Определение несущей способности грунта
11.2.2. Расчет оснований на насыпных грунтах
Основания и фундаменты зданий и сооружений на насыпных грунтах рассчитываются по деформациям исходя из того, чтобы полная осадка фундамента на насыпном грунте не превышала предельно допустимой для проектируемого здания или сооружения. При этом полная осадка sf фундамента подсчитывается как сумма осадок, вызванных его нагрузкой и дополнительными факторами:
где s — осадка фундамента от его нагрузки, определяемая по указаниям гл. 5, sf1 — дополнительная осадка основания от самоуплотнения насыпных грунтов от собственного веса, sf2 — то же, вследствие замачивания, снижения уровня подземных вод, sf3 — то же, при разложении органических включений, sf4 — то же, за счет уплотнения подстилающих грунтов от веса насыпи.
Дополнительные осадки sf1, sf2 приближенно допускается определять по формуле
где γc1,c2 — коэффициенты уплотняемости насыпного грунта, принимаемые по табл. 11.15, β = 0,8 — безразмерный коэффициент, σzg — среднее вертикальное напряжение в насыпном грунте от его собственного веса: σzg = 0,5γh ( γ — среднее значение удельного веса насыпного грунта в водонасыщенном состоянии), h — толщина слоя насыпного грунта под фундаментом, E — среднее значение модуля деформаций насыпного грунта.
Дополнительная осадка sf3 при содержании в насыпных грунтах органических включений от 0,03 до 0,1 вычисляется по формуле
где η — коэффициент, учитывающий условия залегания органических включении в насыпных грунтах, приближенно принимаемый равным 0,75, k — коэффициент, учитывающий возможность разложения органических включений и принимаемой: для водонасыщенных насыпных грунтов k = 0,2, а для остальных k = 0,5, w — среднее содержание органических включений а насыпных грунтах, γd — удельный вес грунта в сухом состоянии, γs — удельный вес частиц грунта, h — толщина лежащего ниже подошвы фундамента слоя насыпного грунта, содержащего органические включения, подвергающиеся разложению.
Дополнительные осадки за счет уплотнения подстилающих насыпь грунтов допускается не учитывать, если давность отсыпки насыпных грунтов превышает 1 год для песчаных грунтов, 2 года для глинистых грунтов, залегающих выше уровня подземных вод, и 5 лет, находящихся ниже уровня подземных вод.
Расчетные сопротивления насыпных грунтов, представляющих собой планомерно возведенные насыпи, а также отвалы грунтов и отходов производств, определяются по формуле (5.29) с учетом степени самоуплотнения грунтов, неоднородности их состава и сложения, принятых методов подготовки оснований с использованием прочностных характеристик грунтов при их полном водонасыщении. Предварительные размеры фундаментов зданий и сооружений, возводимых на слежавшихся насыпных грунтах, назначаются исходя из условий расчетных сопротивлений
Характеристики насыпного грунта для расчета
11.2.2. Расчет оснований на насыпных грунтах Основания и фундаменты зданий и сооружений на насыпных грунтах рассчитываются по деформациям исходя из того, чтобы полная осадка фундамента на насыпном грунте не превышала предельно допустимой для проектируемого здания или сооружения. При этом полная осадка sf фундамента подсчитывается как сумма осадок, вызванных его нагрузкой и
Источник: xn--h3aleim.xn--p1ai

Грунты и фундаменты. Типы грунтов, свойства грунтов. Насыпные грунты
Чтобы определиться с конструкцией фундамента, оптимальной по глубине заложения, площади подошвы, материалу и пр., без полной информации о грунтах основания не обойтись. Диапазон свойств грунтов огромен. Или эти свойства позволяют существенно сэкономить на фундаменте, как в случае скальных грунтов в основании, или совсем наоборот – затраты на нулевой цикл составят до 50% всей стоимости постройки, и это не включая водоотвод, а земляные работы придется проводить в глобальных масштабах. Ведь иногда нужно строиться на этом именно участке, и весь приоритет в этом. Факторов много. в частности, торфяные и суглинистые грунты, которые могут преподнести неприятный сюрприз в виде плывуна, отличаются плодородием. А на скале вырастить сад и огород вряд ли удастся.
Изучать свои грунты приходится, чтобы рассчитать, на какую глубину закладывать фундамент. Без уверенности в несущих способностях грунта нет смысла гадать о необходимой площади опирания на грунт. Причем вариант просто построить очень большой и мощный фундамент далеко не всегда выход, а может оказаться и провальной идеей, и не только с точки зрения финансов. Пример: глубокий ленточный фундамент под легкий каркасный или деревянный дом на пучинистом грунте. Силы морозного пучения действуют по нормали – под подошвой, и по касательным – на боковые поверхности фундамента. И чем больше площадь этих поверхностей, тем сильнее будут выталкивать легкий дом замерзшие глины и суглинки. Подвижки на десятки сантиметров зимой не редкость, а сила выталкивания у глин доходит до 200 Мпа (или более 3 тн/см2). Дом весит мало, и компенсация подъемной силы грунта увеличением веса фундамента обойдется слишком дорого. Заливать ленты метровой ширины ниже глубины промерзания, чтобы справиться с пучинами – это под маленький дом 12*12 м будет под 75 м3 бетона! Не выход. Правильней будет заложить ленту на дренирующей отсыпке из крупного песка и щебня, по периметру дома сделать теплую отмостку и обеспечить пристенный дренаж. Для этого понадобиться бетона и арматуры в 8-9 раз меньше, несущая способность будет обеспечена, а затраты снизятся во много раз.
Правильное решение – решать водоотвод при высокой грунтовой воде или сезонных верховодках, и выбирать тип фундамента исходя именно из свойств грунтов. А архитектуру и все нагрузки от дома, ветра, снега и пр. необходимо учитывать именно для выбранной конструкции фундамента, то есть решать комплексную задачку, основными условиями которой являются свойства грунтов участка.
Типы грунтов и их свойства. Почвы и насыпные грунты
Верхний слой на участке, как правило почвенный (если не проводилась отсыпка или закрепление грунтов). Почвой называют поверхностные слои дисперсных грунтов, образовавшиеся под влиянием биогенных факторов и атмосферных условий данного климата. На почву фундаменты опирать противопоказано. Верхний плодородный растительный слой срезают до плотных слоев грунта, на глубину примерно 15 – 35 см, даже для такого типа фундаментов, как завинчивающиеся винтовые сваи. В почве обычно присутствует гумус, имеющий кислую реакцию. Кислоты и биосфера почв агрессивны к бетону, и даже при отличной гидроизоляции подошвы будут оставаться фактором риска. Кроме того, почвенный слой следует срезать и из соображений экологии, он пригодится для благоустройства и озеленения участка.
Насыпные, или искусственные, или техногенные грунты
Не имеется в виду высокая отсыпка для строительства, например, на торфяниках. Речь идет именно об имеющихся на участке техногенных отложениях. Их свойства, как правило, не имеют ничего общего со свойствами «родных» естественных грунтов участка.
Насыпные грунты имеют одно общее свойство – они очень неоднородны. Чтобы решить, можно ли опирать на них фундамент, нужны серьезные исследования. Насыпные грунты могут образоваться в результате перемещения почв или на местах очень старых построек. В таком случае, если за долгие годы основание прошло весь процесс самоуплотнения, спрессовалось и достигло наибольшей несущей способности, такое основание может быть надежным и для нового фундамента. Если насыпной грунт состоит из песков, смешанных с щебенкой или гравием, и любыми включениями обломочных и скальных грунтов, кроме древесной щепы и бытового мусора, и этот грунт самоуплотнялся не менее трех лет, то он может обеспечит основание под фундамент, и специальные меры по закреплению не нужны. Но если этот грунт очень неоднородный, и процесс самоуплотнения занимал меньшее время, то предсказать, как поведет себя этот грунт при нагружении, невозможно.
На «рукотворных» грунтах строят и городские дома, и частные. Строители освоили методы уплотнения рыхлых и слабых грунтов свалок, для чего пришлось изучить из свойства. Эти свойства зависят от состава, и самые слабые – это органика, проще говоря, помойки. На таких «грунтах» строить, конечно невозможно, в том числе и по техническим причинам. Сжимаемость у этих отвалов мала, и самоуплотняются они по 30-50 лет. Насыпи из строительного мусора, шлака, шахтные отвалы могут иметь разные свойства в зависимости от того, каким образом из укладывали, и сколько времени прошло с момента формирования отвала.
Строительные отвалы – дело другое, уплотняются они от 7 до 20 лет, если не содержат много органики. Когда разрабатывают карьеры, такие отвалы образуются тысячами кубов. Если в их составе – песок, то такие толщи могут уплотниться полностью за год или три, если больше суглинков и глины, то слеживаются эти толщи дольше – до 5-10 лет, а потом на них можно строиться.
Грунты, отсыпанные менее трех лет назад, нужно укреплять. Способы – проливка водой с втрамбовкой крупного щебня, а затем расклинцовка верхнего слоя щебнем мелких фракций. Проливка может применяться и битумная, в слой щебня. Методы повышения несущих способностей грунтов разработаны и применяются в частном строительстве. Проливку, битумизацию и механическое закрепление можно делать и своими руками на участке, но электрохимические, термические методы, цементацию, силикатизацию и инъецирование и т.п. выполняют специализированные организации. Эти методы могут оказаться очень дорогостоящими.
Для строительства на насыпных грунтах так же, как и для естественного основания, важен водоотвод с участка и дренаж фундамента. снизить уровень грунтовых вод – значит предотвратить или значительно снизить пучение. Насыпные грунты требуют серьезного подхода и анализа. Наиболее частый вариант – создание дренирующей и амортизирующей подсыпки из щебня, песка или ПГС. Насыпной грунт может прекрасно подойти для устройства ленточного фундамента, винтовых свай. Плитные фундаменты, в частности УШП на неоднородных насыпных грунтах возможны, но требуют расчета и исследований.
Грунты и фундаменты
Чтобы определиться с конструкцией фундамента, оптимальной по глубине заложения, площади подошвы, материалу и пр., без полной информации о грунтах основания не
Источник: stroyfora.ru

Фундамент. Расчет нагрузки на грунт.
Многие пытаются рассчитывать конструкцию фундамента, взяв за основу характеристики грунтов. Я также пытался это сделать, да только тема эта по грунтам для меня оказалась чересчур обширная. Скальные, крупнообломочные, глинистые да песчаные. вобщем, достаточно только взглянуть на ГОСТ 25100-95 (Грунты. Классификация.), как осознаешь, что львиная доля всех этих знаний мне и не нужна вовсе. А где же из этого нагромождения информации то, что мне нужно?
И я опять пошел по пути упрощения. Не надо мне изучать грунты. Давай-ка я сначала определю, сколько будет весить моя конструкция, мой дом, который я намерен построить. А потом уже буду посмотреть, выдержит ли земля участка это строение, или он провалится в нее по крышу.
Вобщем, поехали. Сначала считаю вес фундамента. Беру за основу сплошной монолит, железобетон. Поскольку мне нужен цокольный этаж, то и фундамент у меня будет ленточный и никакой другой. Ведь лента фундамента – это часть стены цокольного этажа.
Короче, Высота фундамента пусть будет 1,5 метра. Ширина ленты – 0,3 м. Габариты дома – 9 х 9 метров. Башенок всяких, верандочек и фигурных крылечек не предусматриваю, я вообще противник всего этого, поскольку живу не в Африке. Потому и дом строго квадратный, чтобы уменьшить теплопотери. И что же получается? 9 * 4 * 0,3 * 1,5 = 16,2 кубометра.
К этому добавлю еще подошву шириной 0,5 м и высотой 0,1 м. 9 * 4 * 0,5 * 0,1 = 1,8 кубометра. И вот, в итоге 16,2 + 1,8 = 18 кубометров бетона. Беру удельный вес 2500 кг/м 3 и множу на объем 18 м 3 . Получается 45000 кг. Внушительно, ничего не скажу.
А еще стены. Это примерно 20 рядов по 60 газобетонных блоков, каждый из которых весит 16 кг. 20 * 60 * 16 = 19200 кг. Нормально. Вес раствора для кладки и прочей аммуниции типа арматуры не считаю, ведь есть еще оконные проемы да дверные, которых не учитывал. Да и не диссертацию пишу, право.
Что дальше? Перекрытия, конечно. У меня они деревянные, а удельный вес сосны – 500 кг/м 3 . Не буду вдаваться в подробности, просто скажу, что каждое из двух перекрытий у меня весом около 3000 кг. Но есть одно НО: нижнее перекрытие опирается не только на стены, оно опирается и на пол цокольного этажа через перегородки в нем. А верхнее перекрытие опирается также на перегородки, стоящие на нижнем перекрытии. Так что я, пожалуй, возьму в расчет только половину веса перекрытий. Только 3000 кг.
А мебель и всю утварь, включая жильцов, вообще не буду учитывать. Веса немного, да и опора для всего – перекрытия. Гораздо больше будут значить крыша и снеговая нагрузка. По моим расчетам, опять же без подробностей здесь, стропильная система вкупе с обрешеткой, фронтонами и профнастилом весит до 3500 кг.
А вот снеговая нагрузка. При той крутизне скатов, что я запланировал, ее вообще-то и не должно быть, да и крышу ориентирую так, чтобы ветрами не наметало, а сдувало. Для того, чтобы выбрать нужную ориентацию, не одну крышу в округе проанализировал. Но все же, чем черт не шутит! Положу-ка я для расчетов еще и полуметровый слой снега на крышу.
Крыша приличная, площадь у нее около 150 квадратных метров, а полуметровый слой снега на ней будет весить. ух ты! 30 тонн! Ладно, принято. Считаем все вместе:
Фундамент: 45000 кг.
Стены: 19200 кг.
Перекрытия: 3000 кг.
Крыша: 3500 кг.
Снег: 30000 кг.
Итого? Итого получается 100700 кг. Это все увеличиваю еще в полтора раза для надежности и в качестве результата принимаю общий вес в 150 тонн.
Вот. Теперь самое интересное. Какая там у меня площадь подошвы фундамента? 9 * 4 * 0,5 = 18 м 2 , или 180000 см 2 . Теперь прикинем, какой вес давит на каждый квадратный сантиметр подошвы: 150000 / 180000 = 0,83 кг/см 2 .
А теперь еще интереснее. Посмотрим на таблицы, в которых указана допустимая нагрузка на разные грунты.
Расчетные сопротивления R крупнообломочных грунтов
Характеристики насыпного грунта для расчета
Хотел рассчитывать конструкцию фундамента, взяв за основу характеристики грунтов. Я также пытался это сделать, да только тема эта по грунтам для меня оказалась чересчур обширная. И я вновь упрощаю.
Источник: sebestroj.ru

Определение несущей способности грунта
Установление несущей способности грунта (табличные значения) находящегося под проектируемым или реконструируемым фундаментом начинают с геологической разведки. Для этого на строительной площадке из скважин или шурфов отбираются и исследуются пробы грунта.
Сначала производится классификация грунта. Гранулометрическим и/или методом отмучивания находится состав грунта и определяется его название.
Затем исследуются физические характеристики грунта. Методом режущего кольца устанавливается плотность грунта, методом высушивания и взвешивания определяется влажность, а скручиванием грунта в жгут и испытание балансирным конусом — консистенция грунта.
Далее делаются дополнительные лабараторные исследования грунта или производится еще несколько вычислений расширяющих количество физических характеристик грунтов.
При невозможности точного установления типа грунта самостоятельно, наличие на участке органических, мерзлых, насыпных грунтов и при любых других сомнениях в классифицировании грунта, для определения несущей способности грунта, нужно привлекать лицензированные геологические организации.
Уровень отвественности здания
Здание или сооружение должно быть отнесено к одному из следующих уровней ответственности: повышенный, нормальный и пониженный (статья 4 пункты 7–10 действующего технического регламента о безопасности зданий и сооружений Федерального закона №384-ФЗ) .
К повышенному уровню отвественности относятся: особо опасные, технически сложные или уникальные объекты.
К пониженному — здания и сооружения временного (сезонного) назначения, а также здания и сооружения вспомогательного использования, связанные с осуществлением строительства или реконструкции либо расположенные на земельных участках, предоставленных для индивидуального жилищного строительства.
Все остальные здания и сооружения относятся к нормальному уровню отвественности.
Формулировка идентификации зданий относящихся к третьему (пониженному) уровню отвественности — расплывчатая. Непонятно, описанны две группы зданий и сооружений: временные и вспомогательные или три группы — временные, вспомогательные и индивидуальные? В Белоруссии жилые индивидуальные дома высотой не более 2 этажей относят к третьей группе отвественности и в России жилые здания высотой до 10 м раньше тоже относили к этой группе. В новом техническом регламенте ясности в этом вопросе нет. Видимо его каждому придется решать самостоятельно. От выбора уровня отвественности зависит объем геологических изысканий и методика расчета фундаментов.
Определение расчетного сопротивления основания R по таблицам
Этот метод применяется для предварительного и окончательного расчета оснований для зданий третьего уровня ответственности находящихся в благоприятных условиях. Либо для предварительного расчета оснований для зданий второго уровня отвественности находящегося в любых, в том числе и неблагоприятных инженерно-геологических условиях.
«Благоприятными» считаются условия, при которых слои грунта в основании залегают горизонтально (уклон слоев не превышает 0,1), а сжимаемость грунта не увеличивается по крайней мере до глубины, равной двойной ширине самого большого отдельного фундамента и четырем ширинам ленточного (считая от уровня его подошвы).
Для фундаментов шириной bo = 1 м и глубиной заложения do = 2 м значения расчетного сопротивления основания (Ro ) приведены в таблицах 11–15. С увеличением или уменьшением глубины заложения фундамента изменяется несущая способность грунта основания. В этом случае расчетные сопротивления основания (R) на различных глубинах следует определять по формулам:
где b — ширина фундамента, м, d — глубина заложения подошвы, м , γ’— расчетное значение удельного веса грунта, залегающего выше подошвы фундамента, кН/м³, k1 — коэффициент, принимаемый для оснований, сложенных крупнообломочными грунтами и песками, k1 = 0,125, для оснований сложенных пылеватыми песками, супесями, суглинками и глинами, k1 = 0,05, k2 — коэффициент, принимаемый для оснований, сложенных крупнообломочными песчаными грунтами — k2 = 0,25, сложенных супесями и суглинками —k2 = 0,2, глинами — k2 = 0,15.
Определение несущей способности грунта
Установление несущей способности грунта находящегося под проектируемым или реконструируемым фундаментом начинают с геологической разведки. Для этого на строительной площадке из скважин или шурфов отбираются и исследуются пробы грунта.
Источник: ostroykevse.com
Таблицы допустимого давления на грунт и несущей способности грунта.
При разработке проекта для фундамента дома учитываются все факторы, в том числе и особенности грунтов. Для расчета общей допустимой нагрузки дома на грунт фундамента вы можете использовать формулу: A = Vдома (кг) / Sфунд (см2).
Таблица допустимого давления на грунт, кг/см 2 .
Грунт
Глубина заложения фундамента
Щебень, галька с песчаным заполнением
Дресва, гравийный грунт из горных пород
Песок гравелистый и крупный
Щебень, галька с илистым заполнением
Песок средней крупности
Песок мелкий маловлажный
Песок мелкий очень влажный
Иногда влажность грунтов может изменяться в большую сторону, в таких случаях несущая способность почвы становится меньше. Рассчитать влажность грунта можно самостоятельно. Для этого необходимо выкопать скважину или яму, и в том случае если через какой либо промежуток времени в ней появляется вода – грунт влажный, а если ее нет, то он сухой. Ниже мы рассмотрим плотность и несущей способности различных грунтов. Для расчета фундамента вы можете воспользоваться калькулятором фундамента.
Таблица плотности и несущей способности различных грунтов.
Грунт средней плотности
Песок среднего размера
Супесь влажная (пластичная)
Мелкий песок (маловлажный)
Мелкий песок (влажный)
Глина влажная (пластичная)
Суглинок влажный (пластичный)
При разработке проекта дома для примерного расчета фундамента, как правило, несущая способность принимается 2 кг/см 2 .
Следует отметить, что при разработке, грунт разрыхляется и увеличивается в объеме. Объем насыпи, как правило, больше объема выемки из которой грунт изымается. Грунт в насыпи будет постепенно уплотняться, это происходит под действием собственного веса или механического воздействия, поэтому значения первоначального коэффициента увеличения объема (разрыхления) и процента остаточного разрыхления после осадки будет между собой различаться. Грунты в зависимости от трудности и способа их разработки делятся на категории.
Таблица категорий и способов разработки почвы.
Категория грунтов
Типы грунтов
Плотность, кг/м 3
Способ разработки
Песок, супесь, растительный грунт, торф
Ручной (лопаты), машинами
Легкий суглинок, лёсс, гравий, песок со щебнем, супесь со строймусором
Ручной (лопаты, кирки), машинами
Жирная глина, тяжелый суглинок, гравий крупный, растительная земля с корнями, суглинок со щебнем или галькой
Ручной (лопаты, кирки, ломы), машинами
Тяжелая глина, жирная глина со щебнем, сланцевая глина
Ручной (лопаты, кирки, ломы, клинья и молоты), машинами
Плотный отвердевший лёсс, дресва, меловые породы,сланцы, туф, известняк иракушечник
Ручной (ломы и кирки, отбойные молотки), взрывным способом
Граниты, известняки, песчаники, базальты, диабазы, конгломерат с галькой
Таблицы допустимого давления на грунт и несущей способности грунта
Таблица несущей способности грунта, сопротивление грунтов, таблица веса грунтов, таблица категорий и способов разработки почвы.
Источник: www.calc.ru
Как определить насыпную плотность для материалов. Что такое насыпная плотность. Таблица насыпной плотности
Что такое насыпная плотность?
Насыпной плотностью принято называть соотношение массы зернистых материалов, порошкообразных материалов ко всему занимаемому ими объему, включая при этом воздушное пространство между частицами. Поэтому существует два вида плотности: истинная и насыпная плотность материала (средняя плотность).
Истинная плотность — это отношение массы материала к его объему без пор и пустот:
где ρ — это истинная плотность
m — это масса материала в сухом состоянии, г (может выражаться в кг или тоннах)
V — это объем занимаемый материалом, см3 (м3)
Как же определить насыпную плотность?
С помощью специальной таблицы, которая содержит переводные коэффициенты.
Наименование материала | Объём | Коэффициент | Вес |
ПГС | 1 м3 | 1,65 | 1,65 тн |
Песок природный | 1 м3 | 1,4 | 1,4 тн |
Песок речной | 1 м3 | 1,5 | 1,5 тн |
Щебень фр.5-10, М-1200 | 1 м3 | 1,43 | 1,43 тн |
Щебень фр.5-20, М-1200 | 1 м3 | 1,40 | 1,40 тн |
Щебень фр.20-40, М-1200 | 1 м3 | 1,38 | 1,38 тн |
Щебень фр.40-70, М-1200 | 1 м3 | 1,35 | 1,35 тн |
Щебень фр.5-10, М-700-800 | 1 м3 | 1,41 | 1,41 тн |
Щебень фр.5-20, М-700-800 | 1 м3 | 1,39 | 1,39 тн |
Щебень фр.20-40, М-700-800 | 1 м3 | 1,37 | 1,37 тн |
Щебень фр.40-70, М-700-800 | 1 м3 | 1,34 | 1,34 тн |
Грунт | 1м3 | 1,0-1,3 | 1-1,3 тн |
Таблица коэффициентов перевода м3 в тонны для сыпучих материалов:
Есть ли еще способы определения насыпной области?
Можно насыпать сыпучий материал, например, в сосуд или ведро с заранее известным объемом, до того момента пока сосуд не заполнится «с горочкой». После этого взвешиваем сосуд вместе с сыпучим материалом. Насыпная плотность песка, щебня, дресвы, грунта — это соотношение массы сыпучего материала (за вычетом массы сосуда) к занимаемому объему.
V нас.пл. = Масса сып.мат. / V сосуда
Вернуться на главную или перейти к каталогу статей.
11.2.1. Общие положения по проектированию оснований на насыпных грунтах
11.2.1. Общие положения
К насыпным грунтам относятся:
- – грунты с нарушенной естественной структурой;
- – отвалы отходов различных производств;
- – свалки всевозможных материалов, напластования которых образовались в результате засыпки оврагов, котлованов, карьеров, местных понижений при планировке территорий грунтами, полученными при разработке котлованов, траншей, планировке территорий срезкой, вскрышных работах при открытой разработке полезных ископаемых и т. д., а также отходами различных производств.
В зависимости от способа укладки, однородности состава и сложения, вида исходного материала, степени самоуплотнения от собственного веса насыпные грунты подразделяются на отдельные группы и виды согласно табл. 11.13 [7].
Насыпные грунты в материалах инженерно-геологических изысканий, а также в проектах оснований и фундаментов именуются с дополнительным указанием их видов в зависимости от: однородности состава и сложения, способа укладки, вида исходного материала, составляющего основную часть насыпи, и степени уплотнения их от собственного веса. При наличии крупных включений, имеющих контакты между собой, насыпные грунты именуются по виду этих включений с указанием материалов, заполняющих поры и пустоты.
К планомерно возведенным относятся насыпи, сооружаемые по заранее разработанному проекту из однородных грунтов или отходов производств (без содержания органических включений) путем отсыпки их в целях планировки территорий и использования ее под застройку с уплотнением грунтов до заданной по проекту плотности.
ТАБЛИЦА 11.13. КЛАССИФИКАЦИЯ НАСЫПНЫХ ГРУНТОВ
Подразделение насыпных грунтов | Виды насыпных грунтов и их характеристика |
По способу укладки | 1. Отсыпанные автомобильным или железнодорожным транспортам, скреперами, бульдозерами и т.п. |
По однородности состава и сложения | 1. Планомерно возведенные насыпи (обратные засыпки) и подсыпки (подушки), характеризующиеся практически однородным составом, сложением и равномерной сжимаемостью 2. Отвалы грунтов и отходов производств, имеющие практически однородный состав и сложение, но неравномерную плотность и сжимаемость 3. Свалки грунтов, отходов производств и бытовых отходов, характеризующиеся неоднородным составом и сложением, неравномерной плотностью и сжимаемостью, а также содержанием органических включений |
По виду исходного материала, составляющего основную часть насыпи | 1. Естественные грунты: крупнообломочные, песчаные, глинистые 2. Отходы производств: шлаки, золы, формовочная земля, хвосты обогатительных фабрик и т.п. 3. Бытовые отходы |
По степени уплотнения от собственного веса | 1. Слежавшиеся — процесс уплотнения от собственного веса закончился 2. Неслежавшиеся — процесс уплотнения от собственного веса продолжается |
Планомерно возведенные насыпи обычно сооружаются с соответствующей подготовкой поверхности для ее отсыпки, включающей: полную или частичную планировку, срезку растительного заторфованного слоя, уборку мусора, отходов органического происхождения и т.п. [3].
Отвалы грунтов и отходов производств представляют собой отсыпки различных видов грунтов, полученных при разработке котлованов, срезке площадей, при их планировке, проходке подземных выработок и т.п., или отходов производств: шлаков, золы, формовочной земли, отходов обогащения полезных ископаемых и т.п., содержащих органические включения не более 0,05 по весу.
Свалки грунтов, отходов производств и бытовых отходов представляют собой отсыпки, образовавшиеся в результате неорганизованного накопления различных материалов и обычно характеризующиеся повышенным (более 0,5) содержанием органических включений.
Ориентировочные периоды времени самоуплотнения насыпных грунтов от их собственного веса, по истечении которых грунты могут быть отнесены к слежавшимся, принимаются по табл. 11.14.
ТАБЛИЦА 11.14. ОРИЕНТИРОВОЧНЫЕ ПЕРИОДЫ ВРЕМЕНИ, НЕОБХОДИМЫЕ ДЛЯ САМОУПЛОТНЕНИЯ НАСЫПНЫХ ГРУНТОВ
Виды грунтов | Период времени, год |
Планомерно возведенные насыпи (при их недостаточном уплотнении): из песчаных грунтов из глинистых грунтов | 0,5—2 2—5 |
Отвалы грунтов и отходов производств: из песчаных грунтов из глинистых грунтов из шлаков, формовочной земли из золы, колошниковой пыли | 2—5 10—15 2—5 5—10 |
Свалки грунтов и отходов производств: из песчаных грунтов, шлаков из глинистых грунтов | 5—10 10—30 |
Основания, сложенные насыпными грунтами, проектируются с учетом специфических особенностей этих грунтов, заключающихся в возможной значительной неоднородности по составу, толщине, неравномерной сжимаемости, самоуплотнении от собственного веса, особенно при вибрациях от работающего оборудования, городского и промышленного транспорта, при изменениях гидрогеологических условий, замачивании насыпных грунтов, разложении органических включений.
Неравномерная сжимаемость оснований, сложенных насыпными грунтами, обычно вызывается:
- – изменением состава насыпных грунтов в плане и по глубине;
- – неравномерной плотностью насыпных грунтов;
- – изменением влажности, в особенности для глинистых грунтов;
- – различной толщиной слоя насыпных грунтов в основании;
- – наличием в насыпных грунтах сильносжимаемых слоев и прослойков;
- – повышенным содержанием органических включений;
- – залеганием ниже насыпных грунтов сильносжимаемых подстилающих грунтов и изменением их толщины на застраиваемом участке;
- – наличием в насыпных грунтах крупных включений или пустот, соизмеримых с шириной фундаментов.
Исходными данными по проектированию оснований и фундаментов на насыпных грунтах являются материалы инженерно-геологических изысканий, содержащие данные по способу отсыпки, составу, однородности сложения, давности отсыпки, виду, толщине слоя насыпных грунтов, их физико-механических характеристик, в том числе изменчивость сжимаемости, содержание органических включений.
Крутов В.И., Эйдук Р.П. Устройство обратных засыпок котлованов
СНиП 2.02.01-83* Основания зданий и сооружений
Коэффициент разрыхления грунта (таблица, снип)
При некоторых строительных работах происходит разработка грунта для закладки фундамента.Для планирования работ, связанных с выемкой и вывозом земли, следует учитывать некоторые особенности: разрыхление, влажность, плотность.
Представленная ниже таблица коэффициента разрыхления грунта поможет вам определить увеличение объема почвы при ее выемке из котлована.
Виды
- Скальные, каменные, горные и сцементированные породы – разработка возможна лишь с применением дробления или с использованием технологии взрыва.
- Глина, песок, смешанные типы пород – выборка производится вручную или механизировано с помощью бульдозеров, экскаваторов или другой специализированной техники.
Свойства
- Разрыхление – увеличение объема земли при выемке и разработке.
- Влажность – соотношение массы воды, которая содержится в земле, к массе твердых частиц. Определяется в процентах: грунт считается сухим при влажности менее 5%, превышающий отметку 30% – мокрый, в диапазоне от 5 до 30% – нормальная влажность. Чем более влажный состав, тем более трудоемкий процесс его выемки, исключением является глина (чем более сухая – тем сложнее ее разрабатывать, слишком влажная – приобретает вязкость, липкость).
- Плотность – масса 1 м3 грунта в плотном (естественном) состоянии. Самые плотные и тяжелые скальные породы, наиболее легкие – песчаные, супесчаные почвы.
- Сцепление – величина сопротивления к сдвигу, песчаные и супесчаные почвы имеют показатель – 3–50 кПа, глины, суглинки — 5–200 кПа.
Исходя из строительных норм и правил (СНИП), коэффициент разрыхления грунта (первоначальный), показатель плотности в соответствии категории, приведены в таблице:
Категория | Наименование | Плотность, тонн / м3 | Коэффициент разрыхления |
І | Песок влажный, супесь, суглинок, разрыхленный | 1,4–1,7 | 1,1–1,25 |
І | Песок рыхлый, сухой | 1,2–1,6 | 1,05–1,15 |
ІІ | Суглинок, средний -мелкий гравий, легкая глина | 1,5–1,8 | 1,2–1,27 |
ІІІ | Глина, плотный суглинок | 1,6–1,9 | 1,2–1,35 |
ІV | Тяжелая глина, сланцы, суглинок со щебнем, гравием, легкий скальный грунт | 1,9–2,0 | 1,35–1,5 |
Проанализировав таблицу, можно сказать, что первоначальный коэффициент разрыхления грунта прямо пропорционален диапазону плотности, проще говоря, чем более плотная и тяжелая почва в природных условиях, тем больший ее объем при разработке.
Существуют также вычисления коэффициента остаточного разрыхления грунта, результат определяет, насколько почва поддается осадке при слеживании, при контакте с водой или утрамбовке. В строительстве эти расчеты имеют огромное значение для определения количества необходимого материала, а также их учитывают при складировании, утилизации земли.
Наименование | Первоначальное увеличение объема после разработки, % | Остаточное разрыхление, % |
Глина ломовая | 28–32 | 6–9 |
Гравийно-галечные | 16–20 | 5–8 |
Растительный | 20–25 | 3–4 |
Лесс мягкий | 18–24 | 3–6 |
Лесс твердый | 24–30 | 4–7 |
Песок | 10–15 | 2–5 |
Скальные | 45–50 | 20–30 |
Солончак, солонец | ||
мягкий | 20–26 | 3–6 |
твердый | 28–32 | 5–9 |
Суглинок | ||
легкий, лессовидный | 18–24 | 3–6 |
тяжелый | 24-30 | 5-8 |
Супесь | 12-17 | 3-5 |
Торф | 24-30 | 8-10 |
Чернозем, каштановый | 22-28 | 5-7 |
Как рассчитать проведение необходимых работ
Для расчета необходимых работ следует знать геометрические размеры планируемого котлована. Далее умножьте коэффициент первоначального разрыхления на объем земли в природном состоянии.
В результате вы получите объем, который будет изъят из строительного карьера. Теперь очень просто рассчитать количество изъятой земли для складирования, погрузки, транспортировки для утилизации.
Посмотрите видео: ВИДЫ ГРУНТА. ГЕОЛОГИЧЕСКИЙ АНАЛИЗ УЧАСТКА
характеристика, плотность, прочность, вес, коэффициент
Терминология и основные различия
Слово «грунт» происходит из немецкого языка и обозначает «основу». Это не только почва или земля под нашими ногами, но и морское дно, и горные породы.
Последние представляют собой скальный грунт. Еще «грунтом» именуют смесь, которую наносят на полотно, будущей картины, или на другие поверхности, предназначенные для последующей окраски. Таким образом, в широком смысле, он является необходимым компонентом биосферы Земли и хозяйственной деятельности человека.
- к первым относят скальные и полускальные;
- ко вторым – дисперсионные: глинистые, песчаные, крупнообломочные;
Понятие, структура и прочность
Для целей хозяйственной деятельности человека грунты классифицированы и описаны в ГОСТе 25100–95.
Скальный грунт состоит из кристаллов одного или нескольких минералов с жесткими структурными связями. Такие связи называют кристаллизационными. Они прочные, но хрупкие, а также не восстанавливающиеся после разрушения.
У скальных грунтов прочность высокая и определяется путем одноосного сжатия. Она зависит от минералогического состава и твердости частиц самого вещества и другого, его цементирующего, заполняющего пустоты. Потому прочность может сильно колебаться и доходить до 120 МПа.
Основные коэффициенты и вес
У разного скального грунта, коэффициент отображает специфику его залегания, а также способ добычи.
- Первый – выветрелости. Он характеризует соотношение выветрелой части к монолитному состоянию, составляет выше 0.8 ед.
- Второй характеризует плотность скальных грунтов, то есть отношение общего объема породы к его начальному объему. Этот коэффициент колеблется от очень рыхлого менее 1,2 гр. на куб. см до очень плотного свыше 2,5 гр. на куб.см.
Как мы видим, чрезвычайно различна структура скального грунта, а, значит, и его вес.
Применение
В основании применения скальных грунтов их характеристика.
В основном и это, пожалуй, главная область применения скальной породы, для устройства фундаментов тяжелых конструкций и высотных зданий. Используют его при возведении плотин, насыпей дорог, путепроводов. Особым образом он «применяется» при прокладывании тоннелей, сооружений подземных хранилищ. Эти работы чрезвычайно трудоемки. Они длительны по времени, но зато результат не разочарует.
Посмотрите видео: АПК для оценки фракционного состава и эл. свойств строительных материалов, грунтов и горных пород.
11.2.3. Проектирование оснований на насыпных грунтах ч.1
Основания и фундаменты на насыпных грунтах проектируются с учетом:
а) использования насыпных грунтов в качестве естественных оснований;
б) использования насыпных грунтов в качестве оснований с применением методов подготовки оснований по снижению сжимаемости насыпных грунтов как по абсолютной величине, так и по степени их неравномерности;
в) прорезки насыпных грунтов свайными фундаментами.
В качестве естественных оснований практически любых зданий и сооружений могут быть использованы слежавшиеся насыпные грунты, представляющие собой планомерно возведенные насыпи, возведенные с достаточным уплотнением, а также отвалы грунтов и отходов производств, состоящие из крупных песков, гравелистых и щебеночных грунтов, гранулированных стойких шлаков. Кроме того, для легких зданий и сооружений с нагрузкой на фундаменты до 400 кН или до 80 кН/м в качестве естественных оснований могут быть использованы практически все виды слежавшихся планомерно возведенных насыпей, а также отвалов грунтов и устойчивые в отношении к разложению отходы производств, содержащие органические включения не более 0,05.
Свалки грунтов и отходов производств могут быть использованы в качестве естественных оснований только для временных зданий и сооружений со сроком службы до 15 лет.
Подготовка оснований на насыпных грунтах применяется в случаях, когда полученная расчетом полная осадка используемых в качестве естественного основания насыпных грунтов окажется больше допустимой или несущая способность основания меньше требуемой для обеспечения нормальной эксплуатации проектируемых зданий и сооружений. Основными методами подготовки оснований на насыпных грунтах являются:
- – поверхностное уплотнение тяжелыми трамбовками на глубину до 3—4 м;
- – вытрамбовывание котлованов;
- – устройство песчаных и других подушек;
- – поверхностное уплотнение вибрационными машинами и вибраторами;
- – глубинное уплотнение пробивкой скважин;
- – гидровиброуплотнение глубинными вибраторами.
Поверхностное уплотнение тяжелыми трамбовками применяется при строительстве;
- – на планомерно возведенных насыпях, отсыпаемых с недостаточно высокой плотностью;
- – на отвалах грунтов и отходов производств, содержащих различные включения размером не более диаметра трамбовки;
- – на свалках грунтов и отходов производств, содержащих органические включения не более 0,05;
- – на участках, расположенных на расстояниях не менее 10 м от существующих зданий и сооружений;
- – на грунтах со степенью влажности не более 0,7.
Если необходимая глубина уплотнения превышает 3—4 м, поверхностное уплотнение тяжелыми трамбовками комбинируется с устройством подушки или выполняется в два слоя. Для этого котлован разрабатывают на 1—3 м глубже отметки заложения фундаментов и уплотняют насыпные грунты. По окончании уплотнения котлован засыпают местным грунтом, содержащим не более 0,03 растительных остатков и органических включений, до отметки, на 0,2—0,6 м превышающей глубину заложения фундаментов. После этого производится уплотнение второго слоя тяжелыми трамбовками. Общая толщина уплотненного слоя в этом случае может достигнуть 5—7 м.
Основания из насыпных грунтов, уплотненных тяжелыми трамбовками, проектируют по рекомендациям, данным в п. 10.1 для просадочных грунтов с I типом грунтовых условий. При расчете полной осадки фундаментов в пределах уплотненного насыпного слоя учитывается только осадка от нагрузки фундаментов, а осадки sf1, sf2, sf3 и sf4 принимаются равными нулю.
Вытрамбовывание котлованов в насыпных грунтах производится при строительстве на слежавшихся планомерно возведенных насыпях, отвалах грунтов и отходов производств, а также на свалках грунтов, относящихся по своему составу к глинистым грунтам со степенью влажности Sr ≤ 0,7. Форма, размеры в плане и глубина заложения фундаментов в вытрамбованных котлованах назначаются с учетом состава насыпного грунта, толщины его слоя, конструктивных особенностей зданий и сооружений. Для достижения максимальной глубины прорезки и уплотнения насыпных грунтов наиболее целесообразно принимать удлиненные фундаменты с глубиной вытрамбовывания 2,5—4 м и уширенным основанием, устраиваемым путем втрамбовывания в дно котлована местного грунтового материала до отказа.
Проектирование вытрамбовываемых котлованов и расчет фундаментов в вытрамбованных котлованах выполняется так же, как и на просадочных грунтах (см. п. 10.1). При этом в формуле (10.17) вместо psl принимается расчетное сопротивление подстилающего слоя насыпного грунта или грунта естественного сложения.
Песчаные, гравийные и другие подушки на насыпных грунтах устраиваются при необходимости замены сильно и неравномерно сжимаемых грунтов вследствие их повышенной влажности (Sr ≥ 0,75÷0,8), содержания органических включений более 0,05—0,1, значительной разнородности состава и т.п. Как правило, грунтовые подушки должны проектироваться из местных материалов, в том числе из отходов промышленных производств, имеющих достаточно однородный состав и обеспечивающих после уплотнения низкую и равномерную сжимаемость. При залегании ниже насыпного слоя просадочных, засоленных или набухающих грунтов грунтовые подушки должны служить маловодопроницаемым экраном и возводиться, как правило, из глинистых грунтов оптимальной влажности.
Плотность грунтов в подушках назначается в зависимости от вида применяемых грунтов и должна быть не менее 0,95 максимальной плотности, получаемой опытным уплотнением грунтов с оптимальной влажностью в полевых или лабораторных условиях. При отсутствии результатов опытного уплотнения допускается плотность грунта в сухом состоянии принимать не менее: для подушек из однородных крупных и средних песков — 1,60 т/м3; неоднородных крупных и средних песков — 1,65 т/м3; мелких песков — 1,60 т/м3; пылеватых песков — 1,65 т/м3; супесей и суглинков — 1,65 т/м3.
Модули деформации грунтов в подушках, а также расчетные сопротивления основания принимаются, как правило, по результатам непосредственных их испытаний на опытных участках, а также по данным опыта строительства в аналогичных условиях. При отсутствии результатов непосредственных испытаний модули деформации грунтов в подушках в водонасыщенном состоянии и расчетные сопротивления допускается принимать по табл. 11.18.
Приведенные в табл. 11.18 значения E и R0 относятся к уплотненным грунтам в подушках с коэффициентом уплотнения kcom = 0,95.
ТАБЛИЦА 11.18. МОДУЛИ ДЕФОРМАЦИИ И УСЛОВНЫЕ РАСЧЕТНЫЕ СОПРОТИВЛЕНИЯ ПОДУШКИ ИЗ РАЗЛИЧНЫХ ГРУНТОВ
Грунт | Модуль деформации Е, МПа | Условное расчетное сопротивление R0, МПа |
Гравелистый, щебеночный Песок: крупный средний мелкий пылеватый Супеси, суглинки Шлак | 40 30 | 0,4 0,3 |
При уплотнении грунтов в подушках до kcom = 0,98 значения E увеличиваются в 1,5 раза, a R0 — в 1,2 раза.
Крутов В.И., Эйдук Р.П. Устройство обратных засыпок котлованов
СНиП 2.02.01-83* Основания зданий и сооружений