Виды раствора – Какие виды растворов для штукатурных работ их изготовление и использование для стен дома: пошаговая инструкция +Видео

Раствор — Википедия

Растворение поваренной соли (NaCl) в воде

Раство́р — однородная (гомогенная) система, в состав которой входят молекулы (атомы, ионы) двух или более типов, причём доля частиц каждого типа может непрерывно меняться в определённых пределах. От механической смеси раствор отличается однородностью, от химического соединения — непостоянством состава.

Растворителем называют вещество, частицы которого преобладают в растворе, при этом остальные компоненты раствора называют растворёнными веществами.

В зависимости от агрегатного состояния раствор может быть газовым (то же, что смесь газов), жидким или твёрдым. Обычно, говоря о растворе, имеют в виду жидкий раствор.

Образование того или иного типа раствора[уточнить] обусловливается интенсивностью межмолекулярного, межатомного, межионного или другого вида взаимодействия, то есть теми же силами, которые определяют возникновение того или иного агрегатного состояния. Отличия: образование раствора зависит от характера и интенсивности взаимодействия частиц

разных веществ[1].

По сравнению с индивидуальными веществами по структуре растворы сложнее[1].

Химическое взаимодействие растворенного вещества с растворителем в некоторых случаях приводит к диссоциации. Частицы (как ионы, образовавшиеся в результате диссоциации, так и недиссоциированные молекулы) часто взаимодействуют с растворителем, с образованием структур, которые называются сольватами (гидратами, если речь о водных растворах). Этот процесс называют сольватацией (гидратацией). Гидратную теорию растворов предложил русский учёный Д. И. Менделеев.

Твёрдые, жидкие, газообразные растворы[править | править код]

Чаще всего под раствором подразумевается жидкое вещество, например, раствор соли или спирта в воде (или даже раствор золота в ртути — амальгама).

Существуют также растворы газов в жидкостях, газов в газах и жидкостей в жидкостях, в последнем случае растворителем считается вода, или же компонент, которого больше.

В химической практике обычно под растворами понимают гомогенные системы, растворитель может быть жидким (водный раствор), твёрдым (твёрдый раствор), газообразным. Однако нередко допускается и гетерогенность — см. «Золи».

Коллоидные и истинные/молекулярные растворы (изучением коллоидных систем занимается коллоидная химия) отличаются главным образом размерами частиц.

В истинных растворах размер частиц менее 1 нм, частицы в таких растворах невозможно обнаружить оптическими методами; в то время как в коллоидных растворах размер частиц 1 нм — 500000 нм, частицы в таких растворах можно обнаружить при помощи ультрамикроскопа (см. эффект Тиндаля).

Растворение — переход молекул вещества из одной фазы в другую (раствор, растворенное состояние). Происходит в результате взаимодействия атомов (молекул) растворителя и растворённого вещества и сопровождается увеличением энтропии при растворении твёрдых веществ и её уменьшением при растворении газов. При растворении межфазная граница исчезает, при этом многие физические свойства раствора (например, плотность, вязкость, иногда — цвет, и другие) меняются.

В случае химического взаимодействия растворителя и растворённого вещества сильно меняются и химические свойства — например, при растворении газа хлороводорода в воде образуется жидкая соляная кислота.

При растворении кристаллических веществ, растворимость которых увеличивается с увеличением температуры, происходит охлаждение раствора ввиду того, что у раствора внутренняя энергия больше, чем у кристаллического вещества и растворителя, взятых отдельно. Например, кипяток, в котором растворяют сахар, сильно охлаждается

[2].

Растворы электролитов и неэлектролитов[править | править код]

Электролиты — вещества, проводящие в расплавах или водных растворах электрический ток. В расплавах или водных растворах они диссоциируют на ионы.

Неэлектролиты — вещества, водные растворы и расплавы которых не проводят электрический ток, так как их молекулы не диссоциируют на ионы. Электролиты при растворении в подходящих растворителях (вода, другие полярные растворители) диссоциируют на ионы. Сильное физико-химическое взаимодействие при растворении приводит к сильному изменению свойств раствора (химическая теория растворов).

Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами.

К электролитам относятся кислоты, основания и почти все соли, к неэлектролитам — большинство органических соединений, а также вещества, в молекулах которых имеются только ковалентные неполярные или малополярные связи.

Растворы высокомолекулярных веществ ВМС — белков, углеводов и др. обладают одновременно многими свойствами истинных и коллоидных растворов.

В зависимости от цели для описания концентрации растворов используются разные физические величины.

  • Ненасыщенный раствор — раствор, в котором концентрация растворенного вещества меньше, чем в насыщенном растворе, и в котором при данных условиях можно растворить ещё некоторое его количество.
  • Насыщенный раствор — раствор, в котором растворённое вещество при данных условиях достигло максимальной концентрации и больше не растворяется. Осадок данного вещества находится в равновесном состоянии с веществом в растворе.
  • Пересыщенный раствор (изредка используется термин перенасыщенный) — раствор, содержащий при данных условиях больше растворённого вещества, чем в насыщенном растворе. Пересыщенные растворы неустойчивы, избыток вещества легко выпадает в осадок. Такой раствор нельзя получить путём растворения в нормальных условиях, обычно пересыщенный раствор получают охлаждением раствора, насыщенного при более высокой температуре (пересыщение).
  • Концентрированный раствор — раствор с высоким содержанием растворённого вещества в противоположность разбавленному раствору, содержащему малое количество растворённого вещества. Деление растворов на концентрированные и разбавленные не связано с делением на насыщенные и ненасыщенные. Так насыщенный 0,0000134М раствор хлорида серебра является очень разбавленным, а 4М раствор бромида калия, будучи очень концентрированным, не является насыщенным.
  • Разбавленный раствор — раствор с низким содержанием растворённого вещества. Отметим, что не всегда разбавленный раствор является ненасыщенным — например, насыщенный 0,0000134М раствор практически нерастворимого хлорида серебра является очень разбавленным. Граница между разбавленным и концентрированным растворами весьма условна.
  • Растворы // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1994. — Т. 4: Пойнтинга — Робертсона — Стримеры. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
  • Растворы // Химическая энциклопедия: в 5 т. / Н. С. Зефиров (гл. ред.). —
    М.
    : Большая Российская энциклопедия, 1995. — Т. 4: Полимерные—Трипсин. — 639 с. — 40 000 экз. — ISBN 5-85270-039-8.
  • Шахпаронов М. И. Введение в молекулярную теорию растворов. — М.: Государственное издательство технико-теоретической литературы, 1956. — 508 с.
  • Реми Г. Курс неорганической химии. — М.: Издательство иностранной литературы, 1963, 1966. — Т. 1—2.
  • Streitwieser, Andrew; Heathcock, Clayton H., Kosower, Edward M. Introduction to Organic Chemistry (неопр.). — 4th ed.. — Macmillan Publishing Company, New York, 1992.

Виды растворов. Виды концентрации растворов

Растворы – это состоящая из двух или более веществ однородная масса или смесь, в которой одно вещество выступает в качестве растворителя, а другое – в качестве растворяемых частиц.

Существует две теории трактовки происхождения растворов: химическая, основоположником которой является Менделеев Д. И., и физическая, предложенная немецким и швейцарским физиками Оствальдом и Аррениусом. Согласно трактовке Менделеева, компоненты растворителя и растворяемого веществ становятся участниками химической реакции с образованием неустойчивых соединений этих самых компонентов или частиц.

Физическая же теория отрицает химическое взаимодействие между молекулами растворяющего и растворяемого веществ, объясняя процесс образования растворов как равномерное распределение частиц (молекул, ионов) растворителя между частицами растворяемой субстанции вследствие физического явления, именуемого диффузией.

Классификация растворов по различным критериям

На сегодня нет единой системы классификации растворов, однако условно виды растворов можно сгруппировать по наиболее значимым критериям, а именно:

I) По агрегатному состоянию выделяют: твёрдые, газообразные и жидкие растворы.

II) По размерам частиц растворённого вещества: коллоидные и истинные.

III) По степени концентрации частиц растворённого вещества в растворе: насыщенные, ненасыщенные, концентрированные, разбавленные.

IV) По способности проводить электрический ток: электролиты и неэлектролиты.

V) По назначению и области применения: химические, медицинские, строительные, специальные растворы и др.

Виды растворов по агрегатному состоянию

Классификация растворов по агрегатному состоянию растворителя приводится в широком смысле значения этого термина. Принято считать растворами жидкие субстанции (причём в качестве растворяемого вещества может выступать как жидкий, так и твёрдый элемент), однако если учесть тот факт, что раствор – это гомогенная система из двух или нескольких веществ, то вполне логично признать также и твёрдые растворы, и газообразные. Твёрдыми растворами принято считать смеси, например, нескольких металлов, больше известных в обиходе как сплавы. Газообразные виды растворов – это смеси нескольких газов, пример – окружающий нас воздух, который представлен в виде соединения кислорода, азота и углекислого газа.

виды растворов

Растворы по размеру растворённых частиц

Виды растворов по размеру растворённых частиц включают истинные (обычные) растворы и коллоидные системы. В истинных растворах растворяемое вещество распадается на мелкие молекулы или атомы, по размерам приближённые к молекулам растворителя. При этом истинные виды растворов сохраняют первоначальные свойства растворителя, лишь слегка преображая его под действием физико-химических свойств добавленного в него элемента. Например: при растворении поваренной соли или сахара в воде вода остаётся в том же агрегатном состоянии и той же консистенции, практически такого же цвета, меняется только её вкус.

виды концентрации растворов

Коллоидные растворы отличаются от обычных тем, что добавляемый компонент распадается не полностью, сохраняя сложные молекулы и соединения, размеры которых значительно превышают частицы растворителя, превосходя значение 1 нанометра.

Виды концентрации растворов

В одно и то же количество растворителя можно добавить разное количество растворяемого элемента, на выходе будем иметь растворы с разной концентрацией. Перечислим основные из них:

  1. Насыщенные растворы характеризуются степенью растворимости вещества, при которой растворяемый компонент под влиянием постоянной величины температуры и давления больше не распадается на атомы и молекулы и раствор достигает фазового равновесия. Насыщенные растворы также условно можно разделить на концентрированные, в которых массовая доля растворённого компонента сопоставима с растворителем, и на разбавленные, где растворённого вещества в несколько раз меньше растворителя.
  2. Ненасыщенные – это те растворы, в которых растворяемое вещество ещё может распадаться на мелкие частицы.
  3. Пересыщенные растворы получаются тогда, когда изменяются параметры воздействующих факторов (температура, давление), в результате чего продолжается процесс "дробления" растворённого вещества, его становится больше, чем было при нормальных (обычных) условиях.

Электролиты и неэлектролиты

Некоторые вещества в растворах распадаются на ионы, способные проводить электрический ток. Такие гомогенные системы называются электролитами. В эту группу входят кислоты, большинство солей. А растворы, не проводящие электрический ток, принято называть неэлектролитами (почти все органические соединения).

виды химических растворов

Группы растворов по назначению

Растворы незаменимы во всех отраслях народного хозяйства, специфика которых создала такие виды специальных растворов, как медицинские, строительные, химические и другие.

Медицинские растворы – это совокупность препаратов в форме мазей, суспензий, микстур, растворов для инфузий и инъекций и прочих лекарственных форм, применяемых в медицинских целях для лечения и профилактики различных заболеваний.

виды специальных растворов

Виды химических растворов включают в себя огромное множество гомогенных соединений, используемых в химических реакциях: кислоты, соли. Эти растворы могут быть органического или неорганического происхождения, водные (морская вода) или безводные (на основе бензола, ацетона и т. д.), жидкие (водка) или твёрдые (латунь). Они нашли своё применение в самых различных отраслях национального хозяйства: химическая, пищевая, текстильная промышленность.

Виды строительных растворов отличаются вязкой и густой консистенцией, из-за чего им больше подходит название смеси.

виды строительных растворовБлагодаря своей способности быстро затвердевать они с успехом применяются в качестве вяжущего материала для кладки стен, потолков, несущих конструкций, а также для отделочных работ. Представляют собой водные растворы, чаще всего трёхкомпонентные (растворитель, цемент различных маркировок, заполнитель), где в качестве наполнителя используется песок, глина, щебень, известь, гипс и другие строительные материалы.

Растворы. Виды растворов - HimHelp.ru

Растворами называются гомогенные системы, содержащие не менее двух веществ. Могут существовать растворы твердых, жидких и газообразных веществ в жидких растворителях, а также однородные смеси (растворы) твердых, жидких и газообразных веществ. Как правило, вещество, взятое в избытке и в том же аг­регатном состоянии, что и сам раствор, принято считать растворителем, а компонент, взятый в недостатке — растворенным веществом.

В зависимости от агрегатного состояния растворителя различают газообразные, жидкие и твердые растворы.

Газообразными растворами являются воздух и другие смеси газов.

К жидким растворам относят гомогенные смеси газов, жид­костей и твердых тел с жидкостями.

Твердыми растворами являются многие сплавы, например, металлов друг с другом, стёкла. Наибольшее значение имеют жидкие смеси, в которых растворителем является жидкость. Наи­более распространенным растворителем из неорганических ве­ществ, конечно же, является вода. Из органических веществ в качестве растворителей используют метанол, этанол, диэтиловый эфир, ацетон, бензол, четыреххлористый углерод и др.

В процессе растворения частицы (ионы или молекулы) рас­творяемого вещества под действием хаотически движущихся час­тиц растворителя переходят в раствор, образуя в результате бес­порядочного движения частиц качественно новую однородную систему. Способность к образованию растворов выражена у разных веществ в различной степени. Одни вещества способны смешиваться друг с другом в любых количествах (вода и спирт), другие — в ограниченных (хлорид натрия и вода).

Сущность процесса образования раствора можно показать на примере растворения твердого вещества в жидкости. С точки зрения молекулярно-кинетической теории растворение протекает следующим образом: при внесении в растворитель какого-либо твердого вещества, например, поваренной соли, частицы ионов Na+ и Cl, находящиеся на поверхности, в результате колебатель­ного движения, увеличивающегося при соударении с частицами растворителя, могут отрываться и переходить в растворитель. Этот процесс распространяется на следующие слои частиц, кото­рые обнажаются в кристалле после удаления поверхностного слоя. Так постепенно частицы, образующие кристалл (ионы или молекулы), переходят в раствор. На  рис  дана наглядная схема разрушения ионной кристаллической решетки NaСl при раство­рении в воде, состоящей из полярных молекул.

Частицы, перешедшие в раствор, вследствие диффузии распределяются по всему объему растворителя. С другой стороны, по мере увеличения концентрации частицы (ионы, молекулы), на­ходящиеся в непрерывном движении, при столкновении с твердой  поверхностью еще не растворившегося вещества могут задерживаться на ней, т.е. растворение всегда сопровождается обратным явлением — кристаллизацией. Может наступить такой момент, когда одновременно выделяется из раствора столько же частиц (ионов, молекул), сколько их переходит в раствор — наступает равновесие.

По соотношению преобладания числа частиц, переходящих в раствор или удаляющихся из раствора, различают растворы на­сыщенные, ненасыщенные и пересыщенные. По относительным количествам растворенного вещества и растворителя растворы подразделяют на разбавленные и концентрированные.

Раствор, в котором данное вещество при данной температуре больше не растворяется, т.е. раствор, находящийся в равновесии с растворяемым веществом, называют насыщенным, а раствор, в котором еще можно растворить добавочное количество данного вещества, — ненасыщенным.

Насыщенный раствор содержит максимально возможное (для данных условий) количество растворенного вещества. Следова­тельно, насыщенным раствором является такой раствор, который находится в равновесии с избытком растворенного вещества. Концентрация насыщенного раствора (растворимость) для данно­го вещества при строго определенных условиях (температура, растворитель) — величина постоянная.

Раствор, содержащий растворенного вещества больше, чем его должно быть в данных условиях в насыщенном растворе, на­зывается пересыщенным. Пересыщенные растворы представляют собой неустойчивые, неравновесные системы, в которых наблю­дается самопроизвольный переход в равновесное состояние. При этом выделяется избыток растворенного вещества, и раствор ста­новится насыщенным.

Насыщенный и ненасыщенный растворы нельзя путать с разбавленным и концентрированным. Разбавленные растворы — растворы с небольшим содержанием растворен­ного вещества; концентрированные растворы — растворы с большим содержанием растворенного вещества. Необходимо подчеркнуть, что понятие разбавленный и концентрированный растворы являются относительными, выражающими только соот­ношение количеств растворенного вещества и растворителя в растворе.

Сравнивая растворимость различных веществ, мы видим, что насыщенные растворы малорастворимых веществ являются разбавленными, а хорошо растворимых веществ — хотя и ненасы­щенные, но довольно концентрированными.

В зависимости от то­го, электронейтральными или заряженными частицами являются компоненты раствора, их подразделяют на молекулярные (растворы неэлектролитов) и ионные (растворы электролитов). Одна из характерных особенностей растворов электролитов за­ключается в том, что они проводят электрический ток.

Виды растворов

3

РАСТВОРЫ

Растворы однородные смеси двух или большого числа веществ (компонентов), которые равномерно распределены в виде отдельных атомов, ионов, молекул.

Различают истинные, коллоидные растворы и суспензии.

Истинные растворы характеризуются прозрачностью, имеют малые размеры растворённых частиц, легко проходят через биологические мембраны. В зависимости от концентрации солей существует три типа растворов: изотонические; гипертонические; гипотонические;

1. И з о т о н и ч е с к и е р а с т в о р ы имеют одинаковую концентрацию солей, как и в плазме крови, и такое же осмотическое давление.

К ним относят растворы, имеющие концентрацию солей 0,9%.

Одним из таких растворов является физиологический раствор - это раствор хлорида натрия - NaCl 0,9%. В таком растворе в клетку и из клетки молекулы воды будут перемещаться в равном количестве в обе стороны.

С кл = С раствор С – концентрация солей

Н2 0

В этом растворе клетка сохраняет все жизненно важные функции, осуществляя процессы дыхания, размножения, обмена веществ.

Применение физиологического раствора.

Вводят физраствор через рот, внутривенно, внутримышечно, подкожно, в прямую кишку:

  • при некоторых заболеваниях – тяжелые длительные поносы, холера, неукротимая рвота, обширные ожоги хлорид натрия выделяется из организма в больших количествах, чем обычно. Также его много теряется с потом при работе в горячих цехах. В таких случаях в организме возникает его недостаточность, что сопровождается развитием ряда болезненных явлений: спазмы, судороги, нарушения кровообращения, угнетение ЦНС;

  • при интоксикациях, кровопотерях, обезвоживании, высокой температуре

  • для промывания глаз, носовой полости.

  • натрий хлористый является составной частью растворов применяющихся в качестве кровозамещающих (плазмозамещающих) жидкостей.

2. Г и п е р т о н и ч е с к и й р а с т в о р (2%, 5%, 10%, 15%) - это раствор в котором концентрация солей выше, чем в плазме крови.

К ним относятся растворы, содержащие более 0,9% солей. Если клетку поместить в такой раствор, то вода из клетки поступает в окружающую среду, при этом падает в клетке тургорное (осмотическое) давление, содержимое клетки сжимается, она теряет форму, происходит обезвоживание. Это явление называется - плазмолиз

. С кл < С раствор

Н2 0

Явление плазмолиза обратимое, если поместить клетку в гипотонический раствор, то в таком растворе она восстановит объем и форму Н2 0 клетка

Применяют гипертонический раствор для:

  • полосканий горла, для ванн, обтираний;

  • назначают при запорах для опорожнения кишечника.

  • в виде компрессов и примочек применяются при лечении гнойных ран, раны очищаются от гноя;

  • 2 – 5% растворы используют для промывания желудка при отравлении нитратом серебра;

  • внутривенно используют при отёке лёгких и внутренних кровотечениях.

3. Г и п о т о н и ч е с к и й р а с т в о р, это раствор, имеющий меньшую концентрацию солей, чем в плазме крови. К ним относят ди - бидистиллированную воду, талую воду ледников. Если клетку поместить в гипотонический раствор, то в нее из раствора будет поступать вода, осмотическое давление возрастает, клетка набухает. Это явление получило название – деплазмолиз.

С кл > С раствор

Н2 0

Животные клетки, в таком растворе быстро разрушаются т.к. мембрана не выдерживает высокого осмотического давления и разрывается. Это явление называется цитолиз. Частные случаи цитолиза – разрушение эритроцитов крови – гемолиз, при этом гемоглобин выходит в плазму крови и окрашивает ее в красный цвет, такая кровь называется лаковой.

Растительные клетки в таком растворе обычно только набухают, т.к. имеют кроме цитоплазматической мембраны плотную клеточную стенку – целлюлозную оболочку. Но, если растительные клетки длительно находятся в гипотоническом растворе, то и они разрушаются.

Применяют гипотонические растворы в качестве растворителей для водорастворимых лекарственных препаратов. Путём пиноцитоза в клетки поступают питательные вещества из кровяного русла, гормоны, ферменты, лекарственные вещества.

а) клетки листа элодеи б) плазмолиз в клетках листа элодеи (в 10% растворе хлорида натрия)

Суспензии, или взвеси,— мутные жидкости, частицы которых размером более 0,2 мкм. При отстаивании взвешенные частицы оседают.

Коллоидные растворы. Если частицы имеют промежуточные размеры от 0,1 до 0,001 мкм, т. е. слишком велики, чтобы образовать истинный раствор, но и слишком малы, чтобы выпасть в осадок, возникает коллоидный раствор (греч. со11а— клей). Поскольку диаметр белковых молекул превышает 0,001 мкм, белки образуют коллоидные растворы и вся протоплазма представляет собой коллоид. В коллоидных растворах на поверхностях частиц создаются огромные суммарные площади

Молекулы воды, водородными связями прочно соединены с молекулами белков. Мельчайшие частицы веществ, окружённых молекулами воды, образуют коллоидные растворы – это цитоплазма, кариоплазма, межклеточные жидкости. В коллоидном растворе различают непрерывную фазу – дисперсионную среду (вода) и коллоидные частицы – дисперсную фазу. Коллоидной частицей протоплазмы чаще всего являются молекулы белка, т.к. их размеры соответствуют размерам коллоидных частиц.

Вокруг белка в коллоидном растворе образуются водные или с о л ь в а т н ы е (от лат. solvare - распускать) оболочки. Сольватная связанная вода прочно удерживается коллоидными частицами белков. Молекулы воды, создавая оболочки вокруг белков, препятствуют образованию крупных частиц. Такое состояние называется д и с п е р с н ы м (рассеянным, раздробленным).

Дисперсность (степень раздробленности) обратно пропорциональна размерам коллоидных частиц

d = , где d- дисперсность, r – размер коллоидной частицы.

Коллоидные частицы как бы взвешены в дисперсионной среде, где создаётся огромная поверхность, на которой происходит оседание, адсорбция веществ поступающих в клетку и течение разнообразных биохимических реакций.

Коллоидные растворы бывают в двух состояниях: в виде золя (растворённый) и геля (студень, более вязкий).

Гели дисперсные системы. В состоянии гель вытянутые белковые молекулы, соприкасаясь, друг с другом образуют остов из сетки, заполненный жидкостью.

Золи коллоидные р-ры с частицами, которые свободно перемещаются. Когда белковые молекулы (коллоидные частицы) расходятся, коллоид переходит в золь.

Эти процессы обратимы и в клетке совершаются непрерывно. При сокращении мышцы золь быстро переходит в гель и наоборот. При образовании псевдоподий у амёбы наблюдается переход геля в золь.

Такой переход из одного состояния в другое можно наблюдать на растворе желатина, который при нагревании - жидкий (золь), а при остывании становится студнеобразным (гель).

Коллоидное состояние определяет вязкость. Вязкость повышается, а дисперсность уменьшается, например, при повреждении клеток, размеры коллоидных частиц укрупняются, за счёт набухания и их агрегации.

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ПРОТОПЛАЗМЫ

ПОНЯТИЕ О ДИСПЕРСНЫХ СИСТЕМАХ, КОЛЛОИДНОЕ И КРИСТАЛЛИЧЕСКОЕ СОСТОЯНИЕ ПРОТОПЛАЗМЫ

Протоплазма характеризуется рядом физико-химических свойств. Это обусловлено тем, что она представляет собой сложное соединение коллоидных растворов белка и других органических веществ с истинными растворами солей и ряда неорганических соединений. Протоплазма представляет собой устойчивый гидрофильный коллоид. Коллоидным состоянием протоплазмы обусловлена ее вязкость. У боль­шинства клеток консистенция цитоплазматического матрикса превышает вязкость воды не более чем в 5—10 раз, но в ряде случаев может быть зна­чительно выше. Вязкость протоплазмы зависит от обменных процессов в клетках. Так, она повышается при повреждении клетки, а в яйцеклетках — после оплодотворения. Во время деления клетки обнаруживается ритмич­ное изменение вязкости протоплазмы. Вязкость крови меняется в зависи­мости от физиологического и патологического состояния организма.

Раньше единственным физическим состоянием протоплазмы считалось коллоидное. Но в последнее время обнаружено, что ряд клеточных струк­тур представляют собой жидкие кристаллы. Жидкие кристаллы в отличие от настоящих, имеющих правильное чередование, Составляющих их моле­кул в трех измерениях обладают упорядоченностью лишь в двух измерениях. Жидкие, кристаллы занимают промежуточное положение между жидкостями и кристаллами. С одной стороны, они как жидкости обладают текучестью, могут сливаться друг с другом, с другой — подобно кристаллам, отличаются анизотропией, т. е. их прочность, электропроводность и ряд других свойств неодинаковы в разных направлениях. Особенности жидких кристаллов важны для понимания ряда процессов жизнедеятельности: у них иногда проявляется способность к движению, они нередко делятся почкованием. По-видимому, жидкокристаллическое состояние ряда клеточных структур обеспечивает их большую лабильность (подвижность, изменчивость).

Большой способностью к образованию жидких кристаллов обладают липиды. Жидкокристаллическая структура обнаружена в сперматозоидах, эритроцитах, клетках нервной системы и нервных волокон, палочках и кол­бочках сетчатки глаза.

Растворы

73

Леккия №17

РАСТВОРЫ

План

  1. Общая характеристика растворов.

  2. Способы выражения концентрации растворов.

  3. Термодинамика и механизм процесса растворения.

  4. Растворимость.

  5. Вода как растворитель. Значение растворов в жизнедеятельности организмов

1. Общая характеристика растворов.

Растворы – это гомогенные системы переменного состава, включающие два и более компонентов. Частицы компонентов раствора распределены по его объему в виде атомов, молекул или ионов (размер частиц 0,1 – 0,5 нм).

Образование растворов, в отличие от механических смесей, сопровождается изменением энтальпии, энтропии и объема системы.

По агрегатному состоянию различают газовые, жидкие и твердые растворы. Но обычно термин растворы относится к жидким системам.

2. Способы выражения концентрации растворов.

Относительное содержание компонентов в растворе определяется его концентрацией.

М олярная концентрация – это количество вещества, содержащееся в одном литре раствора (моль/л):

Э квивалентная концентрация – это число молей эквивалентов вещества, содержащихся в одном литре раствора (моль/л):

Эквивалент – это реальная или условная частица вещества, которая в кислотно-основной реакции эквивалентна одному иону водорода, а в окислительно-восстановительной эквивалентна одному электрону.

Масса одного моля эквивалентов называется молярной массой эквивалента вещества (Э). В разных реакциях одно и то же вещество может иметь разные эквиваленты.

Моляльная концентрация – это количество вещества, содержащееся в одном килограмме растворителя (моль/кг):

М ассовая доля равна отношению массы растворенного вещества к массе раствора:

М олярная доля равна отношению количества растворенного вещества в общему количеству веществ в растворе:

К ак правило, вещество обладает определенной растворимостью в данном растворителе. Под растворимостью понимают концентрацию вещества в насыщенном растворе.

3. Термодинамика и механизм процесса растворения

Растворение – сложный физико-химический процесс, включающий три основные стадии, каждая из которых характеризуется изменениями термодинамических функций Н и S:

  1. разрушение химических и межмолекулярных связей в растворяемом веществе (например, разрушение кристаллической решетки): Н1>0, S1>0

  2. химическое взаимодействие частиц растворенного вещества с растворителем (сольватация): Н2<0, S2<0

  3. равномерное распределение частиц растворенного вещества в среде растворителя путем диффузии: Н3>0, S3>0

Согласно 2-му закону термодинамики условием самопроизвольности процесса растворения является убыль энергии Гиббса:

G = H - TS < 0,

которая складывается из энтальпийного Н и энтропийного TS факторов.

Растворение газов в жидкостях приводит к упорядочению системы и, следовательно, сопровождается уменьшением энтропии: Sр-ния<0. Движущей силой процесса растворения в этом случае является энтальпийный фактор и растворение большинства газов является процессом экзотермическим: Нр-ния<0. Таким образом, самопроизвольное растворение газов возможно при низких температурах (|Н| > |TS|)

Растворение жидких и твердых веществ в жидкостях приводит к увеличению беспорядка в системе и увеличению энтропии: Sр-ния>0. Суммарный тепловой эффект процесса растворения определяется в основном слагаемыми Н1 и Н2 и в зависимости от их соотношения может и быть и положительным (NaCl), и отрицательным (NaOH). Растворение большинства кристаллических веществ – процесс эндотермический Нр-ния>0, так как энергия, затрачиваемая на разрушение кристаллической решетки не компенсируется энергией, выделяемой за счет сольватации. Таким образом, самопроизвольному растворению большинства твердых веществ способствуют высокие тепмературы (|Н| < |TS|).

Растворы, образование которых не сопровождается изменениями объема системы и тепловыми эффектами (V=0, Н=0), называют идеальными. Движущей силой образования идеального раствора является увеличение энтропии системы. Идеальный раствор – понятие абстрактное. Реальные системы могут лишь приближаться к идеальным. Наиболее близки к модели идеального раствора системы, в которых компоненты близки по свойствам и практически не взаимодействуют друг с другом (например, раствор толуола в бензоле). Приближаются по свойствам к идеальным бесконечно разбавленные растворы, в которых взаимодействиях сводятся к минимуму за счет низкой концентрации растворенного вещества.

4. Растворимость

Под растворимостью понимают концентрацию растворенного вещества в насыщенном растворе.

Растворимость выражают в тех же единицах, что и концентрацию. Часто используют коэффициент растворимости s, равный массе растворенного вещества (г) в насыщенном растворе, содержащем 100 г растворителя.

Насыщенным называют раствор, который находится в равновесии с избытком растворяемого вещества (Gр-ния=0). Насыщенный раствор имеет максимально возможную в данных условиях концентрацию.

Растворимость зависит:

  • от природы растворенного вещества и растворителя;

  • от температуры;

  • от давления;

  • от присутствия третьих компонентов.

Влияние природы компонентов на растворимость определяется принципом: подобное растворяется в подобном. Полярные растворители, например, вода, хорошо растворяют вещества с ионной связью (неорганические соли, кислоты и основания). Хорошей растворимостью в воде обладают полярные органические соединения, образующие с молекулами растворителя водородные связи (спирты, карбоновые кислоты, амины). Неполярные растворители, например, углеводороды, растворяют неполярные и малополярные соединения (жиры).

Влияние температуры на растворимость зависит от теплового эффекта растворения и определяется принципом Ле Шателье. Повышению растворимости газов способствует понижение температуры, так как растворение газов – процесс экзотермический. Растворимость большинства твердых веществ и жидкостей - процесс эндотермический и возрастает при повышении температуры.

Влияние давления существенно только в том случае, если при растворении происходит значительное изменение объема системы, что наблюдается при растворении газов в жидкостях. Растворимость газов растет с увеличением давления, так как сопровождается уменьшением объема системы.

Закон Генри:

Количество газа, растворенного в определенном объеме жидкости при постоянной температуре прямо пропорционально давлению газа.

c(X) = Kгp(X)

где c(X) – молярная концентрация газа,моль/л

Kг - константа Генри, моль/лПа

p(X) – давление газа над раствором, Па

Влияние присутствия третьих компонентов.

Растворимость газов в жидкостях значительно снижается в присутствии электролитов (солей) Этот процесс называют высаливанием.

Закон Сеченова:

Растворимость газов в жидкостях в присутствии электролитов понижается.

С(X) = С0(X)

где С(X) – растворимость газа в присутствии электролита

С0(X) – растворимость газа в чистом растворителе

КС - константа Сеченова

Сэ - концентрация электролита

Биологическое значение законов Генри и Сеченова.

Изменение растворимости газов в крови при изменении давления может привести к тяжелым заболеванием. Кесонная болезнь у водолазов – проявление закона Генри. В соответствии с законом Сеченова растворимость кислорода и углекислого газа в крови зависит от концентрации электролитов, а также белков, липидов и других веществ.

5. Вода как растворитель. Значение растворов в жизнедеятельности организмов

Самым распространенным растворителем на нашей планете является вода. У животных и растительных организмов содержание воды составляет обычно более 50%, а в ряде случаев достигает 90-95%.

Вода хорошо растворяет многие ионные и полярные соединения. Такое свойство воды связано с ее высокой диэлектрической проницаемостью (= 78,5). В результате многие ионные соединения диссоциируют и отличаются высокой растворимостью в воде. Другой класс веществ, хорошо растворимых в воде, составляют полярные органические соединения (спирты, альдегиды, кетоны). Их растворимость обусловлена образованием водородных связей с молекулами воды.

Важны и другие аномальные свойства воды: высокое поверхностное натяжение, низкая вязкость, высокие температуры плавления и кипения, более высокая плотность в жидком состоянии, чем в твердом.

Вследствие высокой полярности вода вызывает гидролиз веществ (эфиров, амидов и др.). Так как вода составляет основную часть внутренней среды организма, то она обеспечивает процессы всасывания, передвижения питательных веществ и продуктов обмена в организме.

Важнейшие биологические жидкости – кровь, лимфа, моча, слюна, пот являются растворами солей, белков, углеводов, липидов в воде. Биохимические процессы в живых организмах протекает в водных растворах.

В жидких средах организма поддерживается постоянство рН, концентрации солей и органических веществ, постоянство осмотического давления. Такое постоянство называется гомеостазом. Приведенные примеры показывают, что учение о растворах представляет особый интерес для медиков.

73

Классификация растворов.

I.Растворы классифицируются по агрегатному состоянию растворителя и растворенного вещества.

Растворы могут быть жидкими, твердыми и газовыми.

Растворителемможет быть твердое вещество, жидкость и газ.

Практически все газы друг в друге растворяются. В жидкостях растворяются жидкости, газы и твердые вещества. В твердых телах растворяются только твердые тела. В твердых растворах происходит образование гомогенной системы из твердых компонентов.

Газовые растворы– это растворы газов, жидкостей и твердых тел в газах. В пределе при нулевом давлении любой реальный газ представляет систему независимых друг от друга частиц, т.е. обладает признаками идеальной системы. Смесь этих газов, называемаяидеальным газом, подчиняетсязакону Дальтона:(гдеР– общее давление;Рi– парциальное давлениеi-го компонента). С повышением давления появляется взаимодействие между частицами, тогда смесь реальных газов, паров жидкости и твердых тел рассматривают как газовый раствор.

Наибольшее распространение получили жидкие, в частности,водные растворы. В случае растворов «жидкость – газ» и «жидкость – твердое тело» растворителем принято считать жидкость. У растворов «жидкость – жидкость» растворителем считают компонент, который находится в избытке по сравнению с другими компонентами, именуемых растворенными веществами.

В зависимости от свойств растворенного вещества различают жидкие растворыне электролитов, электролитов и высокомолекулярных соединений(ВМС). Последние являются предметом рассмотрения в коллоидной химии.

Количество вещества, растворенного в данном объеме растворителя, называется концентрацией.

Способы выражения концентраций:

1)Молярная концентрация М (или молярность) – число молей вещества, растворенного в 1 м3 (или литре) раствора:

2)Моляльная концентрация т (или моляльность) – число молей растворенного вещества в 1 кг или 1000 г растворителя:

где Mp – масса растворителя.

3)Процентная концентрация ω определяется количеством граммов вещества в 100 г (весовые) или 100 мл (объемные) раствора:

или

4)Мольная доляN – отношение числа молейniодного компонента к суммарному числу молейnвсех компонентов раствора:

Сумма мольных долей всех компонентов раствора равна единице:

Пример.Проведем расчет М,mиNпо известной массовой концентрации серной кислотыω=98%,плотность раствора равна 1,84 г/л; молярные массы компонентов раствора равныг/моль;г/моль.

Молярность раствора равна:

Моляльность раствора составляет:

Мольная доля серной кислоты равна:

II.Растворы подразделяются также по степени взаимодействия растворителя и растворенного вещества.

Растворы

идеальные

предельно разбавленные

реальные

(неидеальные)

Идеальными раствораминазываются такие растворы, у которых сила взаимодействия между одноименными и разноименными молекулами одинакова.

А – растворенное вещество, fA-A

В – растворитель, fВ-В

Раствор АВ fA-A= fВ-В= fA

В идеальных растворах энергия взаимодействия молекул разных компонентов одна и та же; все молекулы раствора (растворенных веществ и растворителя) обладают одинаковым силовым полем, а объемы молекул всех компонентов равны. В идеальном жидком растворе, в отличие от идеального газа, между молекулами существует взаимодействие. Одинаковая энергия взаимодействия всех молекул в растворе приводит к их равномерному распределению в объеме. Поэтому энтропия смешения компонентов идеального раствора ΔSравна энтропии смешения идеального газаΔSи.г..

Одинаковый объем всех молекул обуславливает неизменность объема системы при образовании идеального раствора. Тепловой эффект при этом образовании идеального раствора равен нулю. В связи с этим можно дать другое определение идеальных жидких растворов. Идеальными будут такие растворы, образование которых из компонентов, взятых в одинаковом агрегатном состоянии и в любых соотношениях, не сопровождается изменением объема и тепловым эффектом, а изменение энтропии равно изменению энтропии при смешении идеальных газов, т.е.

ΔV=0; ΔH=0; ΔS=ΔSи.г.

Объем и энтальпия идеальных растворов аддитивны и зависят от состава раствора.

Следует иметь в виду, что идеальными могут считаться растворы, когда выполняются все вышеперечисленные условия и, кроме того, должны быть равны парциальные давления компонентов, у них должны быть одинаковая температура и одно и то же агрегатное состояние.

Идеальные растворы потому и называются идеальными, что они не существуют в действительности. Однако имеется значительное число растворов, близких по свойствам к идеальным растворам. К ним относятся разбавленные растворы.

Энергия Гиббса i-го компонента идеального раствора численно равна химическому потенциалу и может быть представлена следующим образом:

Когда ∆Hi =0, химический потенциалi-го компонента в идеальном растворе равен:

, где

µi , µip–химические потенциалыi-го индивидуального компонента в растворе;Ni –мольная доляi-го компонента.

Продифференцируем данное уравнение и получим:

В связи с тем, что получаем:

Это уравнение показывает соотношение между химическим потенциалом компонентов идеального раствора и его составом, определяемым мольной долей компонентов раствора.

Рассмотрим предельно разбавленные растворы, которые часто называют просто разбавленными.Предельно разбавленными раствораминазываются такие растворы, у которых растворитель подчиняется законом идеальных растворов, а растворимое вещество – законам реальных растворов.

Концентрация растворенного вещества в разбавленном растворе бесконечно мала, поэтому взаимодействием между его молекулами можно пренебречь. Тогда предельно разбавленные растворы можно описать закономерностями и уравнениями, которые справедливы для идеальных растворов.

Неидеальными (реальными) раствораминазываются такие растворы, у которых силы взаимодействия между одноименными и разноименными молекулами различны.

Раствор АВ fA-A fВ-В fA

Реальные растворы не подчиняются закономерностям идеальных и предельно разбавленных растворов. Однако, введя вспомогательные величины, свойства неидеальных растворов тоже можно выразить через закономерности идеальных растворов.

Цементные растворы: виды, применение, приготовление

 Цементные растворы: виды, применение, приготовлениеЦемент - это один из наиболее распространенных строительных материалов. Область его применения широка. Он используется при кладке кирпича, заливке фундаментов. Из цементных растворов различного состава делают железобетон и бетон. Впоследствии эти материалы применяют для строительства зданий всевозможного назначения. На основе цемента получают различные отделочные материалы, используемые при ремонте жилых и офисных помещений.

В современном строительстве применяются новые прогрессивные материалы на основе цемента, с улучшенными характеристиками. Так, он используется для изготовления монолитного и сборного бетона, асбестоцементных изделий, разнообразных строительных растворов и производства искусственных материалов. В больших объемах этот материал применяется в различных отраслях промышленности, особенно в газовой и нефтяной. Некоторые из новых строительных материалов на основе цемента способны заменить другие, более дорогие или дефицитные материалы - древесину, известь, кирпич и пр.

Виды цементных растворов

Цементный раствор используется для скрепления отдельных элементов в строительстве, для отделки поверхностей, их предварительной обработки для дальнейшей укладки других покрытий. Для оштукатуривания потолков и стен обычно используют цементный, известковый, цементно-известковый или известково-гипсовый раствор. И цемент выступает главным компонентом в любом их этих растворов. Основные компоненты цементных растворов - наполнитель, связующее вещество и вода. В зависимости от того, в каких пропорциях смешиваются эти компоненты, получают различные виды растворов. Различают нормальные, тощие и жирные растворы.

Если в смеси преобладает связующее вещество, то получают жирный раствор. Он быстро схватывается, усыхает и часто образует трещины. При использовании смеси, в которой правильно соблюдены пропорции основных компонентов, получают нормальный раствор. Он характеризуется высокой прочностью, и после применения не усыхает. Если в состав сухой смеси входит недостаточное количество связующего компонента, то из нее получают тощий раствор - жидкий и недостаточно прочный.

Приготовление разных видов растворов цемента

Чтобы сделать известковый раствор, понадобится известь, песок и вода. Иногда к смеси добавляют гипс, способствующий ускорению застывания готового раствора. Известь необходимо смешать с песком в соотношении 1:3. Потом сухую смесь заливают водой и тщательно перемешивают. Если состав получился жидким, то можно добавить небольшими порциями песок, добиваясь требуемой густоты состава. Такой раствор лучше готовить маленькими порциями, так как использовать его рекомендуется в течение 5-7 минут после приготовления.

Почти так же, как и предыдущий, готовится и цементный раствор. Но вместо извести, для его приготовления следует использовать цемент. В таких же пропорциях он смешивается с песком, потом сухая смесь разбавляется водой и хорошо перемешивается. Если необходимо сделать состав более густым, то добавляют еще немного цемента. Если раствор получился слишком густым, то исправить это можно, разбавив его водой и песком. Использовать приготовленный состав рекомендуется в течение часа.

Цементный раствор прочный, но не пластичный. Поэтому его не используют для чистовой отделки поверхностей, затирки небольших трещин. Для выполнения этих операций лучше приготовить другой тип раствора - цементно-известковый. Это раствор такого же состава, в котором вместо воды используется разведенная до жидкого состояния известь. В результате соединения всех компонентов получается прочный и пластичный состав, прекрасно прилипающий к обрабатываемым поверхностям. Именно он обычно применяется для чистовой отделки потолка или стен.

Оштукатуривание стен

Оштукатуривание стен цементным раствором - одна из сфер использования цемента. Прежде чем наносить подготовленный состав, необходимо подготовить поверхность к работе. От того, насколько правильно подготовлена, выровнена поверхность, зависит качество будущей отделки.

Если рабочая поверхность - это новая кирпичная стена, то для ее подготовки достаточно счистить пыль, и обильно смочить водой стену. Если швы забиты раствором, то их рекомендуется расшить. Для этого в каждом шве делают углубление на 1 см и очищают его железной щеткой. Потом обработанные места обильно поливают водой.

Обычно бетонные и каменные стены, которые оставались не оштукатуренными год и более, сильно загрязнены пылью, копотью. Поэтому на их поверхности делают насечки с помощью перфоратора или топора, а потом тщательно очищают от пыли и промывают водой. Отваливающиеся части стены необходимо удалить, и после этого заделать.

Для очистки поверхностей от пыли и грязи используют стальную щетку. Ее необходимо плотно прижимать к поверхности, и выполнять движения в разные стороны. Очищение от грязи и пыли необходимо для того, чтобы штукатурный состав прочно сцепился с основанием.

Если на поверхности имеются участки, покрытие жирными пятнами или масляной краской, то эти места следует удалять, пока жирные участки полностью не исчезнут. Это делают потому, что к жирным участкам или маслу штукатурный состав не прилипнет. Кроме того, масло и смола со временем проступают через штукатурный слой.

Различные способы нанесения штукатурки

Штукатурку на поверхность наносят разными способами. Выбор способа зависит от того, какой слой покрытия необходим, а также от его предназначения. Самые распространенные способы - это нанесение состава штукатурной лопаткой с сокола, нанесение совками и ковшом, разравнивание полутерками, намазывание различными инструментами.

Лопаткой или мастерком раствор наносят на поверхность небольшого размера. Его укладывают на сокол, т.е., на щиток с деревянной ручкой. Потом с него на поверхность накидывают раствор. При этом сокол располагается под наклоном к поверхности. Лопаткой состав следует набирать от края, а наносить его, делая инструментом резкий взмах, а потом - остановку.

Ковшом и совком наносить штукатурку эффективнее, так как можно обрабатывать поверхности большего размера, и наносить за один прием больше материала. А техника исполнения аналогична описанной выше. Для правильной работы и первым, и вторым способом требуется определенный опыт, навыки.

После нанесения состава любым из способов, его необходимо разровнять по поверхности. Делается это при помощи полутерка и сокола. Также этими инструментами можно наносить штукатурку методом намазывания. При этом инструменты должны быть в длину на 10 см больше расстояния между маяками.

Намазывание выполняют, когда необходимо нанести штукатурку тонким слоем. Для этого можно использовать различные инструменты. Чаще всего выбирают полутерок или сокол. Технология нанесения проста: раствор необходимо наложить на плоскость с помощью выбранного инструмента, прижать его к поверхности, а потом размазать по ней, выполняя продольные движения. Толщина слоя зависит от степени давления на инструмент.

Цемент - один из наиболее распространенных строительных материалов. Он широко применяется в самых разных отраслях для соединения различных элементов, выравнивания поверхностей, их чистовой отделки и разработки новых качественных материалов.

Перейти в раздел: Сухие строительные смеси → Сыпучие материалы → Цемент

About Author


alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *