Утеплитель паропроницаемый – огнестойкая теплоизоляция плитами для внутренних и внешних стен, листовой теплоизоляционный материал и с влагостойкими качествами по грунту

Паропроницаемость стен при использовании различной теплоизоляции, пенополиуретан, будут ли стены дышать

В последние пять лет, как-то исподволь, но с нарастающим темпом, в отношении технологии применения строительных материалов и конкретно при обсуждении теплоизоляционных конструкций начал активно акцентироваться вопрос паропроницаемости стен с приданием нарочитой значимости данного фактора для микроклимата помещений. Доходит вплоть до того, что паропроницаемость теплоизолированных стен считается, чуть ли не главным параметром, характеризующим теплоизолирующую конструкцию, отодвигая порой на второе место даже основной смысл существования теплоизоляционного слоя – сопротивление теплопередаче ограждающих конструкций.

Проанализировав имеющиеся публикации, касающиеся вопроса «здорового дыхания стен» можно сделать вывод о том, что позиционирование теплоизоляционных товаров, основанное на принципе «здорового дыхания стен» есть лишь неудачно выдуманная рекламная «фишка», не имеющая ничего общего с реальной жизнью. Развенчание данного мифа рано или поздно должно наступить! Рассмотрим, каким образом, на самом деле осуществляется диффузия воды сквозь стены и какое влияние это оказывает на микроклимат помещения?

Физические основы процесса выглядят следующим образом: в отношении атмосферы внутри помещения и снаружи существует разница парциального давления, если эта разница будет положительной, то из-за присутствующей диффузии воды сквозь стену влага будет перемещаться из помещения наружу, если же разница будет отрицательной, то наоборот, какое - то количество воды будет перемещаться за счет диффузии сквозь стену извне в помещение. Чем больше разница парциальных давлений и чем меньше диффузное сопротивление материалов, тем эффективней будет идти этот процесс. Наибольшая разница парциального давления между атмосферой внутри помещения и снаружи существует зимой и летом. Зимой она положительна и вода за счет диффузии сквозь стену покидает внутренние помещения. Летом (особенно в жару и после дождя) разница парциальных давлений отрицательна и вода диффундирует извне внутрь помещений.

Однако не стоит думать, что установление равновесия парциальных давлений между воздухом внутренних помещений и внешней атмосферой происходит только благодаря диффузии сквозь стены. Основным характеризующим это явление фактором, является конвекция воздушных масс, на долю которой в установлении равновесного состояния парциальных давлений и поддержание микроклимата во внутренних помещениях приходится более 98% этого «водопереноса». Дабы не быть голословным оценим численную составляющую диффузии воды сквозь кирпичную (кирпич керамический, полнотелый) стену толщиной в два кирпича при разнице температуры внутри и снаружи помещения в 20оС и разности влажности в 20% (в помещении - 60%, на улице – 80%). Диффузия воды наружу сквозь метр квадратный подобной стены за сутки не превысит – 10 грамм! И это просто «голая» стена без всякого утеплителя, штукатурного слоя, краски, обоев, стеновых панелей, зеркал, картин и т.п., создающего в любом случае дополнительное сопротивление диффузии воды сквозь стену в принципе!

Таким образом, даже если жить в обычных неоштукатуренных кирпичных стенах без внутренней отделки особо насладится «здоровых дыханием стен» не удастся т.к. сквозь них за сутки диффундирует не более 1 килограмма воды. В то же время, за счет конвекционных процессов внутреннему жилому помещению зимой приходится избавляться от более чем 10 килограмм воды ежесуточно! Надейся бы мы только на «здоровое дыхание стен» и герметично закупорив подобную комнату зимой (избавившись от конвекционного переноса масс воды струями воздуха) – выпадение первой росы на стенах пришлось бы наблюдать уже через несколько часов.

Вообще в вопросе «здорового дыхания стен» существует даже логический парадокс, который заключается в том, что мы изо всех сил стараемся сделать более герметичными для пара и газа оконные и дверные проемы, а также сами окна и двери и в тоже время, кто-то говорит о повышении паропроницания стен для весьма неэффективной и вычурной дополнительной вентиляции здания. В то же время вопросы вентиляции помещений, как естественной, так и принудительной, имеют гораздо более простые и эффективные инженерные решения, используемые десятилетиями и веками. Стена же должна исполнять возложенные на нее функции - препятствовать прохождению сквозь нее воздуха, воды, тепла и звука! Из этого следует очевидный вывод: чем менее паропроницаем материал (в том числе и теплоизоляционный) применяемый при сооружении стеновой конструкции, тем более эффективно она (стена) исполняет свою функцию.

Продолжая тему теплоизоляционных материалов, следует сделать вывод, что при устройстве закрытых теплоизоляционных систем наиболее эффективны ячеистые материалы (пеностекло и пенополиуретан), нежели волоконные материалы, ведущие себя в закрытых теплоизоляционных системах более капризно, малоэффективно и с потенциальным риском действительно служить причиной заметного увлажнения внутренний помещений здания теплоизолированного волоконным материалом. Посмотрим более пристально на процессы «водопереноса» в герметично (для воздуха) закрытых теплоизоляционных системах с использованием волоконных неорганических материалов. Будь то штукатурные системы или системы с теплоизоляционным слоем внутри кладки в волоконном материале интенсивно происходят газообменные процессы, в отличие от ячеистых теплоизоляционных материалов, где газы герметично закупорены в замкнутых ячейках.

Самым актуальным в нашем случае анализа эксплуатации волоконных материалов является процесс переноса и перераспределения воды растворенной в воздухе. И здесь явление диффузии влаги сквозь стены (сколь бы незначительным оно не было) весьма важно, т.к. зачастую приводит к негативным последствиям. Если вы еще раз внимательно перечтете абзац данной статьи, посвященный описанию процесса диффузии, с точки зрения физики то увидите, что вектор переноса воды летом за счет разницы парциальных давлений направлен извне помещения внутрь. К этому стоит добавить и капиллярные явления переноса жидкости, которые тоже приводят к движению масс воды внутрь стены за счет увлажнения поверхности стены дождями в весенне-осенний период. Таким образом газовая среда между волокон каменной ваты или стекловаты насыщается водой до высокого значения влажности. При сезонном похолодании атмосферы избыточная влага конденсируется на поверхности волокон из охлаждаемого воздуха между волокон. Отсутствие конвекции между волокнами приводит к отсутствию высыхания жидкости, которая начинает скапливаться внутри волоконного материала. Жидкость конденсируется именно на волокнах т.к. площадь поверхности волокон в сотни тысяч раз больше поверхности стен! Это легко вычислить, зная толщину волокон, плотность материала из которого состоят волокна и плотность теплоизоляционной волоконной плиты.

Итак, в герметично закрытой системе теплоизоляции с использованием промежуточного слоя из каменной ваты или стекловаты устанавливается газовая среда, перенасыщенная парами воды с протеканием процесса конденсации с усилением последнего при падении температуры атмосферы ниже точки замерзания воды. Причиной усиления процесса насыщения теплоизоляционного волоконного слоя именно в зимний период, когда устанавливается стабильная температура ниже нуля, является как усиление диффузии воды из внутреннего помещения через стену (разница парциальных давлений внутреннего воздуха и внешней атмосферы возрастает) в воздушную среду волоконного материала, так и замерзание воды на внешней поверхности стены в микропорах и микротрещинах препятствующее выводу воды из теплоизоляционного слоя хотя бы за счет незначительного в этом отношении эффекта диффузии. Волоконный материал в этот момент начинает банально мокнуть и отсыревать. Вода именно в виде жидкости появляется на поверхности стороны стены контактирующей с волоконным материалом. Диффузия воды сквозь стену в направлении «внутреннее помещение – теплоизоляционный слой» прекращается, т.к. воздух внутри волоконного материала перенасыщен водой и имеет влажность в 100%. В то же время вода, сконденсировавшая в состояние жидкости внутри теплоизоляционного волоконного слоя, начинает просачиваться внутрь помещения за счет капиллярных явлений. И если не будет очень хорошей вентиляции помещения и «выноса» влаги за счет конвекции воздушных струй, стены начнут сыреть со всеми вытекающими отсюда последствиями! То есть, именно применение волоконных материалов в закрытых системах утепления приводит в помещениях с затрудненной и плохой вентиляцией к повышению влажности и сырости!

Все вышеописанное давно известно и досконально изучено. Высокая паропроницаемость волоконных материалов признана очевидным недостатком данного типа теплоизоляторов. Для того чтобы уменьшить неприятные последствия применения таких материалов предпринимаются следующие шаги: волокна покрываются гидрофобным составом, дабы уменьшить коэффициент смачиваемости материала и снизить накопление воды на волокнах в состоянии жидкости; создаются дорогостоящие системы вентиляции теплоизоляционного волоконного слоя для перманентного «подсушивания» каменной ваты и стекловаты; внутренний слой стены, защищающий теплоизоляционный материал, изготавливается из максимально влаго- и паро- непроницаемого материала. Это общеизвестно и причем настолько в порядке вещей, что даже в буклете «Теплоизоляция фасадов» (сентябрь 2004 года) представительства компании « Paroc» на странице № 19 прямо под пространными рассуждениями про «здоровое дыхание стены» размещена фотография, где облицовка теплоизоляционного слоя из каменной ваты производится клинкерным кирпичом – абсолютно паро - и водо- непроницаемым материалом! Как через клинкерный кирпич будет дышать эта каменная вата, - непонятно!

Вообще, буклеты представительства « Paroc» имеют множество неких семантических бессмысленностей, технических несуразностей и ошибок, однако не будем здесь давать рецензий, т.к. если данное представительство считает уместным печатать, то что печатает, то пусть так и делает. Более ценным в отношении свойств и применения каменной ваты является упоминавшийся выше финский буклет. Данный буклет не только не приветствует саму идею паропропускания, но и рекомендует при эксплуатации теплоизолированных помещений этого самого паропропускания не допускать, либо за счет герметизации конструкции теплоизолирующего слоя, либо (цитата) из того же финского буклета в отношении влагостойкости каменной ваты: - «На практике принято применять пароизоляционный барьер с «теплой» стороны конструкции». То есть финские «товарищи» представительства « Paroc» наоборот настаивают на дополнительной пароизоляции собственной каменной ваты. Сторонники лжеконцепции «здорового дыхания стен» помимо греха против истины физических законов и осознанного введения в заблуждение проектировщиков, строителей и потребителей, исходя из меркантильного побуждения, сбыть свой товар какими угодно методами, наговаривают и возводят поклеп на теплоизоляционные материалы с низкой паропроницаемостью (пенополиуретан) или теплоизоляционный материал и вовсе паронепроницаемый (пеностекло).

Суть этой злостной инсинуации сводится к следующему. Вроде как, если не будет пресловутого «здорового дыхания стен», то в таком случае внутреннее помещение обязательно станет сырым, а стены будут сочиться влагой. Дабы развенчать эту выдумку давайте посмотрим более внимательно на те физические процессы, которые будут происходить в случае облицовки под штукатурный слой или использовании внутри кладки, например такого материала как пеностекло, паропроницаемость которого равна нулю. Итак, из-за присущих пеностеклу теплоизоляционных и герметизирующих свойств наружный слой штукатурки или кладки придет в равновесное температурное и влажностное состояние с наружной атмосферой. Также и внутренний слой кладки войдет в определенный баланс с микроклиматом внутренних помещений. Процессы диффузии воды, как в наружном слое стены, так и во внутреннем; будут носить характер гармонической функции. Эта функция будет обуславливаться, для наружного слоя, суточными перепадами температур и влажности, а также сезонными изменениями. Особенно интересно в этом отношении поведение внутреннего слоя стены. Фактически, внутренняя часть стены будет выступать в роли инерционного буфера, роль которого сглаживать резкие изменения влажности в помещении. В случае резкого увлажнения помещения, внутренняя часть стены будет адсорбировать излишнюю влагу, содержащуюся в воздухе, не давая влажности воздуха достичь предельного значения. В тоже время, при отсутствии выделения влаги в воздух в помещении, внутренняя часть стены начинает высыхать при этом, не давая воздуху «пересохнуть» и уподобится пустынному. Как благоприятный результат подобной системы утепления с использованием пенополиуретана гармоника колебания влажности воздуха в помещении сглаживается и тем самым гарантирует стабильное значение (с незначительными флуктуациями) приемлемой для здорового микроклимата влажности. Физика данного процесса достаточно хорошо изучена развитыми строительными и архитектурными школами мира и для достижения подобного эффекта при использовании волоконных неорганических материалов в качестве утеплителя в закрытых системах утепления настоятельно рекомендуется наличие надежного паронипроницаемого слоя на внутренней стороне системы утепления. Вот вам и «здоровое дыхание стен»!

Утепление с использованием ЭППС (паронепроницаемым утеплителем): afhh723 — LiveJournal

в последние время приходится заниматся стройкой, пришлось немного разобратся в теме вопроса, ну  и попутно пришлось сталкнутся с парочкой мифов о которых неплохо бы рассказать.

дело в то что мифы эти распростроняют в основном "практики" - ну че первый дом построил - а плохо получилось - второй построил - лучше но плохо, давай третий строить... и таким образом он приходит к некому  решнию и говорит - провереное  практикой решение.  и не дай бог у вас окажутся условия  выходяшие за рамки применимости этого решения - касяк гарантирован. т.к. я такой роскоши учится на своих ошибках за чужие деньги, позволить себе не могу - строю для себя и своими руками - пришлось разобратся. надеюсь кому-то помогут мои изыскания.

часто можно слышать мнение дескать ЭППС это наше все или наоборот невкоем случае не используйте ЭППС - он плохой.

как материал он действительно не очень - горит, выделяет стирол, хоть и в небольших количествах, однако при пожаре может вас просто убить.

но я сейчас не об экологических свойствах, о больше о теплотехнических. недавно слышал мнение, что дескать ЭППС 100 можно утеплить дом из газосиликата - ха-ха. либо вы очень умный... либо как все 🙂

разберемся.
дело в том что ЭППС  паронепроницаем, а значит температура до ЭППС должна быть выше точки россы, но вот незадача у газосиликата  естественая низкая теплопроводность. т.е. если мы прикрутим его к ЭППС, то толшина последнего должна быть больше 200мм.  ну и при этом понятно общее сопротивление теплопередаче будет выше нормированного примерно в 2.5 раза. т.е. по первым прикидкам ЭППС для утепления газосиликата не подходит. поробунем прикинуть на смарт канкуляторе: я специально не ставлю всякие "технологические" слои, просто для понимания:

ну чтоже наши подозрения вполне оправдываются, чтобы не уранить температуру ниже точки россы в газике, понадобилось 220 мм ЭППС, для неособо сурового климата - столько ЭППСа ставить не оптимально, а иначе в мороз в газике при определенных условиях будет вода -> плесень -> ну и какой-нибуть аспергиллёз, т.е. те кто говорит что для газика 100мм пенополистирола достаточно - спросите у него диплом инженера строителя. ещё надо заметить, что предположение "практиков" о том, что газосиликат нельзя утеплять пенополистиролом в общем-то верное, хоть и обосновать они его и не могут - просто плохо получается и все.  вы видели чтобы кто-то ставил 250 мм ЭППС на газик? - вот и я нет, а 100мм с газосиликатом я бы не поставил - зона конденсации в газосиликате будет уже при 0. правда канкулятор мамой клянется, что влагонакопления не будет. тут уж решайте сами, если вы , закончите все "мокрые" работы, предварительно высушите газик в течении  несколько летних месяцев  и только потом закроетепе его 100 мм ЭППС, должно быть все хорошо, но это ловля тоненького лично меня всегда напрягала. да и ваще много строителей сушат газосиликат прежде чем закрыть его ЭППС? нуда действительно они все грамотные перцы и знают что закрытый ЭПП'сом газик сохнет очень долго, а образование конденсата растянет это период еще больше и за это время... смешно да? поэтому практика без теории яйца выеденого не стоит.

почему вода, даже чуть-чуть в газике меня напрягает? кроме всего прочего это еще и ухудьшениетепловых характеристик, т.е. сухое лучше мокрого. хоть и смарт канкулятор должен это и учитывать, мне спокойней если воды нет вообще.

такчто резонный вопрос - а что дружит с газиком  "надежно"? да вата - возмите плотную для шукутурного фасада и будет вам счастье.

теплосопротивление больше 4 - ну это впринципе нормально, учитывая что вату я взял однородным слоем, с двумя неоднородными слоями смарканкулятор подглючивает.

ну хорошо, а можно впринципе использовать ЭППС  - речь о теплотехнике. конечно да. просто надо подбирать одыкватные друг-другу материалы. т.е. в данном случае теплопроводность несущей части стены надо повысить. ну ОК - давай кирпич.

не плохо 3.51 (м²•˚С)/Вт - по первым прикаидкам нормально получается даже пустотельный кирпич.
так что пожалуйста 380 кирпич + 100 ЭППС.

давайте немого спо-сравниваем с ватой. газосиликат с ватой паропроницаем, причем паро проиницаемость слоя ростет к улице т.е. влагонакопления точно не будет, а кирпич+ ЭППС - это правило нарушается, однако как видно на графике температура в паропроницаемой часте стены ВЫШЕ точки росы. крометого кирпич обладет высокой капилярной активностью т.е. тянят воду. т.е. если даже конденсат появится, то будет "размазан"  по толшине стены, и постепенно будет испарятся в помешение. т.е. для кладки стены луше использовать раствор с известью. известь вообще "волшебный" компонент.

что можно сказать ещё - ну как всегда дорогой вариант - возмем пеностекло, попутно заметим, что оно по теплопроводности больше чем ЭППС и его понадобится больше, зато хорошие экологические показатели. вобще для паронепроницаемых утеплителей чем теплопроводность несущей части стены больше, тем лучше. т.е. берите полнотельник - не ошибетесь, кстати железобетон тоже подойдет, однако тепло не будет, ну или добавляйте пеностекла, пустотельний кирпич же надо обязательно расчитывать хотябы в онлайн канкуляторе.  т.е. если вы возмете стенку из поризованного кирпича + пеностекло вероятность огрести проблем намного больше.
gls.png
стена с пеностеклом получилась довольно монструозная - я специально не стал рисовать еще и облицовку и так 600 мм. хотя раньше строиили в 2.5 кирпича и не парились. но я бы все же подумал нужна ли такая штука. и не забывайте щелочная среда + пеностекло = фигня. т.е. досточно "грамотно" отштукатурить такую стену - и все благополучно отвалится. и этА... я нарисовал битум, но нужен такой битум чтобы в один прекрасный сонечный день у вас пеностекло не свалилось со стенки.

что  же с порокерамикой? впинципе если брать порокерамику, то можно поробывать взять  пеностекла по-меньше, но кроме явной экономи на пеностекле, мы убиваем запас по влагонакоплению, кроме того поры неулучшают капилярную активность (т.е. кладку как минимум надо "сушить"), т.е. кроме явных приимуществ есть и не мене явные недостатки. но если очень хочется...

навсамом деле пеностекло может взять часть нагрузок из несущей стены, т.е. поступить также как и в статье про утепление  газосиликатом, но здесь и так куча графиков. ктому же я плохо представляю эту связку "механически".

вобще производитель порокерамики рекомендует ЭППС. ну... почему бы нет? разберём вот такой пирог стены.
gls.png

вариант довольно тонкий,  но хорошее общее теплосопротивление 4.04 (м²•˚С)/Вт, если конечно "практики" сильно не накосячат и не зделают из замкнутой воздушной прослойки вентилируемую, хотя накосячит здесь можно много где, например стальная связь в этом зазоре сгнет быстро. не знаю мне нравится больше обычный кирпич - можно пустотельный дырчатый, порокерамика всетаки такая недогазик :). механическая прочность сравнимая, но при этом еще более хруткая , теплопроводность значительно хуже тяжело обрабатывать на месте,  хоть капилярная активность лучше чем у газика, кладку ОДНОЗНАЧНО НАДО ВЫСУШИТЬ, прежде чем закрывать паронепроницаемым утеплителем.

т.е. те гени которые ставят в один таз полнотельник, порокерамический блок, газик, по прошестви нескольких дней заявляют, что полнотельник проигрывает всем - расмейтесь им в лицо. капилярная активность - это свойство, о котором надо знать и грамотно использовать, а не тупо записывать в "+" или "-".

мне больше нравится так - если уж вам так нужна порокерамика (например полнотельник не проходит по весу) - возмите вату.
gls.png
вата будет играть роль той самой страховки - она паропраницаема, те если вешать гранит озаботтесь о вент зазоре. в случае с обычным кирпечем страховка его капилярная активность.

теплосопротивлением стены я тоже бы не увлекался - всегда надо понимать, что есть еще пол, окна и крыша.

Паропроницаемость материалов таблица

Чтобы создать благоприятный микроклимат в помещении, необходимо учитывать свойства строительных материалов. Сегодня мы разберем одно свойство – паропроницаемость материалов.

Паропроницаемостью называется способность материала пропускать пары, содержащиеся в воздухе. Пары воды проникают в материал за счет давления.

Помогут разобраться в вопросе таблицы, которые охватывают практически все материалы, использующиеся для строительства. Изучив данный материал, вы будете знать, как построить теплое и надежное жилище.

 

 

Оборудование

Если речь идет о проф. строительстве, то в нем используется специально оборудование для определения паропроницаемости. Таким образом и появилась таблица, которая находится в этой статье.

Сегодня используется следующее оборудование:

  • Весы с минимальной погрешностью – модель аналитического типа.
  • Сосуды или чаши для проведения опытов.
  • Инструменты с высоким уровнем точности для определения толщины слоев строительных материалов.

Разбираемся со свойством

Бытует мнение, что «дышащие стены» полезны для дома и его обитателей. Но все строители задумывают об этом понятии. «Дышащим» называется тот материал, который помимо воздуха пропускает и пар – это и есть водопроницаемость строительных материалов. Высоким показателем паропроницаемости обладают пенобетон, керамзит дерево. Стены из кирпича или бетона тоже обладают этим свойством, но показатель гораздо меньше, чем у керамзита или древесных материалов.На этом графике показано сопротивление проницаемости. Кирпичная стена практически не пропускает и не впускает влагу.

 

Во время принятия горячего душа или готовки выделяется пар. Из-за этого в доме создается повышенная влажность – исправить положение может вытяжка. Узнать, что пары никуда не уходят можно по конденсату на трубах, а иногда и на окнах. Некоторые строители считают, что если дом построен из кирпича или бетона, то в доме «тяжело» дышится.

На деле же ситуация обстоит лучше – в современном жилище около 95% пара уходит через форточку и вытяжку. И если стены сделаны из «дышащих» строительных материалов, то 5% пара уходят через них. Так что жители домов из бетона или кирпича не особо страдают от этого параметра. Также стены, независимо от материала, не будут пропускать влагу из-за виниловых обоев. Есть у «дышащих» стен и существенный недостаток – в ветреную погоду из жилища уходит тепло.

 

 

Таблица поможет вам сравнить материалы и узнать их показатель паропроницаемости:

Чем выше показатель паронипроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость. Если вы собираетесь построить стены из пенобетона или газоблока, то вам стоит знать, что производители часто хитрят в описании, где указана паропроницаемость. Свойство указано для сухого материала – в таком состоянии он действительно имеет высокую теплопроводность, но если газоблок намокнет, то показатель увеличится в 5 раз. Но нас интересует другой параметр: жидкость имеет свойство расширяться при замерзании, как результат – стены разрушаются.

Паропроницаемость в многослойной конструкции

Последовательность слоев и тип утеплителя – вот что в первую очередь влияет на паропроницаемость. На схеме ниже вы можете увидеть, что если материал-утеплитель расположен с фасадной стороны, то показатель давление на насыщенность влаги ниже.Рисунок подробно демонстрирует действие давления и проникновение пара в материал.

 

 

Если утеплитель будет находиться с внутренней стороны дома, то между несущей конструкцией и этим строительным будет появляться конденсат. Он отрицательно влияет на весь микроклимат в доме, при этом разрушение строительных материалов происходит заметно быстрее.

Разбираемся с коэффициентом

Таблица становится понятна, если разобраться с коэффициентом.

 

 

Коэффициент в этом показатели определяет количество паров, измеряемых в граммах, которые проходят через материалы толщиной 1 метр и слоем в 1м² в течение одного часа. Способность пропускать или задерживать влагу характеризирует сопротивление паропроницаемости, которое в таблице обозначается симвломом «µ».

Простыми словами, коэффициент – это сопротивление строительных материалов, сравнимое с папопроницаемостью воздуха. Разберем простой пример, минеральная вата имеет следующий коэффициент паропроницаемости: µ=1. Это означает, что материал пропускает влагу не хуже воздуха. А если взять газобетон, то у него µ будет равняться 10, то есть его паропроводимость в десять раз хуже, чем у воздуха.

Особенности

С одной стороны паропроницаемость хорошо влияет на микроклимат, а с другой – разрушает материалы, из которых построен дома. К примеру, «вата» отлично пропускает влагу, но в итоге из-за избытка пара на окнах и трубах с холодной водой может образоваться конденсат, о чем говорит и таблица. Из-за этого теряет свои качества утеплитель. Профессионалы рекомендуют устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.Сопротивления паропроницанию

 

Если материал имеет низкий показатель паропроницаемости, то это только плюс, ведь хозяевам не приходится тратиться на изоляционные слои. А избавиться от пара, образовывающегося от готовки и горячей воды, помогут вытяжка и форточка – этого хватит, чтобы поддерживать нормальный микроклимат в доме. В случае, когда дом строится из дерева, не получается обойтись без дополнительной изоляции, при этом для древесных материалов необходим специальный лак.

Таблица, график и схема помогут вам понять принцип действия этого свойства, после чего вы уже сможете определиться с выбором подходящего материала. Также не стоит забывать и про климатические условия за окном, ведь если вы живете в зоне с повышенной влажностью, то про материалы с высоким показателем паропроницаемости стоит вообще забыть.

Паропроницаемость утеплителя – сомнительное достоинство

 

Практически любая рекламно-информационная брошюра или статья, описывающая достоинства ватных утеплителей, непременно упоминает такое их свойство, как высокая паропроницаемость – т.е. способность пропускать сквозь себя водяной пар. Данное свойство тесно связано с понятием «дышащие стены», вокруг которого на различных строительных форумах и порталах регулярно разгораются жаркие споры и дискуссии на множество страниц.

Если мы зайдем на официальный российский (украинский, белорусский) сайт любого производителя ватных утеплителей (ISOVER, ROCKWOOL и др.), то обязательно найдем информацию о высокой паропроницаемости материала, которая обеспечивает «дыхание» стен и благоприятный микроклимат в помещении.

Интересен тот факт, что подобная информация полностью отсутствует на англоязычных сайтах вышеупомянутых компаний. Более того, большинство информационных материалов на данных порталах пропагандируют идеи создания полностью воздухонепроницаемых, герметичных конструкций дома. К примеру, рассмотрим официальный сайт компании Isover в доменной зоне *com.

Предлагаем Вашему вниманию «золотые правила утепления» с точки зрения ISOVER.

  1. Эффективность изоляции (Insulation performance)
  2. Хорошая воздухонепроницаемость (Good air tightness)
  3. Контролируемая вентиляция (Controlled ventilation)
  4. Качественный монтаж (Quality fitting)

Кроме того, на том же сайте мы можем скачать брошюру: «Система ИЗОВЕР для воздухонепроницаемости и защиты от влаги» ("ISOVER System for Airtightness and Moisture protection"), а также прочитать статью под названием «Вентиляция или проветривание?

Ниже мы приведем некоторые цитаты с переводом из данной статьи:

«В среднем, семья из 4-х человек выделяет пар, равный 12-ти литрам воды. Ни при каких обстоятельствах этот пар не должен выходить через стены и крышу! Только вентиляционная система, подходящая конкретному дому и режиму проживания в нем может предотвратить появление темных пятен внутри помещения, струек воды, стекающих по стенам, повреждение покрытий и, в конечном итоге, всего здания».

«Вентиляция не может осуществляться за счет нарушения герметичности стен, окон, рам, ставней. Все это ведет лишь к проникновению в помещение загрязненного воздуха, который нарушает качественный воздухообмен внутри дома, наносит вред конструкциям здания, работе дымохода и вентиляционных шахт. Ни при каких обстоятельствах так называемые «дышащие стены» не должны использоваться в качестве конструктивного решения по обеспечению вентиляции дома».

Ознакомившись с англоязычными сайтами большинства производителей ватных утеплителей мы можем выяснить, что высокая паропроницаемость выпускаемого материала ни на одном из них не упоминается в качестве достоинства. Более того, на данных сайтах полностью отсутствует информация о паропроницаемости, как свойстве утеплителя.

Таким образом, можно прийти к выводу, что культивирование мифа о паропроницаемости - это успешный маркетинговый ход представительств данных компании в России и странах СНГ, используемый для дискредитации производителей паронепроницаемых утеплителей – экструдированного пенополистирола и пеностекла.

Однако, не смотря на распространение подобной вводящей в заблуждение информации, производители ватных утеплителей на российских сайтах размещают конструктивные решения по утеплению кровель и стен с применением пароизоляции, что делает их рассуждения о «дышащих» конструкциях лишёнными здравого смысла.

Предлагаем ознакомиться с рекомендациями компании ISOVER по утеплению скатной кровли, размещенными на официальном сайте:

«С внутренней стороны кровли необходимо обеспечить наличие пароизоляционного слоя. ISOVER рекомендует использовать мембраны ISOVER VS 80 или ISOVER VARIO.

При устройстве парозащитного барьера необходимо сохранять целостность мембраны, устанавливать ее внахлест, а стыки проклеивать паронепроницаемой монтажной лентой. Это обеспечит сохранность кровли на долгие годы».

На этом же сайте мы найдем рекомендации по утеплению каркасных стен:

  1. Внешняя обшивка
  2. Гидроизоляционная мембрана
  3. Металлический или деревянный каркас
  4. Тепло- и звукоизоляция ISOVER
  5. Пароизоляция ISOVER VARIO KM Duplex UV или ISOVER VS 80
  6. Гипсокартон (например, GYPROC)

Также приведем рекомендации по утеплению мансарды с помощью плит Роквул Лайт Баттс:

«Для защиты теплоизоляционного материала от увлажнения парами внутреннего воздуха устанавливают пароизоляционную пленку с внутренней «теплой» стороны утеплителя. Для защиты стены от продувания с наружной стороны утеплителя желательно предусмотреть ветрозащитный слой».

Подобную информацию можно услышать непосредственно и от представителей компаний:

Екатерина Колотушкина, руководитель направления "Каркасное домостроение", компания "Сен-Гобен ISOVER":

«Хочется отметить, что долговечность всей конструкции крыши зависит не только от аналогичного показателя несущих элементов, но и определяется сроком эксплуатации всех применяемых материалов. Для сохранения этого параметра при утеплении крыши необходимо применять паро-, гидро-, ветроизоляционные мембраны для защиты конструкции от пара изнутри помещения и попадания влаги снаружи».

Примерно то же самое заявляет НАТАЛИЯ ЧУПЫРА, руководитель направления «Розничная продукция» компании «СЕН-ГОБЕН ИЗОВЕР», журнал «Мой дом».

«ISOVER рекомендует кровельный «пирог» следующей конструкции (послойно): кровельное покрытие, гидроветрозащитная мембрана, контробрешетка, стропила с теплоизоляцией между ними, пароизоляционная мембрана, внутренняя отделка».

Также Наталия признает важность системы вентиляции в доме:

«При утеплении дома изнутри многие пренебрегают приточно-вытяжной вентиляцией. Это в корне неверно, потому что она обеспечивает правильный микроклимат в доме. Есть определенная кратность воздухообмена, которую нужно поддерживать в помещении».

Как мы видим, сами производители ватных утеплителей и их представители признают, что пароизоляционный слой – необходимая составляющая часть практически любой конструкции, в которой применяется подобная теплоизоляция. И это неудивительно, ведь проникновение молекул воды в гигроскопичный теплоизоляционный материал приводит к его намоканию и, как следствие, увеличению коэффициента теплопроводности.

Таким образом, высокая паропроницаемость утеплителя - это скорее недостаток, нежели достоинство. Многие производители паронепроницаемой теплоизоляции уже не раз пытались обратить внимание потребителей на данный факт, приводя в качестве аргументов мнения ученых и квалифицированных специалистов в области строительства.

Так, например, известный в области теплофизики эксперт, д.т.н., профессор, К.Ф. Фокин утверждает: «С теплотехнической точки зрения воздухопроницаемость ограждений скорее отрицательное качество, так как в зимнее время инфильтрация (движение воздуха изнутри-наружу) вызывает дополнительные потери тепла ограждениями и охлаждение помещений, а эксфильтрация (движение воздуха снаружи-вовнутрь) может неблагоприятно отразиться на влажностном режиме наружных ограждений, способствуя конденсации влаги».

Намокаемый утеплитель требует дополнительной защиты в качестве гидроизоляционных и пароизоляционных мембран. В противном случае, теплоизоляционный материал перестает выполнять свою основную задачу – сохранять тепло внутри помещения. Кроме того, влажный утеплитель становится благоприятной средой для развития грибков, плесени и других вредных микроорганизмов, что отрицательно сказывается на здоровье домочадцев, а также приводит к разрушению конструкций, в состав которых он входит.

Таким образом, качественный теплоизоляционный материал должен обладать такими неоспоримыми достоинствами, как низкий коэффициент теплопроводности, высокая прочность, водостойкость, экологичность и безопасность для человека и окружающей среды, а также низкая паропроницаемость. Применение подобного теплоизоляционного материала не сделает стены Вашего дома «дышащими», но позволит им выполнять свою прямую функцию – сохранять благоприятный микроклимат в доме и обеспечивать надежную защиту от негативных факторов окружающей среды.

ИСТОЧНИК: http://www.estateline.ru/articles/18367

От себя хотим добавить, что пенополиуретан (ППУ) по сравнению с рулонными, насыпными и задувными материалами помимо неоспоримых теплоизоляционных свойств обладает очень низкой паропроницаемостью, которая надежно препятствует диффузии водяных паров сквозь утеплитель в зону "точки росы" и возможного образования конденсата.

Изоляция ППУ препятствует рассеиванию тепла и инфильтрации воздуха, а также надежно защищает от Ваш дом от проникновения сквозняков, шумов, пыли и влаги из вне. Более того в настоящее время большинство ученых и ведущих специалистов в области энергосбережения и энергоэффективности советуют добиваться как можно более воздухонепроницаемых ограждающих конструкций, перекрытий и покрытий. А для создания уютного и комфортного климата в доме использовать правильно подобранные системы отопления и кондиционирования воздуха.

Паропроницаемость стен | POLYNOR | VLTOP.RU


Дышащий утеплитель ? Это нонсенс!

"Утеплитель должен быть дышащим!" Как часто Вы слышали такое безапелляционное утверждение со стороны продавца утеплителя, знающего свое дело? И действительно, что может быть важнее "дыхания" для человека? В один момент, все остальные достоинства утеплителя мгновенно отходят на задний план. В голове звучит тревожная музыка, холодный пот прошибает и как молотом по наковальне идет отбивка слов: "НЕ дышащий утеплитель! Что может быть хуже? Это же так жутко!!! Боже мой, и как я чуть его не купил..." Может быть попробуем вместе проникнуть в суть вопроса? Ведь надо же разобраться в этом, а то ведь вдруг и в самом деле выяснится "какая бяка этот не дышащий утеплитель".

Паропроницаемость стен.

В последние пять лет, как-то исподволь, но с нарастающим темпом, в отношении технологии применения строительных материалов и конкретно при обсуждении теплоизоляционных конструкций начал активно акцентироваться вопрос паропроницаемости стен с приданием нарочитой значимости данного фактора для микроклимата помещений. Доходит вплоть до того, что паропроницаемость теплоизолированных стен считается, чуть ли не главным параметром, характеризующим теплоизолирующую конструкцию, отодвигая порой на второе место даже основной смысл существования теплоизоляционного слоя – сопротивление теплопередаче ограждающих конструкций, т.е. сохранение тепла.

Проанализировав имеющиеся публикации, касающиеся вопроса «здорового дыхания стен» можно сделать вывод о том, что позиционирование теплоизоляционных товаров, основанное на принципе «здорового дыхания стен» есть лишь неудачно выдуманная рекламная «фишка», не имеющая ничего общего с реальной жизнью. Развенчание данного мифа рано или поздно должно наступить! Рассмотрим, каким образом, на самом деле, осуществляется диффузия воды сквозь стены и какое влияние это оказывает на микроклимат помещения?

Физические основы процесса выглядят следующим образом: в отношении атмосферы внутри помещения и снаружи существует разница парциального давления, если эта разница будет положительной, то из-за присутствующей диффузии воды сквозь стену влага будет перемещаться из помещения наружу, если же разница будет отрицательной, то наоборот, какое - то количество воды будет перемещаться за счет диффузии сквозь стену извне в помещение. Чем больше разница парциальных давлений и чем меньше диффузное сопротивление материалов, тем эффективней будет идти этот процесс. Наибольшая разница парциального давления между атмосферой внутри помещения и снаружи существует зимой и летом. Зимой она положительна и вода за счет диффузии сквозь стену покидает внутренние помещения. Летом (особенно в жару и после дождя) разница парциальных давлений отрицательна и вода диффундирует извне внутрь помещений.

Однако не стоит думать, что установление равновесия парциальных давлений между воздухом внутренних помещений и внешней атмосферой происходит только благодаря диффузии сквозь стены. Основным характеризующим это явление фактором, является конвекция воздушных масс, на долю которой в установлении равновесного состояния парциальных давлений и поддержание микроклимата во внутренних помещениях приходится более 98% этого «водопереноса». Дабы не быть голословным, оценим численную составляющую диффузии воды сквозь кирпичную (кирпич керамический, полнотелый) стену толщиной в два кирпича при разнице температуры внутри и снаружи помещения в 20оС и разности влажности в 20% (в помещении - 60%, на улице – 80%). Диффузия воды наружу сквозь метр квадратный подобной стены за сутки не превысит – 10 грамм! И это просто «голая» стена без всякого утеплителя, штукатурного слоя, краски, обоев, стеновых панелей, зеркал, картин и т.п., создающего в любом случае дополнительное сопротивление диффузии воды сквозь стену в принципе!


Таким образом, даже если жить в обычных неоштукатуренных кирпичных стенах без внутренней отделки особо насладится «здоровых дыханием стен» не удастся т.к. сквозь них за сутки диффундирует (проходит) не более 1 килограмма воды. В то же время, за счет конвекционных процессов внутреннему жилому помещению зимой приходится избавляться от более чем 10 килограмм воды ежесуточно! Надейся бы мы только на «здоровое дыхание стен» и герметично закупорив подобную комнату зимой (избавившись от конвекционного переноса масс воды струями воздуха) – выпадение первой росы на стенах пришлось бы наблюдать уже через несколько часов.


Вообще в вопросе «здорового дыхания стен» существует даже логический парадокс, который заключается в том, что мы изо всех сил стараемся сделать более герметичными для пара и газа оконные и дверные проемы, а также сами окна и двери и в тоже время, кто-то говорит о повышении паропроницания стен для весьма неэффективной и вычурной дополнительной вентиляции здания. В то же время вопросы вентиляции помещений, как естественной, так и принудительной, имеют гораздо более простые и эффективные инженерные решения, используемые десятилетиями и веками. Стена же должна исполнять возложенные на нее функции - препятствовать прохождению сквозь нее воздуха, воды, тепла и звука! Из этого следует очевидный вывод: чем менее паропроницаем материал (в том числе и теплоизоляционный) применяемый при сооружении стеновой конструкции, тем более эффективно она (стена) исполняет свою функцию.


Продолжая тему теплоизоляционных материалов, следует сделать вывод, что при устройстве закрытых теплоизоляционных систем наиболее эффективны ячеистые материалы (пеностекло и пенополиуретан), нежели волоконные материалы, ведущие себя в закрытых теплоизоляционных системах более капризно, малоэффективно и с потенциальным риском действительно служить причиной заметного увлажнения внутренний помещений здания теплоизолированного волоконным материалом. Посмотрим более пристально на процессы «водопереноса» в герметично (для воздуха) закрытых теплоизоляционных системах с использованием волоконных неорганических материалов. Будь то штукатурные системы или системы с теплоизоляционным слоем внутри кладки в волоконном материале интенсивно происходят газообменные процессы, в отличие от ячеистых теплоизоляционных материалов, где газы герметично закупорены в замкнутых ячейках.


Самым актуальным в нашем случае анализа эксплуатации волоконных материалов является процесс переноса и перераспределения воды растворенной в воздухе. И здесь явление диффузии влаги сквозь стены (сколь бы незначительным оно не было) весьма важно, т.к. зачастую приводит к негативным последствиям. Если вы еще раз внимательно перечтете абзац данной статьи, посвященный описанию процесса диффузии, с точки зрения физики то увидите, что вектор переноса воды летом за счет разницы парциальных давлений направлен извне помещения внутрь. К этому стоит добавить и капиллярные явления переноса жидкости, которые тоже приводят к движению масс воды внутрь стены за счет увлажнения поверхности стены дождями в весенне-осенний период. Таким образом, газовая среда между волокон каменной ваты или стекловаты насыщается водой до высокого значения влажности. При сезонном похолодании атмосферы избыточная влага конденсируется на поверхности волокон из охлаждаемого воздуха между волокон. Отсутствие конвекции между волокнами приводит к отсутствию высыхания жидкости, которая начинает скапливаться внутри волоконного материала. Жидкость конденсируется именно на волокнах т.к. площадь поверхности волокон в сотни тысяч раз больше поверхности стен! Это легко вычислить, зная толщину волокон, плотность материала из которого состоят волокна и плотность теплоизоляционной волоконной плиты.


Итак, в герметично закрытой системе теплоизоляции с использованием промежуточного слоя из каменной ваты или стекловаты, устанавливается газовая среда, перенасыщенная парами воды с протеканием процесса конденсации с усилением последнего при падении температуры атмосферы ниже точки замерзания воды. Причиной усиления процесса насыщения теплоизоляционного волоконного слоя именно в зимний период, когда устанавливается стабильная температура ниже нуля, является как усиление диффузии воды из внутреннего помещения через стену (разница парциальных давлений внутреннего воздуха и внешней атмосферы возрастает) в воздушную среду волоконного материала, так и замерзание воды на внешней поверхности стены в микропорах и микротрещинах, препятствующее выводу воды из теплоизоляционного слоя хотя бы за счет незначительного в этом отношении эффекта диффузии. Волоконный материал в этот момент начинает банально мокнуть и отсыревать. Вода именно в виде жидкости появляется на поверхности стороны стены контактирующей с волоконным материалом. Диффузия воды сквозь стену в направлении «внутреннее помещение – теплоизоляционный слой» прекращается, т.к. воздух внутри волоконного материала перенасыщен водой и имеет влажность в 100%. В то же время вода, сконденсировавшая в состояние жидкости внутри теплоизоляционного волоконного слоя, начинает просачиваться внутрь помещения за счет капиллярных явлений. И если не будет очень хорошей вентиляции помещения и «выноса» влаги за счет конвекции воздушных струй, стены начнут сыреть со всеми вытекающими отсюда последствиями! То есть, именно применение волоконных материалов в закрытых системах утепления приводит в помещениях с затрудненной и плохой вентиляцией к повышению влажности и сырости!


Все вышеописанное давно известно и досконально изучено. Высокая паропроницаемость волоконных материалов признана очевидным недостатком данного типа теплоизоляторов. Для того чтобы уменьшить неприятные последствия применения таких материалов предпринимаются следующие шаги: волокна покрываются гидрофобным составом, дабы уменьшить коэффициент смачиваемости материала и снизить накопление воды на волокнах в состоянии жидкости; создаются дорогостоящие системы вентиляции теплоизоляционного волоконного слоя для перманентного «подсушивания» каменной ваты и стекловаты; внутренний слой стены, защищающий теплоизоляционный материал, изготавливается из максимально влаго- и паро- непроницаемого материала. Это общеизвестно и причем настолько в порядке вещей, что прямо под пространными рассуждениями про «здоровое дыхание стены» зачастую размещена фотография, где облицовка теплоизоляционного слоя из каменной ваты производится клинкерным кирпичом – абсолютно паро - и водо- непроницаемым материалом! Как через клинкерный кирпич будет дышать эта каменная вата, - непонятно!


Сторонники лжеконцепции «здорового дыхания стен» помимо греха против истины физических законов и осознанного введения в заблуждение проектировщиков, строителей и потребителей, исходя из меркантильного побуждения, сбыть свой товар какими угодно методами, наговаривают и возводят поклеп на теплоизоляционные материалы с низкой паропроницаемостью (в данном случае закрытоячеистый пенополиуретан).


Суть этой злостной инсинуации сводится к следующему. Вроде как, если не будет пресловутого «здорового дыхания стен», то в таком случае внутреннее помещение обязательно станет сырым, а стены будут сочиться влагой. Дабы развенчать эту выдумку давайте посмотрим более внимательно на те физические процессы, которые будут происходить в случае облицовки под штукатурный слой или использовании внутри кладки, например такого материала как пеностекло, паропроницаемость которого равна нулю. Итак, из-за присущих пеностеклу теплоизоляционных и герметизирующих свойств наружный слой штукатурки или кладки придет в равновесное температурное и влажностное состояние с наружной атмосферой. Также и внутренний слой кладки войдет в определенный баланс с микроклиматом внутренних помещений. Процессы диффузии воды, как в наружном слое стены, так и во внутреннем; будут носить характер гармонической функции. Эта функция будет обуславливаться, для наружного слоя, суточными перепадами температур и влажности, а также сезонными изменениями. Особенно интересно в этом отношении поведение внутреннего слоя стены. Фактически, внутренняя часть стены будет выступать в роли инерционного буфера, роль которого сглаживать резкие изменения влажности в помещении. В случае резкого увлажнения помещения, внутренняя часть стены будет адсорбировать излишнюю влагу, содержащуюся в воздухе, не давая влажности воздуха достичь предельного значения. В тоже время, при отсутствии выделения влаги в воздух в помещении, внутренняя часть стены начинает высыхать при этом, не давая воздуху «пересохнуть» и уподобится пустынному. Как благоприятный результат подобной системы утепления с использованием пенополиуретана, гармоника колебания влажности воздуха в помещении сглаживается и тем самым гарантирует стабильное значение (с незначительными флуктуациями) приемлемой для здорового микроклимата влажности. Физика данного процесса достаточно хорошо изучена развитыми строительными и архитектурными школами мира и для достижения подобного эффекта при использовании волоконных неорганических материалов в качестве утеплителя в закрытых системах утепления настоятельно рекомендуется наличие надёжного паронепроницаемого слоя на внутренней стороне системы утепления.

Вот вам и «здоровое дыхание стен»!

примеры в баллонах, популярные виды и изготовители

Содержание статьи:

Напыляемая теплоизоляция — это вещество, превосходящее по многим техническим характеристикам рулонные, плитные и шпаклевочные аналоги. Эта технология заслуженно считается самой передовой и перспективной. Сочетая в себе множество положительных характеристик, материал почти не имеет недостатков. Немногие минусы легко устраняются с помощью использования некоторых несложных приемов. Производители предлагают потребителям распыляемые утеплители, различающиеся по техническим характеристикам, составу, сферам применения и используемому для нанесения оборудованию.

Что такое напыляемый утеплитель

Напыляемый утеплитель

Напыляемый утеплитель представляет собой вещество бинарного типа, состоящее из двух жидких компонентов. После доведения до необходимой консистенции средства смешиваются и через краскопульт наносятся на обрабатываемые поверхности. Под воздействием кислорода из воздуха запускается экзотермическая реакция, сопровождающаяся образованием большого количества пены. Застывание длится несколько минут, в результате образуется пористая плотная масса с ячеистой структурой. Верхний слой плотный наподобие овощной кожуры белого цвета. Со временем под воздействием ультрафиолета он темнеет, приобретая желтый или коричневый оттенок.

В зависимости от использованных ингредиентов различают такие виды пенополиуретановых утеплителей:

  • Эластичный. После кристаллизации изолятор с открытыми ячейками напоминает пеноплекс. Отличается хорошей паропроницаемостью, гибкостью и эластичностью. Предназначен для отделки строений из древесины и других дышащих материалов.
  • Жесткий. Вещество характеризуется большой плотностью и низким весом. Применяется в быту для заделки щелей и утепления конструкций из бетона и стали.
  • Интегральный. Отличается высокой плотностью, прочностью и устойчивостью к механическим нагрузкам. В основном применяется в промышленности на инженерных объектах.

Напыляемый полиуретановый утеплитель пользуется популярностью в частном и коммерческом строительстве благодаря широкой сфере применения.

Где используется материал

Сфера применения

Пенный утеплитель нового поколения используется для внешнего и внутреннего нанесения. В зависимости от особенностей объектов применяются материалы с открытыми и закрытыми ячейками.

Напыление проводится на такие конструкции:

  • Крыши жилых, хозяйственных, административных зданий и инженерных сооружений. Поскольку через крышу происходят основные потери тепла, для их качественной изоляции наносится слой толщиной 10-15 см. При работе в чердачных помещениях дополнительная отделка не требуется. Напыляемый утеплитель Polynor после застывания образует прочную внешнюю корку. При этом отсутствуют запахи и выделения.
  • Технологические емкости. Использование пенополиуретана в баллонах для утепления различных резервуаров способствует поддержанию в них заданной температуры при минимальных затратах энергии. Полиуретаном заполняются бытовые и промышленные бойлеры, пена наносится на стенки бассейнов, хранилищ и прочих емкостей для хранения и перевозки различных жидкостей, требующих стабильных условий. Помимо резервуаров пена применяется для изоляции подведенных к ним труб, имеющих d 20 см и более.
  • Стены. Для сурового климата утеплитель полинор является отличным вариантом решения проблемы борьбы с промерзанием несущих конструкций. Материал ни чем не уступает по своим характеристикам рулонному утеплителю пеноплэкс, превосходя его по скорости нанесения и долговечности. Толщина слоя варьируется в пределах 5-10 см в зависимости от типа сооружения и особенностей климата. Распыление проводится внутрь решетчатого каркаса, который потом обшивается декоративной облицовкой.
  • Полы. Толстый слой ПП является отличной защитой от холода и сырости, идущей от грунта или неотапливаемых подвалов. Материал наносится на бетонную плиту или черновой пол в деревянном доме. Предварительно изготавливается обрешетка, являющаяся основой для укладки чистового или промежуточного покрытия. Вентилирование помещений достигается обустройством продухов. Рекомендуемый слой нанесения составляет 7-10 см.
  • Мансарды. Утепление этих жилых сооружений полиуретановой пеной позволяет создать комфортные условия для проживания в любое время года. Чтобы создать надежный барьер от холода и жары, следует напылять не менее 15 см пены. После этого внутренние поверхности мансарды обшиваются гипсокартоном, фанерой или массивной доской.

В зависимости от площади обработки выбирается промышленное оборудование или разовые распылители.

Преимущества материала

Напыляемый утеплитель характеризуется высокой адгезией с любой поверхностью

Специалисты в области строительства отдают предпочтение пенополиуретану в пользу таких аналогов, как утепляющая скорлупа, матовые и твердые изоляторы.

Плюсы ППУ:

  • Экологическая чистота. В составе пены не содержатся вредные для человека и окружающей среды вещества. Его можно без опаски использовать в жилых помещениях и на улице.
  • Низкий коэффициент теплопроводности. Этот показатель значительно ниже, чем у таких популярных изоляторов, как базальтовая вата и полистирол.
  • Отсутствие гигроскопичности. Покрытие не впитывает воду, всегда остается легким и сухим.
  • Отличная звукоизоляция. Материал отсекает уличные шумы, не дает громким звукам выходить из помещения.
  • Биологическая инертность. В пене не заводится грибок и плесень, ее избегают грызуны, птицы и насекомые.
  • Устойчивость к активным химическим реагентам. Вещество не реагирует на воздействие моторного топлива, кислот, щелочей, средств борьбы с паразитами, масляных и акриловых красок.
  • Длительный срок эксплуатации. В зависимости от типа и марки производителя срок службы составляет 30-50 лет. При этом пене не требуется никакого обслуживания.
  • Защита от коррозии. За счет плотного прилегания к поверхности ППУ предотвращает образование на ней конденсата и попадание влаги извне.
  • Отсутствие стыков и пустот. Пена заполняет все мельчайшие щели и отверстия, покрывает поверхности монолитным слоем, в котором отсутствуют мостики холода.
  • Пожарная безопасность. Материал не горюч, но при контакте с открытым пламенем выделяет токсичные испарения.
  • Устойчивость к экстремально низким и высоким температурам. Диапазон применения составляет от – 80 ºС до + 120 ºС.
  • Возможность обрабатывать поверхности любой сложности и труднодоступных элементов инженерных конструкций.
  • Ремонтопригодность. При повреждении части покрытия достаточно заполнить углубление аналогичным материалом, приобретенным в хозяйственном магазине.
  • Экономичность. Нет необходимости в установке пароизоляционных и ветрозащитных пленок, предварительной обработки каркасов и основания.
  • Быстрота нанесения. Скорость отделки на порядок выше, чем у рулонных и плиточных аналогов.

Немаловажным фактором в пользу выбора ППУ является и его стоимость. В среднем расход полинора на м2 составляет 55-65 руб, в зависимости от выбранного производителя и используемого оборудования.

Разновидности напыляемых утеплителей

Напыляемая эковата

Технология утепления объектов пеной закономерно считается наиболее эффективной и перспективной. Для достижения качественного результата следует ознакомиться с разновидностями распыляемых утеплителей и порядком их применения. Средства подразделяются готовые к нанесению и требующие предварительной подготовки.

Напыляемая теплоизоляция в баллонах находится в свободном доступе и знакома практически каждому домашнему мастеру. Продающиеся в хозяйственных магазинах аэрозольные баллончики имеют емкость 500-1500 мл. Внутри находится жидкий состав, насыщенный сжатым воздухом. Различные модели имеют собственный раструб или предназначены для установки в специальный пистолет. Распыление проводится после встряхивания и переворачивания изделия днищем вверх путем нажатия на курок. Одного баллончика 1000 мл хватает на образование 20 л пены или покрытия 1 м2 поверхности слоем толщиной 2 см. Такой вид утепления можно использовать для обработки небольших поверхностей до 10 м2. Но даже при таком раскладе потребуется 25 баллончиков для создания слоя 5 см, что является минимально допустимым при обустройстве строений.

Промышленные смеси изготавливаются из нескольких жидких компонентов непосредственно перед применением. Сырье состоит их основного состава и отвердителя. Для проведения используются герметичные емкости, шланг высокого давления, пульверизатор и пневматическая установка. Оптимальная температура для проведения работ +20-25°С. Отклонения приводят к тому, что раствор вспенивается слишком слабо или сильно. Оба варианта приводят к отклонениям эксплуатационных характеристик от нормы. Если погодные условия не соответствуют требуемым, раствор подогревается или охлаждается.

Подача материала производится снизу вверх, толщина каждого слоя должна быть в пределах 3-4 см. Для достижения желаемого эффекта нужно обрабатывать поверхности 2-3 раза после полного отвердения предыдущих слоев.

Пользоваться промышленным оборудованием нужно в средствах защиты кожи, органов зрения и дыхания. Вещество отличается высочайшей степенью адгезии, его крайне трудно удалить с тела, одежды и поверхностей. Поэтому места которые не нуждаются в утеплении, необходимо надежно закрыть.

Самые популярные марки

Строительный рынок наполнен пенными утеплителями отечественного и зарубежного производства. Наибольшее количество положительных отзывов собрали следующие марки:

  • Экотермикс;
  • Титан;
  • Технониколь;
  • Технология;
  • Теплис;
  • Polinor;
  • Phorum;
  • Penosil;
  • Penoplex Fastfix;
  • Home master;
  • Sipur;
  • Tri color.

При выборе материала нужно внимательно изучить инструкцию по применению, в последнюю очередь ориентируясь на цену продукции.

Какой выбрать утеплитель для дома, что лучше использовать для утепления стен пенопласт или минвату, выбор материала утеплителя

Часть свойств пенопласта и минеральной ваты схожи, но некоторые параметры существенно различаются. Для того чтобы сделать выбор в пользу конкретного утеплителя, проанализируем их показатели по основным критериям.

Сравниваем и выбираем материалы для теплоизоляции домов

Различия и сходства теплоизоляционных изделий следует рассматривать в разрезе следующих характеристик:

1. Прочность. Прочностные показатели материала для утепления фасадов напрямую зависят от его плотности:

  • для обустройства наружных стен используют пенополистирол плотностью от 16,0 до 18,5 кг/куб. метр, толщина плиты — от 80 мм, 100 мм. Регламентируемая прочность на сжатие при 10% линейной деформации не менее 100кПа, предел прочности при изгибе не менее 180 кПа., предел прочности при растяжении в направлении перпендикулярном поверхности не менее 100 кПа
  • прочность на растяжение перпендикулярно лицевым поверхностям более 15 кПа. Вопрос выбора минеральной ваты для обустройства наружных стен решается следующим образом: если монтируется вентилируемый фасад, то используют плиты плотностью 45-100 кг/куб. метр; для системы «мокрый» фасад — 145-165 кг/куб. метр.

2. Паропроницаемость. Если в отрыве от конкретной фасадной системы сравнить, что лучше минвата или пенопласт пропускают пар, то минераловатные плиты окажутся в выигрыше. Коэффициент паропроницаемости пенопласта составляет не менее 0,05 мг/м*ч*Па, тогда как у минваты он выше в 6 раз. Но если стена снаружи имеет отделку из синтетических покрытий, то характеристики минваты резко ухудшаются из-за невозможности выводить конденсат наружу. В сочетании со штукатурками, имеющими высокий показатель по паропроницаемости — силиконовыми и силикатно-силиконовоыми оптимально использовать минераловатные плиты в сочетании со штукатурными смесями, имеющими высокий показатель паропроницаемости — силиконовые и силикатно-силиконовые составы.

3. Теплостойкость. Если подходить к выбору теплоизоляционных материалов с позиции оценки уровня теплопроводности, то эти значения у каменной ваты и ППС примерно равны. Минвата — не более 0,0475 Вт/мК, ППС — не более 0,041 Вт/мК.

4. Стойкость к возгоранию. Используемые материалы для утепления фасадов должны относиться к категории негорючего или слабогорючего сырья. Базальтовые волокна, из которых состоит минераловатная плита, плавятся при температуре свыше 1000 градусов Цельсия, поэтому утеплитель на их основе обладает высокой стойкостью к возгоранию. ППС горит при температуре 110-120 градусов. Подразделяется на классы — Г (горючий), Г1-Г4 слабо- и сильногорючие изделия соответственно.

5. Нагрузка на несущие конструкции. Оптимальный выбор утепления стен зависит от правильно подобранных по весу материалов. Пенополистирол в 3-4 раза легче минераловатной плиты

Еще один важный показатель для сравнения — долговечность. Срок службы теплоизоляции из минераловатных плит — 20-40 лет. Пенопласт также характеризуется высокой надежностью, но несколько меньшим сроком службы. Применение в фасадных системах пароизоляционных и гидрозащитных слоев увеличивает эксплуатационный период в разы.

Выбираем утеплитель для дома: описание, преимущества и недостатки

Различия в эксплуатационных характеристиках и структуре изделий обусловлены применением разных технологий производства и материалов:

  • Каменную вату получают путем расплавления доломитовых и базальтовых пород. Нагревая их до температуры 1200-1600 градусов Цельсия, получают вязкую массу, из которой вытягивают тонкие волокна, формируют их в плиты, прессуют. Завершающий этап — готовое изделие подвергают высокотемпературной обработке. Волокна в листах имеют вертикальную и горизонтальную направленность, а также могут располагаться хаотично. Этот материал, используемый при утеплении дома, обладает низкой теплопроводностью, хорошей звукоизоляцией и стойкостью к деформациям. За счет высокой паропроницаемости , стены «дышат» и тем самым поддерживают благоприятный микроклимат в доме.
  • Пенополистирол изготавливается по технологии вспенивания и последующего спаивания полистирольных шариков. Полученная таким путем пенополистирольная масса прессуется в плиты, которые затем нарезается по заданным размерам. В итоге получается изделие с высокими показателями теплоэффективности и отличной водостойкостью. Также важные характеристики пенопласта — малый вес, простота обработки и монтажа, стойкость к деформациям.

К недостаткам утеплителей на основе пенополистирола относят низкую устойчивость к открытому огню. Применение в процессе изготовления различных антипиренов несколько нивелирует эту проблему. Также к минусам материала прибавим малый коэффициент паропроницаемости, нестойкость к органическим растворителям, невысокие звукоизоляционные свойства.

У минеральной ваты два недостатка — большой вес и относительно высокая стоимость по сравнению с ППС.

Использование утеплителей для фасада : выбираем теплоизоляцию

На основе полученной информации можно сделать вывод: минеральная вата и пенопласт имеют ряд ключевых достоинств, согласно которым любой из этих материалов подходит для обустройства штукатурных фасадов Ceresit. Какое выбирать утепление в большей степени зависит от финансовых возможностей и эстетических соображений владельцев жилья. Оба материала можно эффективно использовать для теплоизоляции зданий из кирпича, пеноблоков и ячеистого бетона.

Если профессионально подойти к утеплению стены в доме минватой или ППС, то лицевая часть строения надолго сохранит презентабельный вид. Для повышения срока службы штукатурного фасада Ceresit необходимо обустройство гидрозащитного слоя и пароизоляции.


About Author


alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *