивление всегда обратно пропорционально проводимости, и наоборот.

    Примечание : При использовании большой тонкой пластины и длинного стержня эффекты изменения направлений теплового потока и температурного градиента близки к краям (пластины) или концам (стержня) — «краевые эффекты» и «конечные эффекты» — влияют только на очень небольшую часть выборки и можно игнорировать.

    .

    About Author


    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован.