Высота лэп от земли: Высота лэп 110 кв от земли

Глава 2.5. Часть 4. ВОЗДУШНЫЕ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ НАПРЯЖЕНИЕМ ВЫШЕ 1 кВ

ПЕРЕСЕЧЕНИЕ И СБЛИЖЕНИЕ ВЛ С СООРУЖЕНИЯМИ СВЯЗИ, СИГНАЛИЗАЦИИ И РАДИОТРАНСЛЯЦИИ 

2.5.124. Пересечение ВЛ до 35 кВ с ЛС и РС должно быть выполнено по одному из следующих вариантов: 

1. Проводами ВЛ и подземным кабелем ЛС и РС. 

2. Подземной кабельной вставкой в ВЛ и неизолированными проводами ЛС и РС. 

3. Проводами ВЛ и неизолированными проводами ЛС и РС. 

2.5.125. Пересечение ВЛ напряжением до 35 кВ с неизолированными проводами ЛС и РС может выполняться в следующих случаях: 

1. Если невозможно проложить ни подземный кабель ЛС и РС, ни кабель ВЛ. 

2. Если применение кабельной вставки в ЛС приведет к необходимости установки дополнительного или переноса ранее установленного усилительного пункта ЛС. 

3. Если при применении кабельной вставки в РС общая длина кабельных вставок РС превышает допустимые значения. 

4. Если на ВЛ напряжением до 35 кВ применены подвесные изоляторы. При этом ВЛ на участке пересечения с неизолированными проводами ЛС и РС выполняется с повышенной механической прочностью проводов и опор (см. 2.5.132). 

2.5.126. Пересечение ВЛ напряжением 110 кВ и выше с ЛС и РС должно быть выполнено по одному из следующих вариантов: 

1. Проводами ВЛ и подземным кабелем ЛС и РС. 

2. Проводами ВЛ и неизолированными проводами ЛС и РС. 

2.5.127. При пересечении ВЛ напряжением 110 кВ и выше с ЛС и РС применять кабельные вставки в ЛС и РС не следует (см. также 2.5.129): 

1) если применение кабельной вставки в ЛС приведет к необходимости установки дополнительного или переноса ранее установленного усилительного пункта ЛС, а отказ от применения этой кабельной вставки не вызовет нарушения норм мешающего влияния ВЛ на ЛС; 

2) если при применении кабельной вставки в РС общая длина кабельных вставок в РС превысит допустимые значения, а отказ от применения этой кабельной вставки не приведет к нарушению норм мешающего влияния ВЛ на РС.  

2.5.128. Пересечение проводов ВЛ с воздушными линиями городской телефонной связи не допускается; эти линии в пролете пересечения с проводами ВЛ должны выполняться только подземными кабелями. 

2.5.129. В пролете пересечения ЛС и РС с ВЛ, на которых предусматриваются каналы высокочастотной связи и телемеханики с аппаратурой, работающей в совпадающем спектре частот и имеющей мощность более 10 Вт на один канал, ЛС и РС должны быть выполнены подземными кабельными вставками. Длина кабельной вставки определяется по расчету влияния ВЛ на ЛС (РС), при этом расстояние по горизонтали от основания кабельной опоры ЛС и РС до проекции крайнего провода ВЛ на горизонтальную плоскость должно быть не менее 100 м. 

Если мощность высокочастотной аппаратуры, работающей в совпадающем спектре частот, превышает 5 Вт, но не более 10 Вт на один канал, то необходимость применения кабельной вставки ЛС и РС или принятия других мер защиты определяется по расчету влияния. 

Если мощность высокочастотной аппаратуры ВЛ, работающей в совпадающем спектре частот, не превышает 5 Вт на один канал, то применение кабельной вставки по условиям мешающего влияния не требуется. 

Если кабельная вставка в ЛС и РС оборудуется не по условиям мешающего влияния от высокочастотных каналов ВЛ, то расстояние по горизонтали от основания кабельной опоры ЛС и РС до проекции на горизонтальную плоскость крайнего провода ВЛ неуплотненных, уплотненных в несовпадающем спектре частот или уплотненных в совпадающем спектре частот при мощности высокочастотной аппаратуры до 10 Вт на один канал должно быть не менее 15 м без учета отклонения проводов ВЛ ветром. 

Таблица 2.5.26. Наименьшее расстояние от заземлителя и подземной части опоры ВЛ до подземного кабеля ЛС и РС

Эквивалентное удельное сопротивление земли P , Ом·мНаименьшее расстояние, м, при напряжении ВЛ, кВ
до 35110 и выше
До 1000,83 10
Более 100 до 5001025
Более 500 до 10001135
Более 10000,35 50

2. 5.130. При пересечении ВЛ с подземным кабелем ЛС и РС должны соблюдаться следующие требования: 

1. Угол пересечения ВЛ с ЛС и РС не нормируется. 

2. Расстояние от заземлителя и подземной части опор ВЛ до подземного кабеля ЛС и РС должно быть не менее приведенных в табл. 2.5.26. 

В случае прокладки кабельной вставки с целью экранирования в стальных трубах или покрытия ее швеллером и т. п. по длине, равной расстоянию между проводами ВЛ плюс по 10 м с каждой стороны от крайних проводов, допускается уменьшение приведенных расстояний до 5 м. В этом случае при пересечении с ВЛ 110 кВ и выше оболочку кабеля следует соединять со швеллером или трубкой по обоим концам. 

3. Металлические покровы кабельной вставки должны быть заземлены с обоих концов. 

4. Защита кабельной вставки от грозовых перенапряжений, типы кабелей, способ оборудования кабельной вставки на участке пересечения выбираются в соответствии с требованиями, предъявляемыми к кабельным ЛС и РС. 

5. При пересечении ВЛ 400-500 кВ с ЛС и РС расстояние в свету от вершины кабельной опоры ЛС и РС до проводов ВЛ должно быть не менее 20 м. 

2.5.131. При пересечении кабельной вставки в ВЛ до 35 кВ с неизолированными проводами ЛС и РС должны соблюдаться следующие требования: 

1. Угол пересечения кабельной вставки в ВЛ с ЛС и РС не нормируется. 

2. Расстояние от подземного кабеля вставки в ВЛ до незаземленной опоры ЛС и РС должно быть не менее 2 м, а до заземленной опоры ЛС (РС) и ее заземлителя - не менее 10 м. 

3. Расстояние по горизонтали от основания кабельной опоры ВЛ, неуплотненной и уплотненной в несовпадающем спектре частот и в совпадающем спектре частот в зависимости от мощности высокочастотной аппаратуры, до проекции проводов ЛС и РС должно выбираться в соответствии с требованиями, изложенными в 2.5.129 для случая пересечения проводов ВЛ с подземным кабелем ЛС и РС. 

4. Подземные кабельные вставки в ВЛ должны выполняться в соответствии с требованиями, приведенными в гл. 2.3 и в 2.5.69. 

2.5.132. При пересечении проводов ВЛ с неизолированными проводами ЛС и РС необходимо соблюдать следующие требования: 

1. Угол пересечения проводов ВЛ с проводами ЛС и РС должен быть по возможности близок к 90°. Для стесненных условий угол пересечения не нормируется. 

2. Место пересечения следует выбирать возможно ближе к опоре ВЛ. При этом расстояние по горизонтали от опор ВЛ до проводов ЛС и РС должно быть не менее 7 м, а от опор ЛС и РС до проекции ближайшего провода ВЛ - не менее 15 м. Кроме того, расстояние в свету от проводов ВЛ 400 и 500 кВ до вершин опор ЛС и РС должно быть не менее 20 м. 

Не допускается расположение опор ЛС и РС под проводами ВЛ. 

3. Опоры ВЛ, ограничивающие пролет пересечения с ЛС и РС, должны быть анкерными, железобетонными, металлическими или деревянными. Деревянные опоры должны быть усилены дополнительными приставками или подкосами. 

Пересечения ВЛ 35 кВ и выше с ЛС и РС можно выполнять на промежуточных опорах при применении на ВЛ проводов сечением 120 мм² - и более. 

4. Провода ВЛ должны быть расположены над проводами ЛС и РС. Провода ВЛ в пролете пересечения с ЛС и РС должны быть многопроволочными сечением не менее: алюминиевые - 70 мм² , сталеалюминиевые - 35 мм² , стальные - 25 мм² . 

5. Провода и тросы ВЛ, а также провода ЛС и РС не должны иметь соединений в пролете пересечения. При применении на ВЛ проводов сечением 240 мм² и более, а в случае расщепления фазы на три провода - 150 мм² и более допускается установка одного соединительного зажима на провод. 

6. В пролете пересечений ВЛ с ЛС и РС на опорах ВЛ должны применяться только подвесные изоляторы и глухие зажимы. При расщеплении фазы не менее чем на три провода допускается применение зажимов с ограниченной прочностью заделки. 

7. Изменение места установки опор ЛС и РС, ограничивающих пролет пересечения с ВЛ, допускается при условии, что отклонение средней длины элемента скрещивания на ЛС и РС не будет превышать значений, указанных в действующей "Инструкции по скрещиванию телефонных цепей воздушных линий связи" Министерства связи СССР.  

8. Опоры ЛС и РС, ограничивающие пролет пересечения или смежные с ним и находящиеся на обочине дороги, должны быть защищены от наезда транспорта. 

9. Провода на опорах ЛС и РС, ограничивающих пролет пересечения с ВЛ, должны иметь двойное крепление: при траверсном профиле - только на верхней траверсе, при крюковом профиле - на двух верхних цепях. 

10. Расстояния по вертикали от проводов ВЛ до пересекаемых проводов ЛС и РС в нормальном режиме ВЛ и при обрыве проводов в смежных пролетах ВЛ должны быть не менее приведенных в табл. 2.5.27. 

Таблица 2.5.27. Наименьшее расстояние по вертикали от проводов ВЛ до проводов ЛС и РС

Расчетный режим ВЛНаименьшее расстояние, м, при напряжении ВЛ, кВ
до 102035110150220330500
Нормальный:
а) ВЛ на деревянных опорах при наличии грозозащитных устройств, а также на металлических и железобетонных опорах23334455
б) ВЛ на деревянных опорах при отсутствии грозозащитных устройств44556677
Обрыв проводов в смежных пролетах на ВЛ с подвесной изоляцией11111,522,53,5

При применении на ВЛ плавки гололеда следует проверять габариты до проводов ЛС и РС в режиме плавки гололеда. Эти габариты проверяются при температуре провода в режиме плавки гололеда и должны быть не меньше, чем при обрыве провода ВЛ в смежном пролете. 

Расстояния по вертикали определяются в нормальном режиме при наибольшей стреле провеса проводов (без учета их нагрева электрическим током). В аварийном режиме расстояния проверяются для ВЛ с проводами сечением менее 185 мм² при среднегодовой температуре, без гололеда и ветра.

Для ВЛ с проводами сечением 185 мм² и более проверка по аварийному режиму не требуется. 

11. На деревянных опорах ВЛ без грозозащитного троса, ограничивающих пролет пересечения с ЛС и РС, при расстояниях между проводами пересекающихся линий менее указанных в п. "б" табл. 2.5.27 должны устанавливаться при напряжении 35 кВ и ниже трубчатые разрядники или защитные промежутки, при напряжении 110-220 кВ - трубчатые разрядники. При установке защитных промежутков на ВЛ должно быть предусмотрено автоматическое повторное включение. 

Трубчатые разрядники и защитные промежутки должны устанавливаться в соответствии с требованиями 2.5.122. 

Сопротивления заземляющих устройств трубчатых разрядников и защитных промежутков при токах промышленной частоты в летнее время должны быть не более:


Эквивалентное удельное сопротивление земли, Ом·мДо 100Более 100 и до 500Более 500 и до 1000Более 1000
Сопротивление заземляющего устройства, Ом10152030

Применение специальных мер защиты не требуется: для ВЛ с деревянными опорами без грозозащитных тросов при расстояниях между проводами пересекающихся линий не менее приведенных в табл. 2.5.27, п. "б", для ВЛ с металлическими и железобетонными опорами, для участков ВЛ с деревянными опорами, имеющих грозозащитные тросы. 

12. На деревянных опорах ЛС и РС, ограничивающих пролет пересечения с ВЛ, должны устанавливаться заземляющие спуски в соответствии с требованиями, предъявляемыми к ЛС и РС. 

2.5.133. Совместная подвеска проводов ВЛ и проводов ЛС и РС на общих опорах не допускается. 

2.5.134. При сближении ВЛ с воздушными ЛС и РС расстояния между их проводами и мероприятия по защите от влияния определяются в соответствии с "Правилами защиты устройств проводной связи, железнодорожной сигнализации и телемеханики от опасного и мешающего влияния линий электропередачи". Наименьшие расстояния по горизонтали при неотклоненных проводах должны быть не менее высоты наиболее высокой опоры ВЛ, а на участках стесненной трассы при наибольшем отклонении проводов ВЛ ветром: 2 м для ВЛ до 20 кВ, 4 м для ВЛ 35 и 110 кВ, 5 м для ВЛ 150 кВ, 6 м для ВЛ 220 кВ, 8 м для ВЛ 330 кВ, 10 м для ВЛ 400-500 кВ. При этом расстояние в свету от проводов ВЛ 400-500 кВ до вершин опор ЛС и РС должно быть не менее 20 м. Шаг транспозиции ВЛ по условию влияния на ЛС и РС не нормируется. 

Должны быть укреплены дополнительными подпорами опоры ЛС и РС или должны быть установлены сдвоенные опоры в случаях, если при падении опор ЛС и РС возможно соприкосновение между проводами ЛС и РС и проводами ВЛ. 

2.5.135. При сближении ВЛ со штыревыми изоляторами на участках, имеющих углы поворота, с воздушными ЛС и РС расстояние между ними должно быть таким, чтобы провод, сорвавшийся с угловой опоры ВЛ, не мог оказаться от ближайшего провода ЛС и РС на расстоянии менее приведенных в 2.5.134. При невозможности выполнить это требование провода ВЛ, проходящие с внутренней стороны поворота, должны иметь двойное крепление. 

2.5.136. При сближении ВЛ с подземными кабельными ЛС и РС наименьшие расстояния между ними определяются в соответствии с "Правилами защиты устройств проводной связи, железнодорожной сигнализации и телемеханики от опасного и мешающего влияния линий электропередачи" и должны быть не менее приведенных в табл. 2.5.26. 

2.5.137. Расстояния от ВЛ до антенных сооружений передающих радиоцентров должны приниматься по табл. 2.5.28. 

Пересечение ВЛ со створом радиорелейной линии должно быть согласовано с организацией, в ведении которой находится радиорелейная линия. 

Таблица 2.5.28. Наименьшее расстояние от ВЛ до антенных сооружений передающих радиоцентров

Антенные сооруженияРасстояние, м, при напряжении ВЛ, кВ
до 110150-500
Средневолновые и длинноволновые передающие антенны100100
Коротковолновые передающие антенны в направлении наибольшего излучения200300
То же в остальных направлениях5050
Коротковолновые передающие слабонаправленные и ненаправленные антенны150200

2. 5.138. Расстояния от ВЛ до границ приемных радиоцентров, выделенных приемных пунктов радиофикации и местных радиоузлов должны приниматься по табл. 2.5.29. 

Допустимые сближения установлены, исходя из условия, что уровень поля помех, создаваемых ВЛ на расстоянии 50 м от нее, не превосходит значений, предусмотренных общесоюзными "Нормами допускаемых индустриальных радиопомех". 

В случае прохождения трассы проектируемой ВЛ в районе расположения особо важных приемных радиоустройств допустимое сближение устанавливается в индивидуальном порядке по согласованию с заинтересованными организациями в процессе проектирования ВЛ. 

Таблица 2.5.29. Наименьшее расстояние от ВЛ до границ приемных радиоцентров, выделенных приемных пунктов радиофикации и местных радиоузлов

РадиоустройстваРасстояние, м, при напряжении ВЛ, кВ
6-35110-220330-500
Магистральные, областные и районные радиоцентры50010002000
Выделенные приемные пункты радиофикации4007001000
Местные радиоузлы200300400

Если соблюдение расстояний, указанных в табл. 2.5.29, затруднительно, в отдельных случаях допускается их уменьшение (при условии выполнения мероприятий на ВЛ, обеспечивающих соответствующее уменьшение помех), а также перенос всех или части приемных радиоустройств на другие площадки. В каждом таком случае в процессе проектирования ВЛ должен быть составлен и согласован с заинтересованными организациями проект мероприятий по соблюдению норм радиопомех. 

Расстояния от ВЛ до телецентров и радиодомов должны быть не менее: 400 м для ВЛ до 20 кВ, 700 м для ВЛ 35-150 кВ, 1000 м для ВЛ 220-500 кВ. 

ПЕРЕСЕЧЕНИЕ И СБЛИЖЕНИЕ ВЛ С ЖЕЛЕЗНЫМИ ДОРОГАМИ 

2.5.139. Пересечение ВЛ с железными дорогами следует выполнять, как правило, воздушными переходами. На железных дорогах с особо интенсивным движением1 и в некоторых технически обоснованных случаях (например, при переходе через насыпи, на железнодорожных станциях или в местах, где устройство воздушных переходов технически затруднено) переходы ВЛ до 10 кВ следует выполнять кабелем. 

1К особо интенсивному движению поездов относится такое движение, при котором количество пассажирских и грузовых поездов в сумме по графику на двухпутных участках составляет более 100 пар в сутки и на однопутных - более 48 пар в сутки. 

Пересечение ВЛ 150 кВ и ниже с железными дорогами в местах сопряжения анкерных участков контактной сети запрещается. 

Угол пересечения ВЛ с железными дорогами электрифицированнымии подлежащими электрификации² должен быть не менее 40°. Рекомендуется по возможности во всех случаях производить пересечения под углом, близким к 90°. 

1К электрифицированным железным дорогам относятся все электрифицированные дороги независимо от рода тока и значения напряжения контактной сети. 

² К дорогам, подлежащим электрификации, относятся дороги, которые будут электрифицированы в течение 10 лет, считая от года строительства ВЛ, намечаемого проектом. 

2.5.140. При пересечении и сближении ВЛ с железными дорогами расстояния от основания опоры ВЛ до габарита приближения строенийна неэлектрифицированных железных дорогах или до оси опор контактной сети электрифицированных дорог или подлежащих электрификации должны быть не менее высоты опоры плюс 3 м. На участках стесненной трассы допускается эти расстояния принимать не менее: 3 м для ВЛ до 20 кВ, 6 м для ВЛ 35-150 кВ, 8 м для ВЛ 220-330 кВ и 10 м для ВЛ 500 кВ. 

1Габаритом приближения строений называется предназначенное для пропуска подвижного состава предельное поперечное, перпендикулярное пути очертание, внутрь которого, помимо подвижного состава, не могут заходить никакие части строений, сооружений и устройств.  

Защита разрядниками или защитными промежутками пересечений ВЛ с контактной сетью осуществляется в соответствии с требованиями, приведенными в 2.5.122. 

В горловинах железнодорожных станций и в местах сопряжения анкерных участков контактной сети пересечение ВЛ 150 кВ и ниже с железными дорогами не допускается. 

2.5.141. Расстояния при пересечении и сближении ВЛ с железными дорогами от проводов до различных элементов железной дороги должны быть не менее приведенных в табл. 2.5.30. 

Расстояния по вертикали от проводов до различных элементов железных дорог, а также до наивысшего провода или несущего троса электрифицированных железных дорог определяются в нормальном режиме ВЛ при наибольшей стреле провеса с учетом дополнительного нагрева проводов электрическим током. При отсутствии данных об электрических нагрузках ВЛ температура проводов принимается равной плюс 70°С. 

В аварийном режиме расстояния проверяются при пересечениях ВЛ с проводами сечением менее 185 мм² для условий среднегодовой температуры, без гололеда и ветра. При сечении проводов 185 мм² и более проверка в аварийном режиме не требуется. 

Допускается сохранение опор контактной сети под проводами пересекающей ВЛ при расстоянии по вертикали от проводов ВЛ до верха опор контактной сети не менее: 7 м для ВЛ до 110 кВ, 8 м для ВЛ 150-220 кВ и 9 м для ВЛ 330-500 кВ. 

В отдельных случаях на участках стесненной трассы допускается подвеска проводов ВЛ и контактной сети на общих опорах. Технические условия на выполнение совместной подвески проводов следует согласовывать с Управлением железной дороги. 

Таблица 2.5.30. Наименьшее расстояние при пересечении и сближении ВЛ с железными дорогами

Пересечение или сближениеНаименьшее расстояние, м, при напряжении ВЛ, кВ
до 2035-110150220330500
При пересечении
Для неэлектрифицированных железных дорог от провода до головки рельса в нормальном режиме ВЛ по вертикали:
железных дорог широкой колеи общего и необщего пользования1 и узкой колеи общего пользования7,57,588,599,5

1Железные дороги в зависимости от их назначения разделяются на:

железные дорога общего пользования, служащие для перевозки пассажиров и грузов по установленным для всех тарифам;

железные дорога необщего пользования, связанные непрерывной рельсовой колеей с общей сетью железных дорог и служащие только для хозяйственно-производственных перевозок учреждений, предприятий и организаций, которым эти подъездные пути подчинены.

железных дорог узкой колеи необщего пользования66,57,07,588,5
От провода до головки рельса при обрыве провода ВЛ в смежном пролете по вертикали:
железных дорог широкой колеи666,56,57-
железных дорог узкой колеи4,54,5555,5-
Для электрифицированных или подлежащих электрификации железных дорог от проводов ВЛ до наивысшего провода или несущего троса в нормальном режиме по вертикалиКак при пересечении ВЛ между собой в соответствии с табл. 2.5.24 (см. также 2.5.122)
То же, но при обрыве провода в соседнем пролете11222,53,5
При сближении
Для неэлектрифицированных железных дорог на участках стесненной трассы от отклоненного провода ВЛ до габарита приближения строений по горизонтали1,52,52,52,53,54,5
Для электрифицированных или подлежащих электрификации железных дорог на стесненных участках трасс от крайнего провода ВЛ до крайнего провода, подвешенного с полевой стороны опоры контактной сети, по горизонталиКак при сближении ВЛ между собой в соответствии с табл. 2.5.25
То же, но при отсутствии проводов с полевой стороны опор контактной сетиКак при сближении ВЛ с сооружениями в соответствии с 2.5.114

При пересечении и сближении ВЛ с железными дорогами, вдоль которых проходят линии связи и сигнализации, необходимо кроме табл. 2.5.30 руководствоваться также требованиями, предъявляемыми к пересечениям и сближениям ВЛ с сооружениями связи. 

2.5.142. При пересечении железных дорог общего пользования электрифицированных и подлежащих электрификации, опоры ВЛ, ограничивающие пролет пересечения, должны быть анкерными нормальной конструкции. На участках с особо интенсивным и интенсивным движением1 поездов эти опоры должны быть металлическими. 

1К интенсивному движению поездов относится такое движение, при котором количество пассажирских и грузовых поездов в сумме по графику на двухпутных участках составляет более 50 и до 100 пар в сутки, а на однопутных - более 24 и до 48 пар в сутки. 

Допускается в пролете этого пересечения, ограниченного анкерными опорами, установка промежуточной опоры между путями, не предназначенными для прохождения регулярных пассажирских поездов, а также промежуточных опор по краям железнодорожного полотна путей любых дорог. Указанные опоры должны быть металлическими или железобетонными. Крепление проводов на этих опорах должно быть двойным, поддерживающие зажимы должны быть глухими. 

Применение опор из любого материала с оттяжками и деревянных одностоечных опор не допускается. Деревянные промежуточные опоры должны быть П-образными (с X- или Z-образными связями) или А-образными. 

При пересечении железных дорог необщего пользования допускается применение анкерных опор облегченной конструкции и промежуточных опор с подвеской проводов в глухих зажимах. Опоры всех типов, устанавливаемые на пересечениях железных дорог необщего пользования, могут быть свободно стоящими или на оттяжках. 

Крепление проводов в натяжных гирляндах должно выполняться в соответствии с 2.5.95. 

Применение штыревых изоляторов в пролетах пересечений ВЛ с железными дорогами не допускается. 

Использование в качестве заземлителей арматуры железобетонных опор и железобетонных пасынков у опор, ограничивающих пролет пересечения, запрещается. 

2.5.143. При пересечении ВЛ с железной дорогой, имеющей лесозащитные насаждения, следует руководствоваться требованиями 2.5.106. 

ПЕРЕСЕЧЕНИЕ И СБЛИЖЕНИЕ ВЛ С АВТОМОБИЛЬНЫМИ ДОРОГАМИ 

2.5.144. Угол пересечения ВЛ с автомобильными дорогами не нормируется. 

2.5.145. При пересечении автомобильных дорог категории I1 опоры ВЛ, ограничивающие пролет пересечения, должны быть анкерными нормальной конструкции.  

1Автомобильные дороги в зависимости от категории имеют следующие размеры:

Категория дорогШирина элементов дорог, м
проезжей частиобочинразделительной полосыземляного полотна
I15 и более3,75527,5 и более
II7,53,75-15
III72,5-12
IV62-10
V4,51,75-8

Таблица 2.5.31. Наименьшее расстояние при пересечении и сближении ВЛ с автомобильными дорогами


Пересечение или сближениеНаименьшее расстояние, м, при напряжении ВЛ, кВ
до 2035-110150220330500
Расстояние по вертикали:
а) от провода до полотна дороги:
в нормальном режиме ВЛ777,588,59
при обрыве провода в соседнем пролете555,55,56-
б) от провода до транспортных средств в нормальном режиме ВЛ2,52,53,03,54,04,5
Расстояния по горизонтали:
а) от основания опоры до бровки земляного полотна дороги при пересеченииВысота опоры
б) то же, но при параллельном следованииВысота опоры плюс 5 м
в) то же, но на участках стесненной трассы от любой части опоры до подошвы насыпи дороги или до наружной бровки кювета:
при пересечении дорог категорий I и II55551010
при пересечении дорог остальных категорий1,52,52,52,555
г) при параллельном следовании от крайнего провода при неотклоненном положении до бровки земляного полотна дороги2456810

Крепление проводов на ВЛ с подвесными или штыревыми изоляторами должно выполняться в соответствии с 2. 5.95. 

При пересечении автомобильных дорог категорий II-IV опоры, ограничивающие пролет пересечения, могут быть анкерными облегченной конструкции или промежуточными. 

На промежуточных опорах с подвесными изоляторами провода должны быть подвешены в глухих зажимах, а на опорах со штыревыми изоляторами должно применяться двойное крепление проводов. При расщеплении фазы не менее чем на три провода допускается применение зажимов с ограниченной прочностью заделки. К пересечениям с автомобильными дорогами V категории предъявляются такие же требования, как при прохождении ВЛ по ненаселенной местности. 

При сооружении новых автомобильных дорог и прохождении их под действующими ВЛ 400 и 500 кВ переустройство ВЛ не требуется, если расстояние от нижнего провода ВЛ до полотна дороги составляет не менее 9 м и от фундамента опоры до бровки полотна дороги - не менее 25 м. 

2.5.146. Расстояния при пересечении и сближении ВЛ с автомобильными дорогами должны быть не менее приведенных в табл. 2.5.31. 

Во всех случаях сближения ВЛ с криволинейными участками автомобильных дорог, проходящих по насыпи, минимальные расстояния от проводов ВЛ до бровки дороги должны быть не менее указанных в табл. 2.5.31 расстояний по вертикали. 

Расстояния по вертикали в нормальном режиме проверяются при наибольшей стреле провеса без учета нагрева проводов электрическим током. 

В аварийном режиме расстояния проверяются для ВЛ с проводами сечением менее 185 мм² при среднегодовой температуре, без гололеда и ветра. Для ВЛ с проводами сечением 185 мм² и более проверка по аварийному режиму не требуется. 

2.5.147. В местах пересечения ВЛ с автомобильными дорогами, по которым предусматривается передвижение автомобилей и других транспортных средств высотой более 3,8 м, с обеих сторон ВЛ на дорогах должны устанавливаться дорожные знаки, указывающие допустимую высоту движущегося транспорта с грузом. 

При расстояниях по вертикали от провода ВЛ до полотна автомобильной дороги, превышающих указанные в табл. 2.5.31 более чем на 2 м, сигнальные знаки допускается не устанавливать. 

Подвеска дорожных знаков в местах пересечения ВЛ с дорогами в пределах охранных зон (см. 2.5.104) не допускается. 

2.5.148. Опоры ВЛ, находящиеся на обочине автомобильной дороги, должны быть защищены от наезда транспорта. 

ПЕРЕСЕЧЕНИЕ И СБЛИЖЕНИЕ ВЛ С ТРОЛЛЕЙБУСНЫМИ И ТРАМВАЙНЫМИ ЛИНИЯМИ 

2.5.149. Угол пересечения ВЛ с троллейбусными и трамвайными линиями не нормируется. 

2.5.150. При пересечении троллейбусных и трамвайных линий опоры ВЛ, ограничивающие пролет пересечения, должны быть анкерными нормальной конструкции. Для ВЛ с сечением проводов 120 мм² и более допускаются также промежуточные опоры с подвеской проводов в глухих зажимах и с двойным креплением на штыревых изоляторах. При расщеплении фазы не менее чем на три провода допускается применение зажимов с ограниченной прочностью заделки. 

В случае применения анкерных опор подвеска проводов должна выполняться в соответствии с 2.5.95. 

2.5.151. Расстояния по вертикали при пересечении и сближении ВЛ с троллейбусными и трамвайными линиями при наибольшей стреле провеса проводов должны быть не менее приведенных в табл. 2.5.32. 

В нормальном режиме расстояния по вертикали проверяются при наибольшей стреле провеса (без учета нагрева провода электрическим током). 

В аварийном режиме расстояния по вертикали проверяются для ВЛ с проводами сечением менее 185 мм² при среднегодовой температуре без гололеда и ветра. Для ВЛ с проводами сечением 185 мм² и более проверка расстояний по аварийному режиму не производится. 

2.5.152. Защита разрядниками или защитными промежутками пересечений ВЛ с контактной сетью осуществляется в соответствии с требованиями, приведенными в 2.5.122. 

Допускается сохранение опор контактной сети под проводами пересекающей ВЛ при расстояниях по вертикали от проводов ВЛ до верха опор контактной сети не менее: 7 м для ВЛ напряжением до 110 кВ, 8 м для ВЛ 150-220 кВ и 9 м для ВЛ 330-500 кВ.  

Таблица 2.5.32. Наименьшее расстояние от проводов ВЛ при пересечении и сближении с троллейбусными и трамвайными линиями


Пересечение или сближениеНаименьшее расстояние, м, при напряжении ВЛ, кВ
до 110150-220330500
Расстояния по вертикали от проводов ВЛ:
а) при пересечении с троллейбусной линией (в нормальном режиме):
до высшей отметки проезжей части11121313
до проводов контактной сети или несущих тросов3455
б) при пересечении с трамвайной линией (в нормальном режиме):
до головки рельса9,510,511,511,5
до проводов контактной сети или несущих тросов3455
в) при обрыве провода ВЛ в соседнем пролете до проводов или несущих тросов троллейбусной или трамвайной линии122,5-
Расстояние по горизонтали при сближении от отклоненных проводов ВЛ до опор троллейбусных и трамвайных контактных сетей3455

ПЕРЕСЕЧЕНИЕ ВЛ С ВОДНЫМИ ПРОСТРАНСТВАМИ 

2.5.153. При пересечении ВЛ с водными пространствами (реки, каналы, озера, заливы, гавани и т. п.) угол пересечения с ними не нормируется. 

2.5.154. При пересечении водных пространств с регулярным судоходным движением опоры ВЛ, ограничивающие пролет пересечения, должны быть анкерными концевыми. Для ВЛ с сечением сталеалюминиевых проводов 120 мм² и более или стальных канатов типа ТК сечением 50 мм² и более допускается применение промежуточных опор и анкерных опор облегченного типа; при этом в обоих случаях опоры, смежные с ними, должны быть анкерными концевыми.  

При применении в пролете пересечения промежуточных опор провода и тросы должны крепиться к ним глухими или специальными зажимами (например, многороликовыми подвесами). 

К пересечениям водных путей местного значения с навигационной глубиной 1,65 м и менее, малых рек с глубиной 1,0 м и менее (классов IV-VII по путевым условиям судоходства) и несудоходных водных пространств, не относящихся к числу больших переходов, предъявляются такие же требования, как при прохождении ВЛ по ненаселенной местности, с дополнительной проверкой расстояний до уровня высоких вод, льда и до габарита судов или сплава по табл. 2.5.33. 

2.5.155. Расстояние от нижних проводов ВЛ до поверхности воды должны быть не менее приведенных в табл. 2.5.33. Расчетные уровни льда и воды принимаются в соответствии с 2.5.13. Нагрев проводов ВЛ электрическим током не учитывается. 

Таблица 2.5.33. Наименьшее расстояние от проводов ВЛ до поверхности воды, габарита судов и сплава


РасстояниеНаименьшее расстояние, м, при напряжении ВЛ, кВ
до 110150220330500
До наибольшего уровня высоких вод судоходных рек, каналов и т. п. при высшей температуре66,577,58
До габарита судов или сплава при наибольшем уровне высоких вод и высшей температуре22,533,54
До наибольшего уровня высоких вод несудоходных рек, каналов и т. п. при температуре плюс 15°С33,544,55
До уровня льда несудоходных рек, каналов и т. п. при температуре минус 5°С при наличии гололеда66,577,58

При прохождении ВЛ в непосредственной близости от неразводных мостов, где мачты и трубы судов, плавающих по реке или каналу, должны быть опущены, допускается по согласованию с местным Управлением водного транспорта уменьшать расстояния от проводов ВЛ до наибольшего уровня высоких вод, приведенных в табл. 2.5.33. 

2.5.156. Места пересечений ВЛ с судоходными реками, каналами и т. п. должны быть обозначены на берегах сигнальными знаками в соответствии с действующими правилами плавания по внутренним судоходным путям. 

ПРОХОЖДЕНИЕ ВЛ ПО МОСТАМ 

2.5.157. При прохождении ВЛ по мостам опоры или поддерживающие устройства, ограничивающие пролеты с берега на мост и через разводную часть моста, должны быть анкерными нормальной конструкции. Все прочие поддерживающие устройства на мостах могут быть промежуточного типа с креплением проводов глухими зажимами или с двойным креплением на штыревых изоляторах. 

2.5.158. На металлических железнодорожных мостах с ездой по низу, снабженных на всем протяжении верхними связями, провода допускается располагать непосредственно над пролетным строением моста выше связей или за его пределами. Располагать провода в пределах габарита приближения строений, а также в пределах ширины, занятой элементами контактной сети электрифицированных железных дорог, не допускается. Расстояния от проводов ВЛ до всех линий МПС, проложенных по конструкции моста, принимаются по 2.5.141, как для стесненных участков трассы.

На городских и шоссейных мостах допускается располагать провода как за пределами пролетного строения, так и в пределах ширины пешеходной и проезжей частей моста. 

На охраняемых мостах допускается располагать провода ВЛ ниже отметки пешеходной части. 

2.5.159. Наименьшие расстояния от проводов ВЛ до различных частей мостов должны приниматься по согласованию с организациями, в ведении которых находится данный мост, при этом определение наибольшей стрелы провеса проводов производится путем сопоставления стрел провеса при высшей расчетной температуре воздуха и при гололеде. 

 ПРОХОЖДЕНИЕ ВЛ ПО ПЛОТИНАМ И ДАМБАМ 

2.5.160. При прохождении ВЛ по плотинам, дамбам и т. п. расстояния от проводов ВЛ при наибольшей стреле провеса и наибольшем отклонении до различных частей плотин и дамб должны быть не менее приведенных в табл. 2.5.34. 

Таблица 2.5.34. Наименьшее расстояние от проводов ВЛ до различных частей плотин и дамб


Части плотин и дамбНаименьшее расстояние, м, при напряжении ВЛ, кВ
до 110150220330500
Гребень и бровка откоса66,577,58
Наклонная поверхность откоса55,566,57
Поверхность воды, переливающейся через плотину44,555,56

При прохождении ВЛ по плотинам и дамбам, по которым проложены пути сообщения, ВЛ должна удовлетворять также требованиям, предъявляемым к ВЛ при пересечениях и сближениях с соответствующими объектами путей сообщения. 

Наибольшая стрела провеса проводов ВЛ должна определяться путем сопоставления стрел провеса при высшей расчетной температуре воздуха и при гололеде. 

СБЛИЖЕНИЕ ВЛ С ВОДООХЛАДИТЕЛЯМИ

2.5.161. Расстояние от крайних проводов ВЛ до водоохладителей должно определяться в соответствии с требованиями СНиП II-89-80* "Генеральные планы промышленных предприятий" (изд. 1995 г.) Госстроя России, а также с требованиями норм технологического проектирования электростанций, подстанций и воздушных линий электропередачи. 

 СБЛИЖЕНИЕ ВЛ СО ВЗРЫВО- И ПОЖАРООПАСНЫМИ УСТАНОВКАМИ 

2.5.162. Сближение ВЛ со зданиями, сооружениями и наружными технологическими установками, связанными с добычей, производством, изготовлением, использованием или хранением взрывоопасных, взрывопожароопасных и пожароопасных веществ, должно выполняться в соответствии с нормами, утвержденными в установленном порядке. 

Если нормы сближения не предусмотрены нормативными документами, то расстояния от оси трассы ВЛ до указанных зданий, сооружений и наружных установок должны составлять не менее полуторакратной высоты опоры. На участках стесненной трассы допускается уменьшение этих расстояний по согласованию с соответствующими министерствами и ведомствами. 

ПЕРЕСЕЧЕНИЕ И СБЛИЖЕНИЕ ВЛ С НАДЗЕМНЫМИ И НАЗЕМНЫМИ ТРУБОПРОВОДАМИ И КАНАТНЫМИ ДОРОГАМИ 

2.5.163. Угол пересечения ВЛ с надземными и наземными газопроводами, нефтепроводами и нефтепродуктопроводами рекомендуется принимать близким к 90°. Угол пересечения ВЛ с остальными надземными и наземными трубопроводами, а также с канатными дорогами не нормируется. 

Пересечение ВЛ 110 кВ и выше с вновь сооружаемыми надземными и наземными магистральными газопроводами, нефтепроводами и нефтепродуктопроводами запрещается. Допускается пересечение этих ВЛ с действующими однониточными надземными и наземными магистральными газопроводами, нефтепроводами и нефтепродуктопроводами, а также с действующими техническими коридорами магистральных трубопроводов при прокладке их в насыпи на расстоянии 1000 м в обе стороны от ВЛ. 

2.5.164. При пересечении ВЛ с надземными и наземными трубопроводами и канатными дорогами опоры ВЛ, ограничивающие пролет пересечения, должны быть анкерными нормальной конструкции. 

Для ВЛ со сталеалюминиевыми проводами сечением 120 мм² и более или со стальными канатами типа ТК. сечением 50 мм² и более допускаются также анкерные опоры облегченной конструкции и промежуточные опоры с подвеской проводов в глухих зажимах. 

При расщеплении фазы не менее чем на три провода допускается применение зажимов с ограниченной прочностью заделки. 

2.5.165. Провода ВЛ должны располагаться над трубопроводами и канатными дорогами. В исключительных случаях допускается прохождение ВЛ до 220 кВ под канатными дорогами, которые имеют снизу мостики или сетки для ограждения проводов ВЛ. Крепление мостиков и сеток на опорах ВЛ запрещается. 

В местах пересечения с ВЛ надземные и наземные газопроводы, кроме проложенных в насыпи, следует защищать ограждениями. Ограждение должно выступать по обе стороны пересечения от проекции крайних проводов ВЛ при наибольшем их отклонении на расстояния не менее: 3 м для ВЛ до 20 кВ, 4 м для ВЛ 35-110 кВ, 4,5 м для ВЛ 150 кВ, 5 м для ВЛ 220 кВ, 6 м для ВЛ 330 кВ, 6,5 м для ВЛ 500 кВ. 

Расстояния от ВЛ до мостиков, сеток и ограждений принимают как до надземных и наземных трубопроводов и канатных дорог (см. 2.5.166). 

2.5.166. Расстояния при пересечении, сближении и параллельном следовании ВЛ с надземными и наземными трубопроводами и канатными дорогами должны быть не менее приведенных в табл. 2.5.35. 

Таблица 2.5.35. Наименьшее расстояние от проводов ВЛ до надземных и наземных трубопроводов и канатных дорог


Пересечение или сближениеНаименьшее расстояние, м, при напряжении ВЛ, кВ
до 2035-110150220330500
Расстояния по вертикали:
от провода ВЛ до любой части трубопровода (насыпи) или канатной дороги в нормальном режиме344,5566,5
то же, но при обрыве провода в соседнем пролете122,534-
Расстояния по горизонтали:
1) при параллельном следовании:
от крайнего провода ВЛ до любой части трубопровода или канатной дороги (за исключением пульпопровода и магистральных газопровода, нефтепровода и нефтепродуктопровода) в нормальном режимеНе менее высоты опоры
от крайнего провода ВЛ до любой части пульпопровода в нормальном режимеНе менее 30 м
от крайнего провода ВЛ до любой части магистрального газопровода в нормальном режимеНе менее удвоенной высоты опоры
от крайнего провода ВЛ до любой части магистрального нефтепровода и нефтепродуктопровода в нормальном режиме50 м, но не менее высоты опоры
в стесненных условиях от крайнего провода ВЛ при наибольшем его отклонении до любой части трубопровода * или канатной дороги344,5566,5

* Вновь сооружаемые магистральные газопроводы на участке сближения с ВЛ в стесненных условиях должны отвечать требованиям, предъявляемым к газопроводам не ниже II категории.

2) при пересечении:
от опоры ВЛ до любой части трубопровода или канатной дороги в нормальном режимеНе менее высоты опоры
в стесненных условиях от опоры ВЛ до любой части трубопровода или канатной дороги344,5566,5
3) от ВЛ до продувочных свеч газопроводаНе менее 300 м

Расстояния по вертикали в нормальном режиме определяются при наибольшей стреле провеса провода без учета нагрева проводов электрическим током. 

В аварийном режиме расстояния проверяются для ВЛ с проводами сечением менее 185 мм² при среднегодовой температуре, без гололеда и ветра. Для ВЛ с проводами сечением 185 мм² и более проверка при обрыве провода не требуется. 

В районах Западной Сибири и Крайнего Севера при параллельном следовании ВЛ 110 кВ и выше с техническими коридорами магистральных газопроводов, нефтепроводов и нефтепродуктопроводов расстояние от ВЛ до крайнего трубопровода должно быть не менее 1000 м. 

2.5.167. В пролетах пересечения с ВЛ металлические трубопроводы, кроме проложенных в насыпи, и канатные дороги, а также ограждения, мостики и сетки должны быть заземлены. Сопротивление, обеспечиваемое применением искусственных заземлителей, должно быть не более 10 Ом. 

ПЕРЕСЕЧЕНИЕ И СБЛИЖЕНИЕ ВЛ С ПОДЗЕМНЫМИ ТРУБОПРОВОДАМИ 

2.5.168. Угол пересечения ВЛ 35 кВ и ниже с подземными магистральными газопроводами, нефтепроводами и нефтепродуктопроводами, а также угол пересечения ВЛ с остальными подземными трубопроводами не нормируется. 

Угол пересечения ВЛ 110 кВ и выше с вновь сооружаемыми подземными магистральными газопроводами, нефтепроводами и нефтепродуктопроводами, а также с действующими техническими коридорами этих трубопроводов должен быть не менее 60°. При этом вновь сооружаемые трубопроводы, прокладываемые в районах Западной Сибири и Крайнего Севера, на расстоянии 1 км в обе стороны от пересечения должны быть не ниже II категории. 

2.5.169. При сближении ВЛ с действующими и вновь сооружаемыми магистральными газопроводами давлением более 1,2 МПа и магистральными нефтепроводами и нефтепродуктопроводами расстояния между ними должны быть не менее приведенных в 2.5.104. 

Провода ВЛ должны быть расположены не ближе 300 м от продувочных свеч, устанавливаемых на магистральных газопроводах. 

В стесненных условиях трассы при параллельном следовании ВЛ, а также в местах пересечения ВЛ с указанными трубопроводами допускаются расстояния по горизонтали от заземлителя и подземной части (фундамента) опор ВЛ до трубопроводов не менее: 5 м для ВЛ до 35 кВ, 10 м для ВЛ 110-220 кВ и 15 м для ВЛ 330-500 кВ. 

Вновь сооружаемые магистральные газопроводы с давлением более 1,2 МПа на участках сближения с ВЛ при прокладке их на расстояниях менее приведенных в 2.5.104 должны отвечать требованиям, предъявляемым к участкам газопроводов не ниже II категории для ВЛ 500 кВ и не ниже III категории для ВЛ 330 кВ и ниже. 

Вновь сооружаемые магистральные нефтепроводы и нефтепродуктопроводы на участках сближения с ВЛ при прокладке их на расстояниях менее приведенных в 2.5.104 должны отвечать требованиям, предъявляемым к участкам трубопроводов не ниже III категории. 

В районах Западной Сибири и Крайнего Севера при параллельном следовании ВЛ 110 кВ и выше с техническими коридорами магистральных газопроводов, нефтепроводов и нефтепродуктопроводов расстояние от ВЛ до крайнего трубопровода должно быть не менее 1 км. 

2.5.170. При сближении и пересечении ВЛ с магистральными и распределительными газопроводами давлением 1,2 МПа и менее, а также при сближении и пересечении с ответвлениями от магистральных газопроводов к населенным пунктам и промышленным предприятиям и с ответвлениями от нефтепроводов и нефтепродуктопроводов к нефтебазам и предприятиям расстояния от заземлителя и подземной части (фундаментов) опор ВЛ до трубопроводов должны быть не менее: 5 м для ВЛ до 35 кВ, 10 м для ВЛ 110 кВ и выше. 

2.5.171. При сближении и пересечении ВЛ с теплопроводами, водопроводом, канализацией (напорной и самотечной), водостоками и дренажами расстояния в свету от заземлителя и подземной части (фундаментов) опор ВЛ до трубопроводов должны быть не менее 2 м для ВЛ до 35 кВ и 3 м для ВЛ 110 кВ и выше. 

В исключительных случаях при невозможности выдержать указанные расстояния до трубопроводов (например, при прохождении ВЛ по территориям электростанций, промышленных предприятий, по улицам городов) эти расстояния допускается уменьшать по согласованию с заинтересованными организациями. При этом следует предусматривать защиту фундаментов опор ВЛ от возможного подмыва фундаментов при повреждении указанных трубопроводов, а также по предотвращению выноса опасных потенциалов по металлическим трубопроводам. 

СБЛИЖЕНИЕ ВЛ С НЕФТЯНЫМИ И ГАЗОВЫМИ ФАКЕЛАМИ 

2.5.172. При сближении с нефтяными и газовыми промысловыми факелами ВЛ должна быть расположена с наветренной стороны. Расстояние от ВЛ до промысловых факелов должно быть не менее 60 м. 

СБЛИЖЕНИЕ ВЛ С АЭРОДРОМАМИ 

2.5.173. Сближение ВЛ с аэродромами и воздушными трассами допускается по согласованию с территориальным управлением гражданской авиации, со штабом военного округа, с управлением министерства или ведомства, в ведении которого находится аэродром или аэропорт, при расположении ВЛ на расстояниях: до 10 км от границ аэродрома - с опорами любой высоты; более 10 и до 30 км от границ аэродрома - при абсолютной отметке верхней части опор ВЛ, превышающей абсолютную отметку аэродрома на 50 м и более; более 30 и до 75 км от границ аэродромов и на воздушных трассах - при высоте опор 100 м и более.

норматив по ПУЭ, расчет и замеры

Автор Electricity На чтение 3 мин. Опубликовано

Воздушные линии электропередач – это электроустановка, которая используется для передачи и распределения электрической энергии по проводам различного сечения. Последние закрепляются на изоляторах, которые прикрепляются к траверсам или к специальной арматуре на опорах. При проектировании и монтаже важно соблюдать габариты ВЛ, куда включается длина пролетов, расстояния от объектов, стрела провеса.

Габариты ВЛ

Основным документом, в котором прописываются требования к габаритам, является «Правила устройства электроустановок» (ПУЭ). В этой нормативной документации предоставляется отдельная глава, которая посвящается рассматриваемому вопросу. Разберем основные моменты по заданному направлению.

Определения

Габариты ВЛ – это предельно допустимые расстояния от проводов до поверхности земли и различных объектов, сооружений и устройств. Соблюдение этих требований обеспечивает правильное и безопасное использование электроустановки для передачи и распределения электроэнергии. В понятие включается:

  1. Высота подвеса – расстояние от места крепления проводов на изоляторе до земли. Габаритом над землей называется величина от низшей точки пролета до земли.
  2. Стрела провеса – это разница от подвеса ЛЭП и проводов в наименьшей точке (посередине пролета) до земли. Величина зависит от температуры воздуха, пролета, марки опор.
  3. Существует понятие габарит при пересечении и сближении. Это величины, которые регламентируют длину по вертикали до поверхности дорог, рек, пересекаемых ВЛ, а также наименьшие величины до объектов и строений.

Длина промежуточного пролета – это величина между смежными опорами. Для ВЛ 0,4 кВ этот показатель составляет 30-50 метров в зависимости от сечения, климата, типов опор.

Допустимые величины по ПУЭ

Габариты ВЛ зависят от нескольких факторов, в том числе от напряжения линии, от проходимости в городе или на пересеченной местности, по используемым материала. Рассмотрим различные примеры далее:

  • Для ВЛ 0,4 кВ согласно ПУЭ следующие – до земли не менее 6 метров. Ответвление ввода через дорогу обязано сопровождаться высотой не менее 3,5 м. От проводов на фронтоне до земли величина составляет не меньше 2,75 метра. При пересечении с железной дорогой, трамвайной или троллейбусной линией не менее 7,5 м, до других проводов не менее 1,5 м. Стрела провеса для линии до 1000 В при пролете 35-45 метров последняя не превышает 1,2 метра.
  • Габариты ВЛ 10 кВ регламентируются ПУЭ. Минимальное расстояние до земли составляет не менее 7 м. При пересечении с железной дорогой, трамвайной или троллейбусной линией не менее 9,5 м, до провода не менее 3 метров. Стрела провеса ВЛ 10 киловольт не превышает 1,5 м.

Строительство ВЛ любого напряжения над зданиями не допускается. При совместной подвеске разного напряжения между фазами соблюдается расстояние не менее 1,2 метра.

Расчет габаритов основывается на «Правилах устройства электроснабжения». Этот нормативный документ лег в основу типовых проектов по каждому типу опор ВЛ 0,4-10 кВ. Расчет осуществляется с учетом климатических особенностей. В ПУЭ представлена формула, определяющая стрелу провеса провода для ВЛ от 35 киловольт и выше.

Проведение замеров габаритов

Наиболее точный, безопасный и эффективный способ определения расстояния основан на использовании оптических приборов. Этот вариант позволяет получить информацию без отключения ВЛ электропередач. Для реализации поставленной задачи подходит теодолит, высотомер или другие изделия схожего назначения. Процесс поэтапный, на первой стадии оценивается высота подвеса линии. На второй делается замер до низшей точки провисания провода, а также в местах пересечения с дорогами или объектами.

Стрела провеса провода ВЛ определяется математически. Величина меняется в зависимости от температуры наружного воздуха. Если ЛЭП не введена в эксплуатацию оценка производится с применением штанги или каната с метками. Помните, что неправильно выбранные величины становятся причиной появления несчастных случаев, «схлестов» и обрывов.

Высота проводов на столбе - Выращивание из Семян!

Высота опор зависит от стрелы провеса провода, расстояния от провода до поверхности земли, типа опоры и т. п. Высоту опоры при горизонтальном расположении проводов на линиях без защитных тросов (рис. 1) определяют следующие величины:

1. Требуемое расстояние hг провода от земли (габарит приближения провода к земле).

Провода «воздушных линий должны быть подвешены на такой высоте, чтобы от низших их точек до поверхности земли оставалось расстояние, обеспечивающее безопасность движения. Под проводами могут не только проходить люди, но и проезжать автомобили, груженные громоздкими предметами, высокие сельскохозяйственные машины, краны и т. п. На них не должно произойти электрического разряда с провода линии.

Рис. 1. Высота опоры

Наименьшие допускаемые расстояния от проводов до земли и некоторых инженерных сооружений приведены в табл. 1.

Таблица 1. Габариты приближения проводов к земле и инженерным сооружениям

Характеристики местностей и пересеченийНапряжения линий, кВ
ниже 1 кВ1 – 2035 – 110220
Ненаселенная местность, часто посещаемая людьми и доступная для транспорта и сельскохозяйственных машин. Расстояние до земли, м5667
Населенные местности и территории промышленных предприятий. Расстояния до земли, м6778
При пересечениях железных дорог постоянного пользования. Расстояние до головки рельсов, м7,57,57,58,5
При пересечениях автогужевых дорог. Расстояние до полотна дороги, м6778

Приведенные расстояния должны быть выдержаны при нормальных режимах работы линий. В некоторых случаях для линий с подвесными изоляторами нужно произвести проверку расстояний, получающихся при обрыве одного из проводов.

2. Запас в расстоянии от провода до земли Δ h.

При трассировке воздушных линий поперечные профили снимаются только в пересеченных местностях. Продольные профили трассы линий, по которым производится проектная расстановка опор, вычерчиваются в масштабе по вертикали 1 : 200 – 1 : 500. Неточности съемки и чертежей могут привести к расстояниям проводов над землей при сооружении линий, меньшим предписываемых «Правилами устройства электроустановк».

Чтобы избежать недоразумений, высота опоры определяется с небольшим запасом Δ h, принимаемым 0,2 – 0,4 м. Меньшая цифра берется для пролетов длиной до 200 – 250 м, а большая – при пролетах 400 – 500 м. Для пролетов 200 м и менее при спокойном профиле местности запаса Δ h можно не принимать.

3. Габаритная стрела провеса провода f г, при которой расстояние от провода до земли или инженерного сооружения получается наименьшим.

Габаритная стрела провеса провода при определении высоты опоры может быть при:

1) высшей температуре окружающего воздуха и нагрузке провода только собственным весом, отсутствии ветра;

2) гололеде, температуре θ г, отсутствии ветра.

Большая из этих стрел провеса провода и берется при определении высоты опоры.

При проверке приближения провода к земле и инженерным сооружениям в аварийном режиме работы линии, принимается обрыв провода в том пролете, который в контрольном пролете дает наибольшую стрелу провеса провода. Например, при пересечении линии связи воздушной линией с промежуточными опорами обрыв принимается происшедшим в пролете соседнем с пересекающим.

В аварийных режимах работы линий электропередачи допускаемые расстояния от проводов до земли и некоторых инженерных сооружений установлены меньшими, чем при нормальных режимах работы линий.

Когда пересекаемый объект – автострада, линия связи и т. д. – находится не в середине пролета (рис. 2), а расположена ближе к одной из опор, при определении (высоты опоры следует принять во внимание не только наибольшую стрелу провеса провода f нб, но и стрелы провеса f1 и f2 над пересекаемыми объектами.

Стрела провеса провода на расстоянии х от точки его подвеса находится по формуле f = γ х( l -х) /2

Рис. 2 . Высота опоры с треугольным расположением проводов.

4. Длина гирлянды изоляторов λ1 , включая арматуру, необходимую для крепления гирлянды изоляторов на опоре. Для определения λ1 нужно к длинам гирлянд, приведенным в табл. 1, прибавить при деревянных опорах 100 мм, а при металлических и железобетонных –

5. Размер b – расстояние от нижнего обреза траверсы до ее оси, зависящее от конструкции опоры.

6. Размер а – расстояние от оси траверсы до вершины опоры, определяемое конструкцией опоры.

Высота опоры до оси траверсы определится, следовательно, равной: h 1 = h г + Δh + f г + λ 1 + b

Полная высота опоры Н = h2 +а.

Рис. 3. Высота опоры с треугольным расположением проводов

При расположении проводов, например, в вершинах треугольника (рис. 3 ) высота h 1 оси нижней траверсы над землей определяется так же, как было указана выше. Положение верхней траверсы находится увеличением h 1 на расстояние D, (принятое между проводами разных фаз.

Наличие защитных тросов увеличивает высоту опор. Добавляется необходимое расстояние от верхнего провода до троса.

Необходимая всем электроэнергия передается по проводам, подвешенным к столбам различной конструкции и линиям электропередачи. Для безопасности большое значение имеет расстояние между опорами ЛЭП и их высота. ГОСТ регламентирует все размеры исходя из силы тока в проводах, материала и конструкции опоры. Большое значение имеет и расположение опор ЛЭП на открытой местности или в населенном пункте.

Факторы, от которых зависит расстояние между столбами

В разных местах расстояние между столбами ЛЭП и высота провода отличаются. Значения рассчитывают исходя из того, что натяжение провода и его провисание будут создавать между опорами преобладающие горизонтальные нагрузки.

Второй важный элемент – это сила обледенения в конкретной местности и сопротивление раскачиванию ветром. Значение рассчитывается для каждого региона отдельно в зависимости от климатических условий. Кроме этого, какое расстояние должно быть между столбами и опорами, зависит от следующих факторов:

  • напряжение в сети;
  • тип населенного пункта, через который проходит линия;
  • удаление от населенных пунктов;
  • количество воздушных линий;
  • тип проводов.

Корректировка расстояний между столбами линий электропередачи производится прежде всего в населенных пунктах. На основании общих требований опоры не должны преграждать свободный въезд во двор, загораживать дорогу пешеходам, стоять непосредственно перед лицевыми фасадами зданий и входами в дома.

Со стороны дороги устанавливается ограждение от наезда автомобилей на опоры. Это бетонные столбы, тумбы и высокие заградительные бордюры.

Каждый высоковольтный столб должен быть маркирован. На высоте 2,5–3 м наносятся следующие данные:

  1. Порядковый номер.
  2. Значение напряжения в сети.
  3. Год установки конструкции.
  4. Ширина охранной зоны.
  5. Расстояние от земли до кабелей связи.
  6. Номер телефона владельца – организации, эксплуатирующей данную сеть.

Металлические конструкции предохраняют от коррозии, регулярно покрывают защитной грунтовкой или корабельной краской.

Нумерация опор осуществляется от источника тока.

Максимальный прогиб проводов рассчитывается с учетом обледенения, которое делится на 6 категорий, и силы ветра. В точках подвеса устанавливаются натяжители, обеспечивающие минимальный угол отклонения горизонтального положения кабеля и наименьшее провисание.

Неизолированный провод используется для линий вне городов и поселков. Монтаж его будет осуществляться на предельно возможной высоте непосредственно на изоляторы с помощью специальных шин на болтах.

Напряжение в сети

Расстояние между опорами определяется в зависимости от напряжения тока в проводах, которые они несут:

  • 0,4–1 кВ – дистанция в пределах 30–75 м;
  • 10 кВ – пролеты до 200 м;
  • 220 кВ – расстояние между опорами до 400 м;
  • свыше 330 кВ – опоры могут располагаться друг от друга на удалении максимально в 700 м.

Провода подвешиваются параллельно на изоляторах на высоте, также зависимой от напряжения. Если оно до 1000 В, то линию крепят на высоте 7 м.

Допустимое провисание и расстояние до нижней точки тоже определяется в зависимости от напряжения. В городах, поселках ИЖС и СНТ нижняя точка провисания должна быть выше 6 м от земли.

Пролеты между опорами в жилых поселках и за их пределами

Населенный пункт любого типа, дачный поселок, город и деревня имеют одинаковый статус для прохождения по ним ЛЭП. Расстояние между столбами определяется до 70 м при условии, что в момент максимального обледенения они не провиснут ниже 6 м в местах, где проходит дорога и тротуар. Провод должен быть изолированный.

Освещение по улице в частном секторе устанавливается на столбах, расположенных вдоль дороги на дистанции друг от друга 30–50 м. В гараж и дом подвод электроэнергии осуществляется через самонесущий изолированный провод. Точка ввода должна быть не ниже 4 м от поверхности земли.

Если кабель протянут от столба через участок, устанавливается промежуточная опора, обеспечивающая подвес на высоте 7 м и максимальное провисание до 6 м. Деревья сажают на расстоянии более 5 м от провода. Непосредственно под линией можно делать огород с растениями в 0,5 м высотой. Кустарник высаживается на расстоянии минимально метр от линии проекции кабеля.

Высоковольтные линии ЛЭП свыше 300 кВ не должны проходить по населенным пунктам любого типа. Удаление от ближайшего жилого дома должно соответствовать 100 м. Дистанция до границы участка без застроек составляет минимально ширину санитарной зоны в одну сторону.

Основанием для расчета длины пролетов ЛЭП служит ТП 25.0038, в котором отражена разработка расчетных дистанций для опор ВЛ 0,28–35 кВ. Типовой проект содержит таблицы размеров пролетов между железобетонными и металлическими опорами в зависимости от степени обледенения, ветровой нагрузки и типа провода по сечению и изоляции.

На основании заложенных в него данных можно проектировать, на какое расстояние устанавливать столб с СИП. Если протянут будет электрический провод, металлический или медный, без изоляции, то именно от этого зависит, насколько изменится пролет между столбами.

Забор устанавливается от ЛЭП на расстоянии 5 м. От дома линия электропередачи и опора должна располагаться не ближе 6 м.

Высота опор воздушных линий электропередачи

Высота опор зависит от стрелы провеса провода, расстояния от провода до поверхности земли, типа опоры и т. п. Высоту опоры при горизонтальном расположении проводов на линиях без защитных тросов

(рис. 1) определяют следующие величины:

1. Требуемое расстояние hг провода от земли (габарит приближения провода к земле).

Провода «воздушных линий должны быть подвешены на такой высоте, чтобы от низших их точек до поверхности земли оставалось расстояние, обеспечивающее безопасность движения. Под проводами могут не только проходить люди, но и проезжать автомобили, груженные громоздкими предметами, высокие сельскохозяйственные машины, краны и т. п. На них не должно произойти электрического разряда с провода линии.

Рис. 1. Высота опоры

Наименьшие допускаемые расстояния от проводов до земли и некоторых инженерных сооружений приведены в табл. 1.

Таблица 1. Габариты приближения проводов к земле и инженерным сооружениям

Характеристики местностей и пересечений

Напряжения линий, кВ

Ненаселенная местность, часто посещаемая людьми и доступная для транспорта и сельскохозяйственных машин. Расстояние до земли, м

Населенные местности и территории промышленных предприятий. Расстояния до земли, м

При пересечениях железных дорог постоянного пользования. Расстояние до головки рельсов, м

При пересечениях автогужевых дорог. Расстояние до полотна дороги, м

Приведенные расстояния должны быть выдержаны при нормальных режимах работы линий. В некоторых случаях для линий с подвесными изоляторами нужно произвести проверку расстояний, получающихся при обрыве одного из проводов.

2. Запас в расстоянии от провода до земли Δh.

При трассировке воздушных линий поперечные профили снимаются только в пересеченных местностях. Продольные профили трассы линий, по которым производится проектная расстановка опор, вычерчиваются в масштабе по вертикали 1 : 200 – 1 : 500. Неточности съемки и чертежей могут привести к расстояниям проводов над землей при сооружении линий, меньшим предписываемых «Правилами устройства электроустановк».

Чтобы избежать недоразумений, высота опоры определяется с небольшим запасом Δh, принимаемым 0,2 – 0,4 м. Меньшая цифра берется для пролетов длиной до 200 – 250 м, а большая – при пролетах 400 – 500 м. Для пролетов 200 м и менее при спокойном профиле местности запаса Δh можно не принимать.

3. Габаритная стрела провеса провода fг, при которой расстояние от провода до земли или инженерного сооружения получается наименьшим.

Габаритная стрела провеса провода при определении высоты опоры может быть при:

1) высшей температуре окружающего воздуха и нагрузке провода только собственным весом, отсутствии ветра;

2) гололеде, температуре θг, отсутствии ветра.

Большая из этих стрел провеса провода и берется при определении высоты опоры.

При проверке приближения провода к земле и инженерным сооружениям в аварийном режиме работы линии, принимается обрыв провода в том пролете, который в контрольном пролете дает наибольшую стрелу провеса провода. Например, при пересечении линии связи воздушной линией с промежуточными опорами обрыв принимается происшедшим в пролете соседнем с пересекающим.

В аварийных режимах работы линий электропередачи допускаемые расстояния от проводов до земли и некоторых инженерных сооружений установлены меньшими, чем при нормальных режимах работы линий.

Когда пересекаемый объект – автострада, линия связи и т. д. – находится не в середине пролета (рис. 2), а расположена ближе к одной из опор, при определении (высоты опоры следует принять во внимание не только наибольшую стрелу провеса провода fнб, но и стрелы провеса f1 и f2 над пересекаемыми объектами.

Стрела провеса провода на расстоянии х от точки его подвеса находится по формуле f = γх(l-х)/2

Рис. 2. Высота опоры с треугольным расположением проводов.

4. Длина гирлянды изоляторов λ1, включая арматуру, необходимую для крепления гирлянды изоляторов на опоре. Для определения λ1 нужно к длинам гирлянд, приведенным в табл. 1, прибавить при деревянных опорах 100 мм, а при металлических и железобетонных –

5. Размер b – расстояние от нижнего обреза траверсы до ее оси, зависящее от конструкции опоры.

6. Размер а – расстояние от оси траверсы до вершины опоры, определяемое конструкцией опоры.

Высота опоры до оси траверсы определится, следовательно, равной: h3 = hг + Δh + fг + λ1 + b

Полная высота опоры Н = h3+а.

Рис. 3. Высота опоры с треугольным расположением проводов

При расположении проводов, например, в вершинах треугольника (рис. 3) высота h3 оси нижней траверсы над землей определяется так же, как было указана выше. Положение верхней траверсы находится увеличением h3 на расстояние D, (принятое между проводами разных фаз.

Наличие защитных тросов увеличивает высоту опор. Добавляется необходимое расстояние от верхнего провода до троса.

Высота электрического бетонного столба

Во многих частных домах есть необходимость провести электричество от соседского разрушенного дома либо поменять имеющуюся опору ЛЭП, кабель, возникает множество вопросов. Рассмотрим, что же делать, какие существуют нормативы для бетонного столба и возможно ли его установить своими силами?

Какие существуют нормативы для установки бетонного столба на своем участке?

Вначале следует учесть, что глубина закапывания опоры в земле должна быть ниже уровня промерзания, то есть около 1,5–2 метров. Самостоятельно установить бетонный столб не получится. Потому что:

  • Высота достигает минимум 5 метров, установить его строго в вертикальное положение без помощи машины невозможно.
  • Необходимость в изоляторах, и специальном надежном металлическом креплении на столбе, которое должно надежно выдерживать все порывы ветра и лед зимой.
  • Необходимость обесточить линию, которое окончательно разбивает все надежды отчаянных электриков–самоучек.

Возможно ли альтернативные методы установки ЛЭП своими силами?

Существует много вариантов самодельных столбов со специальным фундаментом снизу, с четырьмя металлическими опорами, изоляторами, и т.д. но используют их зачастую в селах. Самым доступным способом быстро и качественно сделать опору ЛЭП является установка бетонного столба.

Высота столба, как гласит правила устройства электроустановок (ПУЭ) должна быть минимум 5 м, и максимум 12, на практике применяются 7-метровые бетонные опоры. Расстояние в труднодоступных местах должно быть не менее 2,5 м, в недоступных (горы, утесы, скалы) – не менее 1 м. При пересечении не проезжей части улиц, на тротуарах, пешеходных дорожках расстояние можно уменьшить до 3,5 м. При установке вводного щитка его высота должна быть не менее 160 см от земли.

В деревнях высоту зачастую делают около 4м, чтобы грузовая машина могла спокойно проехать, и поскольку по конструкции ПУЭ никаких ограничений не ставит, то в ход идут все подручные материалы, металлические самодельные фермы, балки, что крайне не рекомендуется.

Для установки бетонной опоры понадобятся:

  • Бурильная машина;
  • Кран, который установит в вертикальное положение столб;
  • Грузовая машина для перевозки столба;
  • Бригада электриков, со специальной подъемной машиной с выдвижной клеткой для монтажа линии.

Данная команда способна за считаные часы надежно установить опору на многие десятилетия, и гарантировать нам бесперебойную подачу тока на протяжении многих лет.

Расстояние от ЛЭП до забора по СНиП: нормы

В вопросе строительства дома и оборудования его территории важны многие вопросы. В том числе и расстояние от ЛЭП до забора, о котором должны знать все, кто начал возведение ограждения для своего частного надела. От правильности расчетов расстояния от линий электропередач до забора частного дома зависит безопасность тех, кто приезжает на территорию на отдых, или же постоянно проживает на территории.

Схема с размерами расположения забора от линии электропередач

Вернуться к оглавлению

Важные моменты

Человек все время пользуется электричеством, будь то дома, на даче или в офисе. Но мало кто углубляется в то, что линии электропередач не только подают полезный ресурс, но и могут быть вредны, за счет магнитных полей, а также в случае сбоев становятся небезопасными для человека. Обязательно нужно придерживаться установленных правил, которые указывают на то, какое необходимо расстояние от опоры до забора жилого частного дома по следующим причинам:

  1. Чтобы сохранить здоровье жильцов строения.
  2. Дабы не пострадать от воздействия воздушных электромагнитных полей, пагубно влияющих на мозг человека.
  3. В охранной зоне ЛЭП, где уровень напряжения особо опасен для человека, особо остро стоит вопрос размещения жилых зданий. Если уровень опасности зашкаливает, то территорию ограждают промышленным забором и ставят запрет на строительство в этой зоне.

Схема охранной зоны линии электропередач

Если же в охранной зоне не настолько опасно, то заборы могут размещаться на безопасном расстоянии с обязательным выполнением требований, прописанных в СНиП.

  • Чтоб не подвергать риску близких людей и строения частного участка, которые могут воспламениться при сбое в работе ЛЭП, если изгородь находится на небезопасном расстоянии.
  • Поэтому в СНиП установлены расстояния от линий электропередач до забора дома не просто для того, чтобы люди не получили штрафы за нарушения, а для безопасности населения городов и сел.

    Вернуться к оглавлению

    Нормы

    В санитарных нормах, относящихся к линиям электропередач, четко и детально расписано, на каком расстоянии от ЛЭП могут быть установлены заборы. Данное расстояние зависит от уровня напряжения в проводах. В местах особой напряженности, которые специально оборудуют, есть санитарные зоны, вблизи от которых запрещается размещать заборы и возводить жилые дома.

    Вернуться к оглавлению

    Безопасное расстояние от ЛЭП

    Устанавливается требование к расстоянию от забора на дачном участке, до места, где стоит опора линий электропередач, отталкиваясь от класса напряжения.

    Уровень напряженияБезопасное расстояние до забора
    110 кВ20 метров
    500 кВ30 метров
    750 кВ40 метров
    1150 кВ55 метров

    Некоторые владельцы частных наделов обращаются в органы городского или сельского самоуправления с целью получения информации о том, каков класс напряжения в линиях электропередач, расположенных неподалеку от дачного участка.

    Конечно, не зная как определить уровень напряжения в проводах, лучше именно так и сделать, чтобы невольно не стать нарушителем требований СНиП и подвергнуть опасности жильцов частного надела.

    Тем не менее, есть метод, с помощью которого можно определить самостоятельно уровень напряжения в опорах электропередач.

    Схема напряжений в ЛЭП различных видов

    Для этого нужно посчитать количество проводков в одной связке, расположенной на фазе опоры.

    Количество проводовУровень напряжения
    2 провода330 кВ
    3 провода500 кВ
    4 провода750 кВ

    Если напряжение совсем небольшое, то его можно определить путем подсчета изоляторов.

    Количество изоляторовУровень напряжения
    3-5 изоляторов35 кВ
    6-8 изоляторов110 кВ
    15 изоляторов220 кВ

    Правильно рассчитанное расстояние и уровень напряжения в линиях электропередач, позволит максимально обезопасить всех родных, а также саму территорию надела, от воздействия вредных электромагнитных излучений. Видео об охранной зоне линий электропередач.

    Вернуться к оглавлению

    Как повысить уровень безопасности

    Даже полностью выполнив все нормы и требования, касательно расстояния забора от опор, через которые проходит электричество, дома, возведенные неподалеку от ЛЭП все же подвержены риску в непредвиденных ситуациях и должны обезопасить свои частные сектора. Это сделать можно следующими способами:

    • Подобрать для конструкции дома крышу с заземлением;
    • Оборудовать арматурную сетку внутри конструкции стен. Такое решение поможет снизить уровень риска проникновения вредоносных электромагнитных волн вовнутрь жилого пространства;
    • Чтобы повысить уровень безопасности жильцов дома, следует высаживать плодовые деревья на расстоянии не менее чем 2 метра по горизонтали от линий электропередач.

    Минимально допустимые расстояния от деревьев до линии электропередач

    Вернуться к оглавлению

    Рекомендации

    Требования в СНиП прописаны в первую очередь для безопасности людей, а не для выполнения пожеланий органов самоуправления. Поэтому не стоит пренебрегать правилами безопасности, особенно когда речь идет про электрическое напряжение. Стоит максимально уделить внимание просчетам, на каком расстоянии безопасно устанавливать забор от линий электропередачи. Только правильно установленная изгородь обеспечит комфорт и ограничит жильцов частного надела от неприятностей и опасности.

    Устройство воздушных линий электропередачи. Основные определения

    Основным документом в соответствии с требованиями которого строятся вновь или реконструируются все электроустановки, – ЛЭП, подстанции, станции катодной защиты, внутренние электропроводки компрессорных и насосных станций и другие -являются "Правила устройств электроустановок" (#M12293 0 1200003114 3645986701 3867774713 77 4092901925 584910322 1540216064 77 77ПУЭ#S). Согласно #M12293 1 1200003114 3645986701 3867774713 77 4092901925 584910322 1540216064 77 77ПУЭ#S решаются общие вопросы проектирования и выполняется расчет электрической части ЛЭП. В соответствии с #M12293 2 1200003114 3645986701 3867774713 77 4092901925 584910322 1540216064 77 77ПУЭ#S [6] ниже приводятся основные понятия и термины ЛЭП.

    Воздушная линия электропередачи – устройство для передачи электроэнергии по проводам, расположенным на открытом воздухе и прикрепленным при помощи изоляторов и арматуры к опорам или кронштейнам и стойкам на инженерных сооружениях (мостах, путепроводах и т.п.).

    Трасса ЛЭП – положение оси линии электропередачи на земной поверхности, а также полоса земли вдоль оси линии электропередачи, отведенная для ее строительства. Местность, по которой проходит трасса ЛЭП, в зависимости от доступности ее для людей, транспорта и сельскохозяйственных машин, согласно #M12293 3 1200003114 3645986701 3867774713 77 4092901925 584910322 1540216064 77 77ПУЭ#S делится на четыре категории.

    Населенная местность – земли в пределах городской черты в границах их перспективного развития на 10 лет, пригородные и зеленые зоны, курорты, земли поселков городского типа в пределах поселковой черты и сельских населенных пунктов в пределах черты этих пунктов.

    Ненаселенная местность – земли единого государственного земельного фонда, за исключением населенной и труднодоступной местности, т.е. незастроенные местности, хотя бы и часто посещаемые людьми, доступные для транспорта и сельскохозяйственных машин, сельскохозяйственные угодья, огороды сады, местности с отдельными редкостоящими строениями и временными сооружениями.

    Труднодоступная местность – местность, недоступная для транспорта и сельскохозяйственных машин.

    Застроенная местность – территории городов, поселков и сельских населенных пунктов в границах фактической застройки, защищающие ЛЭП с обеих сторон от поперечных ветров.

    При проектировании, т.е. при расчете и выборе конструкций ЛЭП, необходимо учитывать механические нагрузки на ее элементы, которые зависят от климатических условий местности прохождения ЛЭП, т.е. от силы ветра, толщины гололеда, который может образоваться на проводах линии.

    Территория Советского Союза в зависимости от скорости ветра разбита на семь районов [6].

    При расчетах проводов учитываются максимальные скоростные напоры ветра, исходя из их повторяемости один раз в 10 лет для ЛЭП на напряжение 6-10 кВ и один раз в 5 лет для ЛЭП на напряжение 0,4 кВ, при высоте крепления проводов до 15 м Максимальные нормативные скоростные напоры ветра приведены в табл. 2.

    Максимальные нормативные скоростные напоры ветра

    на высоте до 15 м от Земли

    Ветровые районы СССР

    Для ЛЭП на напряжение до 1000 В

    Для ЛЭП на напряжение 6-10 кВ

    скоростной напор ветра (в Н/м) при повторяемости один раз в 5 лет

    скорость ветра, м/с

    скоростной напор ветра (в Н/м) при повторяемости один раз в 10 лет

    306

    Проверка габаритов и стрелы провеса проводов и тросов | ПЛ

    Стрела провеса — это расстояние по вертикали в промежуточном пролете ВЛ между проводом (тросом) и прямой линией, соединяющей точки его подвеса.
    Стрелы провеса проводов и тросов, габариты линии до земли или пересекаемых объектов измеряют при приемке линии в эксплуатацию для проверки правильности монтажа, и в процессе эксплуатации, а в дальнейшем по мере необходимости: при появлении новых пересечений или сооружений, при переустройстве имеющихся переходов или пересекаемых объектов (замена опор, проводов, изоляторов, арматуры), а также при наклонах опор или изменениях их конструкций при ремонтных и реконструктивных работах, вытяжке проводов, проскальзывании проводов в подвесных и натяжных болтовых зажимах, изменения длины гирлянд при замене дефектных изоляторов и перекосе траверс и др.
    Габариты линий могут измениться в результате прокладки под проводами дорог, сооружения линий электропередачи.
    Если строительство таких сооружений не было согласовано с эксплуатирующей организацией, то габариты могут оказаться недостаточными, возникнет угроза безопасности для посторонних лиц и снизится надёжность работы линии. Строгой периодичности измерения стрел провеса габаритов не установлено и эти измерения должны производиться по мере необходимости, определяемой в результате периодических осмотров.
    Измерения, как правило, производят без отключения линии при помощи угломерных приборов или изолирующих штанг и капронового или сухого хлопчатобумажного каната. Для измерений на отключенных линиях могут быть использованы дополнительно обычные рулетки или веревки. В качестве угломерных приборов могут быть использованы теодолиты, нивелиры, а также более простые, но достаточно точные для данных измерений оптические приборы, карманные высотомеры и т.п.
    При измерениях следует фиксировать температуру воздуха. Полученные при измерениях фактические значения путем расчетов или с помощью специальных таблиц приводятся к температуре, при которой получаются наибольшие стрелы провеса, которые сопоставляются с проектными данными и допусками, приведенными в нормативно-технической документации.
    Фактическая стрела провеса проводов и тросов не должна отличаться от расчетной более чем на 5%. Разрегулировка проводов любой фазы по отношению к другой, а также разрегулировка тросов допускается не более чем на 10% проектного значения при условии соблюдения необходимого расстояния до земли и пересекаемых объектов. Расстояния от проводов ВЛ до земли и до различных пересекаемых объектов в местах сближения с ним должна быть не менее определённых в  нормативах .
    Проверка габаритов в местах пересечения линии с другими сооружениями является обязательной во всех случаях реконструкции и ремонта линии со сменой или переустройством опор, при замене проводов, возвышении каких-либо сооружений под линией и других работах, вызванных изменениями габаритов.
    Способы измерения габаритов и стрелы провеса проводов и тросов ВЛ. Измерение габарита линии с помощью капронового каната ведут в такой последовательности. На опору, не доходя 2 м до уровня изолирующих подвесок, поднимается электромонтер и устанавливает блок бесконечного каната. Затем по этому канату он поднимает изолирующую штангу и в специальном чехле ролик с измерительным капроновым канатом. С помощью штанги ролик устанавливают на проводе, второй конец капронового каната держит второй электромонтер, находящийся на земле. После установки ролик с помощью капронового каната вторым электромонтером передвигается до места измерения габарита. По отметкам на канате определяется расстояние от ролика (проводов) до поверхности земли (рис.). После измерения ролик возвращается к опоре и снимается первым электромонтером с помощью изолирующей штанги.

    Измерение габарита ВЛ с помощью капронового каната 1 — ролик; 2 — отметки; 3 — капроновый канат

    Так как эти работы выполняются под напряжением, к работе допускаются только специально обученные лица. Запрещается производство работ в сырую погоду.
    Наиболее точным и простым способом измерения габарита является непосредственное измерение под напряжением с помощью специальной испытанной в соответствии с нормами изолирующей штанги. Один электромонтер в месте измерения одним концом штанги касается провода, другой электромонтер замеряет расстояние от нижнего конца штанги до поверхности земли (дороги, железнодорожного полотна и др.). Сумма длины штанги и измеренного расстояния определяют габарит. Габарит в месте пересечения двух линий определяется разностью габаритов каждой линии.
    Для измерения стрелы провеса с помощью штанги определяют габарит линии и расстояние от места крепления провода к изолятору или гирлянд до поверхности земли. Разница между измеренными величинами равна значению стрелы провеса (при прохождении трассы по ровной местности).
    Простым и удобным прибором для измерения стрелы провеса или габарита провода до земли (рис. 2. 12.24) является приспособление для определения высоты элементов ПОВЭ (карманный высотомер).
    Прибор представляет собой плоскую коробку, имеющую форму равностороннего треугольника. В основание треугольника вставлено стекло, на котором нанесены две риски. В вершине треугольника имеются два отверстия, через которые производится визирование.

     

    Карманный высотомер типа ВК-1 ( ПОВЭ)

    Для определения высоты измеряемого объекта (высоты дерева под проводами, высоты опоры или подвески провода на опоре) наблюдатель удаляется от него, держа приспособление отверстиями у глаз, на такое расстояние, при котором риски на стекле совпадают: верхняя — с вершиной объекта, нижняя — с его основанием; затем измеряется рулеткой расстояние от объекта до наблюдателя, искомая высота равняется половине этого расстояния.
    Для определения высоты провода над землей под проводом в месте измерения забивается колышек. Затем наблюдатель удаляется от линии в направлении, перпендикулярном к ней, держа приспособление отверстиями у глаз на расстояние, при котором риски совпадают, верхняя — с проводом, нижняя — с основание колышка. Измеряется расстояние от наблюдателя до колышка. Габарит провода в месте измерения равен половине этого расстояния.
    Для определения стрелы провеса провода измеряется сначала высота подвески провода на опоре, как указано выше, затем наименьший габарит над землей и находят их разность.
    Погрешность измерений ПОВЭ при высоте объектов или габаритов до 50 м не превышает 4%, что является допустимым.
    Измерение стрелы провеса проводов (тросов) может быть выполнено путем глазомерного визирования (с помощью двух визирующих реек  следующим способом.




    Крючок-СпЭ. крепить шурупами

    Устройства для визирования стрел провеса проводов
    а — на ВЛ со штыревыми изоляторами, б — на ВЛ с подвесными изоляторами, в — на ровном профиле, г — в наклонном пролете
    1 — стойка металлической опоры; 2 — окуляр; 3 — рейка с уровнем.
    4 — струбцина для крепления; 5 — стрела провеса
    На стояках двух смежных опор закрепляют по одной рейке на расстоянии по вертикали от точки крепления провода, равном расчетному значению стрелы провеса провода (определяемому по монтажным таблицам) в проверяемом пролете при данной температуре. Если низшая точка провисания провода находится выше или ниже прямой линии, соединяющей обе визирные рейки, провод смонтирован с отклонением от заданного тяжения (соответственно с перетяжкой или недотяжкой). Для определения фактической стрелы провеса обе рейки перемещают вверх или вниз до положения, когда низшая точка провода совпадет с прямой, соединяющей обе рейки. Значение стрелы провеса определяется как среднее арифметическое расстояние по вертикали от точек подвеса провода до каждой рейки, сравнением полученных данных со значением стрелы провеса по монтажным кривым или таблицам, определяется отклонение от требуемого значения.
    Наиболее точно стрелы провеса могут быть измерены с помощью теодолита, однако использование этого метода измерений требует специально обученного персонала. Для измерения габарита теодолит устанавливают на расстоянии 50...60 м от линии, так чтобы расстояния от прибора до вертикальных проекций низшей точки провода и точки подвеса провода на опоре (R1 и R2) были примерно одинаковы (рис. 26). Эти расстояния тщательно измеряют с помощью рулетки или с помощью теодолита и рейки.
    Вертикальная визирующая ось теодолита направляется на точку провода на опоре и производится отсчет превышения этой точки над горизонтальной осью прибора (угол р). Аналогично производится отсчет превышения низшей точки провода над горизонтальной осью прибора (угол а). По полученным отсчётам определяется стрела провеса провода как разность подсчитанных значений.
    Расстояния от проводов до зданий и сооружений, расположенных вблизи BЛ, должны измеряться от проекции крайнего провода при наибольшем его расчетном отклонении до ближайших выступающих частей этих зданий и сооружений.
    Все измерения не разрешается производить при скорости ветра более 10 м/с. Результаты измерений габаритов проводов записывают в специальную ведомость.

    Высота электрического столба над землей

    Во многих частных домах есть необходимость провести электричество от соседского разрушенного дома либо поменять имеющуюся опору ЛЭП, кабель, возникает множество вопросов. Рассмотрим, что же делать, какие существуют нормативы для бетонного столба и возможно ли его установить своими силами?

    Какие существуют нормативы для установки бетонного столба на своем участке?

    Вначале следует учесть, что глубина закапывания опоры в земле должна быть ниже уровня промерзания, то есть около 1,5–2 метров. Самостоятельно установить бетонный столб не получится. Потому что:

    • Высота достигает минимум 5 метров, установить его строго в вертикальное положение без помощи машины невозможно.
    • Необходимость в изоляторах, и специальном надежном металлическом креплении на столбе, которое должно надежно выдерживать все порывы ветра и лед зимой.
    • Необходимость обесточить линию, которое окончательно разбивает все надежды отчаянных электриков–самоучек.

    Возможно ли альтернативные методы установки ЛЭП своими силами?

    Существует много вариантов самодельных столбов со специальным фундаментом снизу, с четырьмя металлическими опорами, изоляторами, и т.д. но используют их зачастую в селах. Самым доступным способом быстро и качественно сделать опору ЛЭП является установка бетонного столба.

    Высота столба, как гласит правила устройства электроустановок (ПУЭ) должна быть минимум 5 м, и максимум 12, на практике применяются 7-метровые бетонные опоры. Расстояние в труднодоступных местах должно быть не менее 2,5 м, в недоступных (горы, утесы, скалы) – не менее 1 м. При пересечении не проезжей части улиц, на тротуарах, пешеходных дорожках расстояние можно уменьшить до 3,5 м. При установке вводного щитка его высота должна быть не менее 160 см от земли.

    В деревнях высоту зачастую делают около 4м, чтобы грузовая машина могла спокойно проехать, и поскольку по конструкции ПУЭ никаких ограничений не ставит, то в ход идут все подручные материалы, металлические самодельные фермы, балки, что крайне не рекомендуется.

    Для установки бетонной опоры понадобятся:

    • Бурильная машина;
    • Кран, который установит в вертикальное положение столб;
    • Грузовая машина для перевозки столба;
    • Бригада электриков, со специальной подъемной машиной с выдвижной клеткой для монтажа линии.

    Данная команда способна за считаные часы надежно установить опору на многие десятилетия, и гарантировать нам бесперебойную подачу тока на протяжении многих лет.

    Высота опор зависит от стрелы провеса провода, расстояния от провода до поверхности земли, типа опоры и т. п. Высоту опоры при горизонтальном расположении проводов на линиях без защитных тросов (рис. 1) определяют следующие величины:

    1. Требуемое расстояние hг провода от земли (габарит приближения провода к земле).

    Провода «воздушных линий должны быть подвешены на такой высоте, чтобы от низших их точек до поверхности земли оставалось расстояние, обеспечивающее безопасность движения. Под проводами могут не только проходить люди, но и проезжать автомобили, груженные громоздкими предметами, высокие сельскохозяйственные машины, краны и т. п. На них не должно произойти электрического разряда с провода линии.

    Рис. 1. Высота опоры

    Наименьшие допускаемые расстояния от проводов до земли и некоторых инженерных сооружений приведены в табл. 1.

    Таблица 1. Габариты приближения проводов к земле и инженерным сооружениям

    Характеристики местностей и пересеченийНапряжения линий, кВ
    ниже 1 кВ1 — 2035 — 110220
    Ненаселенная местность, часто посещаемая людьми и доступная для транспорта и сельскохозяйственных машин. Расстояние до земли, м5667
    Населенные местности и территории промышленных предприятий. Расстояния до земли, м6778
    При пересечениях железных дорог постоянного пользования. Расстояние до головки рельсов, м7,57,57,58,5
    При пересечениях автогужевых дорог. Расстояние до полотна дороги, м6778

    Приведенные расстояния должны быть выдержаны при нормальных режимах работы линий. В некоторых случаях для линий с подвесными изоляторами нужно произвести проверку расстояний, получающихся при обрыве одного из проводов.

    2. Запас в расстоянии от провода до земли Δ h.

    При трассировке воздушных линий поперечные профили снимаются только в пересеченных местностях. Продольные профили трассы линий, по которым производится проектная расстановка опор, вычерчиваются в масштабе по вертикали 1 : 200 — 1 : 500. Неточности съемки и чертежей могут привести к расстояниям проводов над землей при сооружении линий, меньшим предписываемых «Правилами устройства электроустановк».

    Чтобы избежать недоразумений, высота опоры определяется с небольшим запасом Δ h, принимаемым 0,2 — 0,4 м. Меньшая цифра берется для пролетов длиной до 200 — 250 м, а большая — при пролетах 400 — 500 м. Для пролетов 200 м и менее при спокойном профиле местности запаса Δ h можно не принимать.

    3. Габаритная стрела провеса провода f г, при которой расстояние от провода до земли или инженерного сооружения получается наименьшим.

    Габаритная стрела провеса провода при определении высоты опоры может быть при:

    1) высшей температуре окружающего воздуха и нагрузке провода только собственным весом, отсутствии ветра;

    2) гололеде, температуре θ г, отсутствии ветра.

    Большая из этих стрел провеса провода и берется при определении высоты опоры.

    При проверке приближения провода к земле и инженерным сооружениям в аварийном режиме работы линии, принимается обрыв провода в том пролете, который в контрольном пролете дает наибольшую стрелу провеса провода. Например, при пересечении линии связи воздушной линией с промежуточными опорами обрыв принимается происшедшим в пролете соседнем с пересекающим.

    В аварийных режимах работы линий электропередачи допускаемые расстояния от проводов до земли и некоторых инженерных сооружений установлены меньшими, чем при нормальных режимах работы линий.

    Когда пересекаемый объект — автострада, линия связи и т. д. — находится не в середине пролета (рис. 2), а расположена ближе к одной из опор, при определении (высоты опоры следует принять во внимание не только наибольшую стрелу провеса провода f нб, но и стрелы провеса f1 и f2 над пересекаемыми объектами.

    Стрела провеса провода на расстоянии х от точки его подвеса находится по формуле f = γ х( l -х) /2

    Рис. 2 . Высота опоры с треугольным расположением проводов.

    4. Длина гирлянды изоляторов λ1 , включая арматуру, необходимую для крепления гирлянды изоляторов на опоре. Для определения λ1 нужно к длинам гирлянд, приведенным в табл. 1, прибавить при деревянных опорах 100 мм, а при металлических и железобетонных —

    5. Размер b — расстояние от нижнего обреза траверсы до ее оси, зависящее от конструкции опоры.

    6. Размер а — расстояние от оси траверсы до вершины опоры, определяемое конструкцией опоры.

    Высота опоры до оси траверсы определится, следовательно, равной: h 1 = h г + Δh + f г + λ 1 + b

    Полная высота опоры Н = h2 +а.

    Рис. 3. Высота опоры с треугольным расположением проводов

    При расположении проводов, например, в вершинах треугольника (рис. 3 ) высота h 1 оси нижней траверсы над землей определяется так же, как было указана выше. Положение верхней траверсы находится увеличением h 1 на расстояние D, (принятое между проводами разных фаз.

    Наличие защитных тросов увеличивает высоту опор. Добавляется необходимое расстояние от верхнего провода до троса.

    Стандартный электрический столб СВ 9.5-2.0 имеет следующие размеры: длина 9500 (мм), ширина 220 (мм), толщина 165 (мм).

    Размеры электрических столбов:

    — длина (L): от 9500 (мм) до 13500 (мм) ;
    — высота (H): 650 (мм) , 700 (мм) ;
    — ширина (B): 220 (мм) .

    Стойки опор контактной сети:

    — длина (L): 13600 (мм) ;
    — высота (H): от 200 (мм) до 600 (мм) ;
    — ширина (B): 290 (мм) .

    Стойки опор контактной сети для транспорта:

    — длина (L): 10500 (мм) , 13500 (мм) ;
    — высота (H): 412 (мм) ;
    — ширина (B): 220 (мм) .

    Опора одноцепная, двухцепная, опора угловая, концевая опора, ответвительная

    – система энергетического оборудования, предназначенного для передачи электрической энергии.
     
    Воздушная линия (ВЛ)
    – устройство для передачи электроэнергии по проводам, расположенным на открытом воздухе и прикрепленным с помощью изоляторов и арматуры к опорам.
     
    Опора ЛЭП
    – опора воздушной линии электропередачи – сооружение для удержания проводов и при наличии грозозащитных тросов воздушной линии электропередачи и оптоволоконных линий связи на заданном расстоянии от поверхности земли и друг от друга.
    Каталог опор ЛЭП ГК ЭЛСИ: опоры ВЛ 10 кВ, опоры ВЛ 35 кВ, опоры ВЛ 110 кВ, опоры ВЛ 220 кВ
     
    Опора одноцепная
    – опора воздушной линии электропередачи, несущая одну трёхфазную линию (три электропровода).
     
    Опора двухцепная
    – опора воздушной линии электропередачи, несущая две трёхфазные линии (шесть электропроводов).
     
    Анкерная опора
    – опора воздушной линии электропередачи, воспринимающая усилия от разности тяжения проводов, направленных вдоль ВЛ.
     
    Анкерный пролет
    – это расстояние между двумя анкерными опорами ВЛ, на которых жестко закреплены провода.
     
    Угловая опора
    – опора воздушной линии электропередачи, рассчитанная на тяжение проводов с усилиями, действующими по биссектрисе внутреннего угла, образуемого проводами в смежных пролетах.
     
    Концевая опора
    – опора воздушной линии электропередачи, которая воспринимает направленные вдоль линии усилия, создаваемые нормальным односторонним тяжением проводов; концевые опоры устанавливают в начале и конце ВЛ.
     
    Промежуточная опора
    – опора воздушной линии электропередачи, служащая для поддержания проводов на определенной высоте от земли и не рассчитанная на усилия со стороны проводов в продольном направлении или под углом.
     
    Ответвительными и перекрестными
    называются опоры воздушных линий эпектропередачи, на которых выполняются ответвления от ВЛ и пересечения ВЛ двух направлений.
     
    Провод
    – элемент ВЛ, предназначенный для передачи электрического тока.
     
    Грозозащитный трос
    – элемент ВЛ, предназначенный для защиты проводов ВЛ от прямых ударов молнии. Трос заземляется или изолируется от тела опоры (земли) и, как правило, располагается над проводами фаз.
     
    Тяжение провода (троса)
    – усилие, направленное по оси провода (троса), с которым он натягивается и закрепляется на анкерных опорах ВЛ.
     
    Габарит воздушной линии
    – расстояние от низшей точки провисания провода до поверхности земли.
     
    Стрела провеса провода (f)
    – расстояние по вертикали между прямой линией, соединяющей точки подвеса провода, и низшей точкой его провисания.
     
    Габаритная стрела провеса провода (fгаб)
    – наибольшая стрела провеса провода в габаритном пролете.
     
    Пролет ВЛ
    – расстояние между соседними опорами воздушных линий электропередачи.
     
    Габаритный пролет (lгаб)
     – пролет, длина которого определяется нормированным вертикальным расстоянием от проводов до земли при установке опор на идеально ровной поверхности.
     
    Весовой пролет (lвес)
    – длина участка ВЛ, вес проводов (тросов) которого воспринимается опорой.
     
    Ветровой пролет (lветр)
    – длина участка ВЛ, с которого давление ветра на провода и грозозащитные тросы воспринимается опорой.
     
    Вибрация проводов (тросов)
    – периодические колебания провода (троса) в пролете с частотой от 3 до 150 Гц, происходящие в вертикальной плоскости при ветре и образующие стоячие волны с размахом (двойной амплитудой), которая может превышать диаметр провода (троса).
     
    Пляска проводов (тросов)
    – устойчивые периодические низкочастотные (0,2 – 2 Гц) колебания провода (троса) в пролете с односторонним или асимметричным отложением гололеда (мокрого снега, изморози, смеси), вызываемые ветром скоростью 3 – 25 м/с и образующие стоячие волны (иногда в сочетании с бегущими) с числом полуволн от одной до двадцати и амплитудой 0,3.
     
    Гирлянда изоляторов
    – устройство, состоящее из нескольких подвесных изоляторов и линейной арматуры, подвижно соединенных между собой.
     
    Линейная арматура для ВЛ
    – это, в частности, элементы крепления изоляторов, средства защиты, зажимы, спиральные вязки.
     
    Нормальный режим ВЛ
    – состояние ВЛ при неповрежденных проводах или тросах.
     
    Аварийный режим ВЛ
    – состояние ВЛ при оборванных проводах или тросах.
     
    Монтажный режим ВЛ
    – состояние ВЛ при монтаже опор, проводов или тросов.
     
    Населенная местность
    – земли городов в границах их перспективного развития на 10 лет, пригородные и зеленые зоны, курорты, земли поселков городского типа в пределах поселковой черты и сельских населенных пунктов в пределах черты этих пунктов.
     
    Ненаселенная местность
    – земли единого государственного фонда, за исключением населенной и труднодоступной местности; незастроенная местность, хотя бы и часто посещаемая людьми, доступная для транспорта и сельскохозяйственных машин, огороды, сады, местность с отдельными редко стоящими строениями и временными сооружениями.
     
    Труднодоступная местность
    – местность, не доступная для транспорта и сельскохозяйственных машин.
     
    Подвесной изолятор
    – изолятор, предназначенный для подвижного крепления токоведущих элементов к опорам воздушных линий электропередачи, несущим конструкциям и различным элементам инженерных сооружений.
     
    Усиленное крепление провода с защитной оболочкой
    – крепление провода на штыревом изоляторе или к гирлянде изоляторов, которое не допускает проскальзывания проводов при возникновении разности тяжений в смежных пролетах в нормальном и аварийном режимах ВЛЗ.
     
    Штыревой изолятор
    – изолятор, состоящий из изоляционный детали, закрепляемой на штыре или крюке опоры воздушной линии электропередачи.
     
    Траверса
    – конструкция, расположенная на опоре воздушной линии электропередачи, к которой крепят изоляторы для проводов и др. арматуру. Служит для создания требуемого изолирующего воздушного промежутка и поддержки проводов.
     
    Трасса ВЛ
    – положение оси ВЛ на земной поверхности.
     
    Тросовое крепление
    – устройство для прикрепления грозозащитных тросов к опоре ВЛ, если в состав тросового крепления входит один или несколько изоляторов, то оно называется изолированным.
     
    Электрическая сеть
    – совокупность воздушных и кабельных линий электропередач и подстанций, работающих на определенной территории.

    Опоры ЛЭП

    Линии электропередач (ЛЭП) являются одними из важнейших компонентов современной электрической сети. Линия электропередач - это система энергетического оборудования, выходящая за пределы электростанций и предназначенная для дистанционной передачи электроэнергии посредством электрического тока.

    Линии электропередач разделяют на кабельные и воздушные. Кабельная линия электропередачи - это линия электропередачи, выполненная одним или несколькими кабелями, уложенными непосредственно в землю, кабельные каналы, трубы, на кабельные конструкции. Воздушная линия электропередачи (ВЛ) - это устройство, предназначенное для передачи и распределения электрической энергии по проводам, которые находятся на открытом воздухе.

    Для устройства воздушных линий электропередач применяются специальные конструкции - опоры воздушной линии электропередач. Опоры ЛЭП - это специальные сооружения, предназначенные для удержания проводов воздушных линий электропередач на заданном расстоянии от поверхности земли и друг от друга.

    Система опор воздушных линий электропередач была разработана в начале ХХ века, когда начали появляться первые мощные электростанции, и стало возможным осуществлять передачу электроэнергии на большие расстояния. До середины ХХ века раскатка проводов под опоры ЛЭП проходила по земле. Но такой способ раскатки имел множество недостатков: протащенный по земле провод получал многочисленные повреждения и требовал ремонта уже в процессе монтажа. Мелкие царапины и сколы становились причиной коронного разряда, приводящего к потерям передаваемой энергии.

    В пятидесятых годах ХХ столетия в Европе был разработан специальный метод монтажа электропроводов - так называемый метод тяжения. Метод тяжения подразумевает под собой раскатку провода сразу на установленные опоры лэп с помощью специальных роликов, без опускания провода на землю. С одного конца воздушной линии устанавливается натяжная машина, с другого - тормозная. Благодаря этому методу при строительстве ЛЭП значительно снизилась возможность повреждения электропроводов и сократились расходы на ремонт, что, в свою очередь, привело к сокращению потерь передаваемой электроэнергии. Преимущество данного метода выражается и в том, что присутствие естественных (реки, озера, леса, горы и т.д.) и искусственных (автомобильные и железные дороги, здания и т.п.) преград облегчает и ускоряет монтаж ЛЭП. В России технология монтажа опор ЛЭП «под натяжением» применяется с 1996 года и на данный момент является наиболее целесообразным и популярным способом возведения опор воздушных линий электропередач.

    В современном строительстве опоры ЛЭП применяются также в качестве опор для удержания заземленных молниеотводов и оптоволоконных линий связи. Также их используют в качестве освещения пространства на магистралях, улицах, площадях и т.п. в темное время суток. Опоры ВЛ предназначены для сооружений линий электропередач при расчетной температуре наружного воздуха до -65˚С включительно.

    ЖБИ опоры делятся на две основные группы, в зависимости от способа подвески проводов:


    • промежуточные опоры ЛЭП. Провода на этих опорах закрепляются в поддерживающих зажимах;
    • опоры анкерного типа. Провода на опорах анкерного типа закрепляются в натяжных зажимах. Данные опоры служат для тяжения проводов.

    Две основные группы делятся на типы, имеющие специальные назначение:


    • промежуточные прямые опоры. Устанавливаются на прямых участках линии и предназначаются для поддержания проводов и тросов и не рассчитаны на нагрузки от тяжения проводов вдоль линии. На промежуточных опорах с подвесными изоляторами провода закрепляются в специальных поддерживающих гирляндах, которые расположены вертикально. На опорах со штыревыми изоляторами закрепление проводов осуществляется проволочной вязкой. Промежуточные прямые опоры воспринимают горизонтальные нагрузки от давления ветра на провода и на опору и вертикальные - от веса проводов и собственного веса опоры ЛЭП;
    • промежуточные угловые опоры. Устанавливаются на углах поворота линии с подвеской проводов в поддерживающих гирляндах. Помимо нагрузок, которые действуют на промежуточные прямые опоры, промежуточные опоры также воспринимают нагрузки от поперечных составляющих тяжения проводов и тросов;
    • анкерно-угловые опоры. Устанавливаются при углах поворота ЛЭП более 20˚, имеют более жесткую конструкцию, чем промежуточные угловые опоры и рассчитаны на значительные нагрузки;
    • анкерные опоры. Специальные анкерные опоры устанавливаются на прямых участках трассы для осуществления перехода через инженерные сооружения или естественные преграды. Воспринимают продольную нагрузку от тяжения проводов и тросов;
    • концевые опоры. Являются разновидностью анкерных опор, устанавливаются в конце или начале ЛЭП и рассчитаны на восприятие нагрузок от одностороннего натяжения проводов и тросов;
    • специальные опоры, которые включают в себя: транспозиционные - служат для изменения порядка расположения проводов на опорах; ответвлительные - для устройства ответвлений от магистральной линии; перекрестные - используются при пересечении ВЛ двух направлений; противоветровые - для усиления механической прочности ВЛ; переходные - при переходах ВЛ через инженерные сооружения или естественные преграды.

    По способу закрепления в грунт поры делятся:


    • опоры, устанавливаемые непосредственно в грунт;
    • опоры, устанавливаемые на фундаменты: обычные, с широкой базой более 4 м², и узкобазовые (менее 4 м²).

    По конструкции опоры ЛЭП разделяются:


    • свободностоящие опоры. В свою очередь, делятся на одностоечные и многостоечные;
    • опоры с оттяжками;
    • вантовые опоры аварийного резерва.

    Опоры ЛЭП подразделяются на опоры для линий с напряжением 0.4, 6, 10, 35, 110, 220, 330, 500, 750, 1150 кВ. Эти группы опор отличаются размерами и весом. Чем больше напряжение, проходящее по проводам, тем выше и тяжелее опора. Увеличение размеров опоры вызвано необходимостью получения нужных расстояний от провода до тела опоры и до земли, соответствующих ПУЭ (Правила устройства электроустановок) для различных напряжений линий.

    По материалу изготовления опоры ЛЭП делятся на деревянные, металлические и железобетонные. Выбор вида опор ЛЭП обычно основывается на наличии соответствующих материалов в районе постройки линии электропередачи, экономической целесообразностью и техническими характеристиками строящегося объекта. Деревянные опоры применяют для линий с незначительным напряжением, до 220/380 В. Однако при таких преимуществах как низкая стоимость и простота изготовления, деревянные опоры имеют существенные недостатки: опоры из дерева недолговечны (срок службы составляет 10 - 25 лет), не обладают высокой прочностью, материал остро реагирует на изменения климатических условий.

    Металлические опоры значительно прочнее деревянных, однако требуют постоянного техобслуживания - поверхность конструкций и соединительные элементы приходится периодически окрашивать или оцинковывать для предотвращения окисления или коррозии.

    Высокая прочность и стойкость материала к деформации, коррозии и резкой смене климата, большой срок эксплуатации конструкций (порядка 50-70 лет), пожаростойкость, высокая технологичность и низкая стоимость - одни из немногих причин, которые позволяют сказать: железобетон является наиболее целесообразным решением для производства опор ЛЭП в России. Ведь в стране, имеющей огромную площадь и разнообразный климат, возникает необходимость не только в большом количестве протяженных линий связи, но и в высокой надежности в условиях резкой смены погодных условий и уровня влажности. Наличие качественных железобетонных опор для линий электропередач - важнейшее условие обеспечения стабильности в работе электроэнергетики. Группа компаний «Блок» производит и поставляет на строительный рынок только высококачественную продукцию из жби, в строгом соответствии с ГОСТ и СНиП.

    Железобетонные стойки опор ЛЭП различаются на два типа по способу изготовления.


    • вибрированные стойки опор. Метод изготовления, при котором бетонная смесь во время заливки в форму подвергается вибрации, благодаря которой обеспечивается увеличение плотности и однородности бетона при меньшем расходе цемента. Изготавливаются как из предварительно напряженного, так и ненапряженного железобетона и используются в качестве стоек и подкосов в опорах ЛЭП напряжением до 35 кВ, а также в качестве опор освещения;
    • центрифугированные стойки опор. Метод приготовления бетонной смеси, при которой обеспечивается равномерное распределение смеси, следовательно, каждый участок получается полностью уплотненным. Центрифугированные стойки опор предназначаются для линий электропередач напряжением 35-750 кВ.

    Конструктивно железобетонные опоры ЛЭП представляют собой вытянутые стойки с различные сечением в зависимости от предполагаемых условий эксплуатации и нагрузок. Конструкция стоек опор также предполагает наличие закладных деталей для установки зажимов, траверс и креплений для жестокого или шарнирного закрепления проводов, а также ригелей и плит для увеличения несущей функции изделий.

    По типу конструкции железобетонные опоры делятся на основных вида:


    • цилиндрические стойки опор;
    • конические стойки опор.

    Железобетонные опоры ЛЭП представлены широкой номенклатурой.

    Для высоковольтных ЛЭП изготавливаются центрифугированные цилиндрические и конические опоры в соответствии с ГОСТ 22687.2-85 «Стойки цилиндрические железобетонные центрифугированные для опор высоковольтных линий электропередачи» и ГОСТ 22687.1-85 «Стойки конические железобетонные центрифугированные для опор высоковольтных линий электропередачи» соответственно.

    Вибрированные стойки изготавливаются в соответствии с ГОСТ 23613-79 «Стойки железобетонные вибрированные для опор высоковольтных линий электропередачи. Технические условия», ГОСТ 26071-84 «Стойки железобетонные вибрированные для опор воздушных линий электропередачи напряжением 0,38 кВ. Технические уcловия» и сериями 3.407.1-136 «Железобетонные опоры ВЛ 0,38 кВ» и 3.407.1-143 «Железобетонные опоры ВЛ 10 кВ».

    Специальные двустоечные опоры изготавливаются в соответствии с серией 3.407.1-152 «Унифицированные конструкции промежуточных двустоечных железобетонных опор ВЛ 35-500 кВ».
    Серия 3.407.1-157 «Унифицированные железобетонные изделия подстанций 35-500 кВ» включает в себя вибрированные конические стойки с прямоугольным сечением центрифугированные цилиндрические стойки.Серия 3.407.1-175 «Унифицированные конструкции промежуточных одностоечных железобетонных опор ВЛ 35-220 кВ» содержит указания по изготовлению конических стоек опор.

    Железобетонные центрифугированные опоры контактной сети и освещения изготавливаются по серии 3.507 КЛ-10 «Опоры контактной сети и освещения».

    В качестве материала для изготовления железобетонных стоек опор ЛЭП используется устойчивый к электрокоррозии и коррозии от воздействия окружающей среды портландцемент различных классов по прочности на сжатие, от В25. В качестве заполнителей применяется мелкофракционный песок и гравийных щебень. Для каждого проекта подбирается различный вариант приготовления бетонной смеси: вибрирование применяется для стоек опор ЛЭП напряжением до 35 кВ и опор освещения, центрифугирование - для опор линий электропередач напряжением 35-750 кВ. Марки бетона по морозостойкости и водонепроницаемости назначаются в зависимости от условий эксплуатации и климата в зоне строительства, от F150 и от W4 соответственно. Дополнительно в бетон стоек опор добавляют специальные пластифицирующие и газововлекающие добавки.

    Бетон стоек опор ЛЭП армируется предварительно напряженной арматурой для придания большей прочности изделиям. Все детали армирования и закладные изделия в обязательном порядке покрываются специальным веществом против внутренней коррозии.

    В качестве рабочей арматуры применяется сталь следующих классов:


    • стержневая термически упрочненная периодического профиля класса Ат-VI по ГОСТ 10884-71 при эксплуатации стоек в районе строительства с расчетной температурой наружного воздуха не ниже -55°С;
    • стержневая горячекатаная периодического профиля классов А-IV и А-V. При расчетной температуре наружного воздуха ниже -55°С сталь этих классов следует применять в виде целых стержней мерной длины.В качестве поперечной арматуры применяется арматурная проволока класса В-I. Для изготовления хомутов, заземляющих проводников и монтажных петель применяется горячекатаная гладкая арматурная сталь класса А-I.

    Маркировка стоек по ГОСТ 23613-79.

    В обозначении марки стойки буквы и цифры означают: СВ - стойка вибрированная;дополнительные буквы «а» и «б» - варианты исполнения стоек, где:


    • «а» - наличие в стойках закладных изделий (штырей) и отверстий для крепления проводов;
    • «б» - наличие в стойках отверстий для крепления анкерных плит;
    • цифра после букв - длину стойки в дециметрах;
    • цифра после первого тире - расчетный изгибающий момент в тонна-сила-метрах;
    • цифра после второго тире - проектную марку бетона по морозостойкости.

    Для стоек, выполненных из сульфатостойкого цемента, после проектной марки бетона по морозостойкости ставится буква «с».

    Для стоек, предназначенных к применению в районах с расчетной температурой наружного воздуха ниже -40°С или при наличии агрессивных грунтов и грунтовых вод, в третью группу марки включают также соответствующие обозначения характеристик, обеспечивающих долговечность стоек в условиях эксплуатации:М - для стоек, применяемых в районах с расчетной температурой наружного воздуха -40°С;

    Для стоек, применяемых в условиях воздействия агрессивных грунтов и грунтовых вод - характеристики степени плотности бетона: П - повышенная плотность, О - особо плотный.

    По ГОСТ 22687.1-85 и ГОСТ 22687.2-85 марка стойки состоит из буквенно-цифровых групп, разделенных дефисом.

    Первая группа содержит обозначение типоразмера стойки, включающего:

    буквенное обозначение типа стойки, где:


    • СК - конические;
    • СЦ - цилиндрические;
    • далее указывается длина стойки в метрах в целых числах.

    Вторая группа включает обозначения: несущей способности стойки и области ее применения в опоре и характеристики напрягаемой продольной арматуры:


    • 1 - для арматурной стали класса A-V или Ат-VCK;
    • 2 - то же, класса A-VI;
    • 3 - для арматурных канатов класса К-7 при смешанном армировании;
    • 4 - то же, класса К-19;
    • 5 - для арматурных канатов класса К-7;
    • 0 - для арматурной стали класса A-IV или Ат-IVK.

    В третьей группе при необходимости отражают дополнительные характеристики (стойкость к воздействию агрессивной среды, наличие дополнительных закладных изделий и т.д.).

    Маркировка по серии 3.407.1-136 для конструкций элементов опор ВЛ 0,38 кВ состоит из буквенно-цифрового обозначения.

    В первой части указывается обозначение типа опоры ЛЭП:


    • П - промежуточная;
    • К - концевая;
    • УА - угловая анкерная;
    • ПП - переходная промежуточная;
    • ПОА - переходная ответвительная анкерная;
    • Пк - перекрестная.

    Во второй части - типоразмер опоры: нечетные номера для одноцепных опор, четные - для восьми- и девятипроводных ВЛ.

    Маркировка по серии 3.407.1-143 для опор ВЛ 10 кВ имеет в первой части буквенное обозначение типа опоры:


    • П - промежуточная;
    • ОА - ответвительная анкерная;
    • И т.д.

    Во второй части - цифровой индекс 10, указывающий на напряжение ВЛ.

    В третьей части, через тире, пишется номер типоразмера опоры.

    Элементы опор, в которую входят плиты и анкеры, маркируются буквенно-числовым обозначением.П - плита, АЦ - анкер цилиндрический.

    Через дефис указывается номер типоразмера изделий.

    Маркировка железобетонных промежуточных одностоечных опор по серии 3.407.1-175 и двустоечных опор по серии 3.407.1-152 состоит из буквенно-числового обозначения.

    Первая цифра означает порядковый номер региона, в котором применяется опора;

    Последующее сочетание букв - тип опоры:


    • ПБ - промежуточная бетонная;
    • ПСБ - промежуточная специальная бетонная;
    • Последующая группа цифр - напряжение ВЛ в кВ, в габаритах которого выполнена опора;
    • Следующее после тире число - порядковый номер опоры ЛЭП, в унификации, при этом нечетные номера принадлежат одноцепным опорам, а четные - двуцепным.

    Маркировка изделий опор по серии 3.407.1-157:

    Первая группа буквенно-цифрового обозначения включает литеры условного наименования изделий и основные габаритные размеры в дециметрах, где:


    • СЦП - стойка цилиндрическая полая;
    • ВС - вибрированная стойка.

    Вторая группа, через дефис, обозначает несущую способность в кН.м;

    Третья группа, через дефис, обозначает конструктивные особенности (вариант армирования, наличие дополнительных закладных деталей).

    Маркировка опор серии 3.407-102 включает в себя следующие наименования:


    • СЦП - стойка цилиндрическая полая;
    • ВС - вибрированная стойка;
    • ВСЛ - вибрированная стойка для осветительных линий и железнодорожных сетей;
    • Далее следует цифра, означающая типоразмер изделия.

    Маркировка жби опор контактной сети и освещения по серии 3.507 КЛ-10 состоит из буквенно-цифровых обозначений.

    Центрифугированные опоры ЛЭП (выпуск 1-1):


    • ОКЦ - опоры наружного освещения с кабельной подводкой питания;
    • ОАЦ - анкерные опоры наружного освещения с воздушной подводкой питания;
    • ОПЦ - промежуточные опоры наружного освещения с воздушной подводкой питания;
    • ОСЦ - совмещенные опоры контактной сети и наружного освещения с кабельной подводкой питания.

    Первая цифра после букв, через дефис, обозначает горизонтальную нормативную нагрузку на опору в центнерах, вторая - длину опоры в метрах.

    Вибрированные опоры (выпуски 1-2, 1-4, 1-5):


    • СВ - стойка вибрированная наружного освещения с кабельной или воздушной подводкой питания;
    • Следующая после букв цифра указывает нормативный изгибающий момент в заделке, в тм;
    • Вторая цифра, через дефис, указывает длину стойки в метрах.

    Ненапряженные вибрированные стойки (выпуск 1-6):


    • Первая группа содержит буквенное обозначение типа конструкции, СВ - стойка вибрированная, и числовое – длина стойки в дециметрах;
    • Вторая группа - условное обозначение несущей способности.

    Безопасная высота надземных линий электропередачи

    Воздушные линии электропередач подчиняются строгим требованиям по минимальной высоте над улицами, тротуарами, переулками, проездами и другими зонами движения. Это соображение безопасности, направленное на защиту людей от опасности поражения электрическим током. Национальный электротехнический кодекс (NEC) и Национальный кодекс электробезопасности (NESC) предписывают допустимые зазоры для линий электропередач для обеспечения общественной безопасности и предотвращения контакта с электрическим током.Однако помните, что местные правила могут отличаться от национальных правил, установленных NEC и NESC. У них часто есть более строгие правила, чем национальные правила. В случае расхождений местные правила всегда имеют приоритет над национальными кодексами. Обратиться в местное управление строительной инспекции - лучший способ определить правила для вашего сообщества.

    Правила оформления

    Линии электропередач над пешеходными тротуарами и пешеходными дорожками

    Для линий электропередач над зонами, используемыми только пешеходами, включая тротуары, террасы и патио, правила минимального расстояния между проводами и землей по вертикали следующие:

    • Для линий с напряжением 150 вольт или меньше: минимальный вертикальный зазор 10 футов
    • Для линий с напряжением выше 150 вольт: минимальный вертикальный зазор 12 футов

    Эти расстояния считаются достаточными для обеспечения безопасного проезда всех пешеходов, даже если они несут инструменты или другие предметы.Разумеется, следует проявлять осторожность при переноске лестницы или другого длинного предмета.

    Примечание: там, где тросы проходят над путями, которые могут использоваться всадниками верхом на лошади, минимальный зазор для воздушных тросов составляет 16 футов.

    ЛЭП над проездами без коммерческого движения

    Для проездов и других проездов, используемых транспортными средствами высотой менее 8 футов, действуют следующие правила минимальных зазоров:

    • Для линий с напряжением менее 300 В: минимальный вертикальный зазор 12 футов
    • Для линий от 300 до 600 вольт: минимальный вертикальный зазор 15 футов

    Это расстояния, используемые на большинстве жилых проездов.Сельским домовладельцам и фермерам следует руководствоваться коммерческими принципами, поскольку велика вероятность того, что подъездные пути будут использоваться служебными автомобилями в сельской местности.

    ЛЭП над улицами и проезжими частями с торговым движением

    Для любых проездов, переулков, дорог или улиц, на которых могут находиться автомобили высотой более 8 футов, рекомендуется, чтобы все линии электропередачи находились на высоте не менее 18 футов над землей, измеряется в их самой низкой точке.

    Провода над бассейнами, гидромассажными ваннами и прудами

    Электрические провода над водой предъявляют особые требования:

    • Для электрических проводов над бассейном или гидромассажной ванной: минимальный вертикальный зазор 22 1/2 фута, измеренный до поверхности воды или основания трамплина
    • Для электрических проводов над прудом или озером: минимальное расстояние по вертикали 38 1/2 футов

    Линии связи (телефон, данные) Линии

    Правила вертикального зазора для телефона, кабельного телевидения, Интернета и других линий передачи данных значительно различаются от сообщества к сообществу, но NESC устанавливает следующие правила:

    • Для кабелей передачи данных над пешеходным движением: минимальное расстояние по вертикали 9 1/2 футов
    • Для кабелей передачи данных над движением транспортных средств: минимальный вертикальный зазор 15 1/2 футов
    • Для кабелей передачи данных над бассейном или гидромассажной ванной: минимальное расстояние по вертикали 10 футов

    Кроме того, между линиями связи и электрическими линиями должен быть зазор 30 дюймов.

    подсказок

    Помните, что минимальные вертикальные зазоры должны измеряться от самой нижней точки провисания провода. Вы также должны учитывать сезонные колебания вертикального зазора, например, увеличивать зазор в климатических условиях, когда снежный покров может сократить расстояние между землей и проводами в зимние месяцы.

    В случае с сельскохозяйственной техникой существует явная и реальная опасность вблизи линий электропередач. Каждый год многие люди получают травмы или гибнут, когда их оборудование соприкасается с линиями электропередач.Внутри ферм и полей и вокруг них есть несколько воздушных линий электропередач, и при перемещении высокого оборудования важно, чтобы вы знали об опасностях, связанных с воздушными линиями электропередач. Например, шнеки комбайнов следует провернуть до безопасного уровня при движении под линиями электропередач. Операторы должны найти время, чтобы осмотреть территорию, прежде чем выдвигать стрелу, и должны оставаться на расстоянии не менее 30 футов от всех линий электропередач и опор.

    У самосвалов и полуприцепов возникают схожие проблемы, когда кузов-самосвал поднимается, чтобы сбросить свои грузы.Водители должны осознавать свое окружение при подъеме отвала и при перемещении транспортного средства, когда кузов находится в поднятом положении.

    Какова стандартная высота линий электропередач?

    ••• Джек Н. Мор / iStock / GettyImages

    Большинство штатов США принимают Национальный электротехнический кодекс (NEC) и Национальный кодекс электробезопасности (NESC), которые диктуют передовые методы безопасности для государственных и частных электрических и коммунальных компаний. Эти стандарты определяют высоту линий электропередач, от высоковольтных линий электропередач до линий электропередачи, расположенных над тротуарами.Однако минимальные требования редко совпадают с отраслевыми нормами.

    Почему опоры инженерных сетей разной высоты?

    Высота линий электропередачи определяется линиями, подключенными к опоре, и муниципальными нормами, регулирующими расстояние между линиями и землей. Линии связи включают телевидение, широкополосный доступ в Интернет и телефонную связь и расположены в самом низу на опоре электросети. Линии электропередач расположены вверху.

    Поскольку муниципальные строительные нормы и правила требуют большего расстояния между линиями связи и тротуарами или улицами, точки подключения этих проводов перемещаются выше.Все остальные линии на полюсе при этом перемещаются вверх.

    Кроме того, существует зона безопасности рабочих, расположенная между линиями связи и линиями электропередач, чтобы обеспечивать безопасность работников коммунальных служб во время ремонта и установки. По мере изменения размера этой зоны безопасности изменяется и необходимая высота для линий электропередач.

    Насколько высока стандартная опора для электросети?

    Обычно можно увидеть опоры разных размеров. Телефонные провода предъявляют самые низкие требования к дорожному просвету.Иногда телефонная опора не поддерживает ничего, кроме линий связи, поэтому они оказываются намного короче, чем соседние совместные опоры, на которых проходят высоковольтные линии электропередачи.

    Задача каждой электротехнической компании - обеспечить соответствие полюсов государственным нормам. К сожалению, иногда они не успевают за изменениями. NESC выпустила предварительную версию рекомендаций на 2020 год, чтобы коммунальные предприятия могли взвесить предлагаемые изменения. Согласно NESC, стандартная высота опоры составляет 35 футов.

    Однако это несколько спорное, так как линия связи была вытесняя электрические линии снабжения для адекватного пространства. На практике 40-футовые шесты являются новейшей предпочтительной моделью, хотя в некоторых ситуациях могут потребоваться опоры высотой 120 футов или выше.

    Пределы дорожного просвета для линий электропередач

    NEC требует различных ограничений дорожного просвета для линий электропередач в зависимости от напряжения и местоположения. Эти минимумы немного отличаются от тех, которые приняты NESC. Владельцам недвижимости важно обращаться в местные муниципалитеты за информацией, относящейся к их району.

    Минимальный дорожный просвет NEC для линий электропередач составляет:

    • Тротуары: 12 футов.
    • Парковочные места: 18 футов.
    • Дороги, сельскохозяйственные дороги: 18 футов.

    Также могут быть разные стандарты в зависимости от того, проходит ли на опоре линии передачи низкого или высокого напряжения.

    Насколько высокий телефонный столб?

    NESC требует следующих зазоров для телефонных линий:

    • Тротуары: 9.5 футов.
    • Дороги: 15,5 футов.
    • Бассейны: 10 футов.

    Это расстояние от поверхности земли до самой нижней точки линии связи. Компании планируют провисание линий со временем из-за воздействия силы тяжести, а также температуры, плохой погоды и других факторов. Промышленный минимум для точек крепления на телефонной опоре составляет 18 футов при длине линии до 20 футов.

    Чем длиннее проволока, тем больше провисание. Линии длиной до 200 футов должны иметь не менее 22 креплений для столбов.25 футов. Линии связи других типов тяжелее телефонных, поэтому они более подвержены провисанию. Эти линии требуют еще большей осторожности, чтобы избежать нарушения правил минимального дорожного просвета.

    Телефонные столбы могут быть намного короче, чем электрические столбы или общие столбы. С другой стороны, они не подвергаются таким же рискам.

    Какие типы линий электропередач бывают?

    Несколько различных типов линий электропередачи несут электричество от электростанции к отдельным предприятиям и домам.К ним относятся:

    • Линии электропередачи: передают электроэнергию на большие расстояния от электростанций с напряжением 345 000 вольт.
    • Линии субпередачи: ответвляются от линий электропередачи до крупных промышленных, коммерческих и жилых районов с напряжением 69 000 вольт.
    • Местные линии электропередачи: ответвляются от вспомогательных линий электропередачи до обслуживающих районов и микрорайонов с напряжением 13 800 вольт.
    • Промышленные линии электропередачи: ответвляются от местных линий электропередачи до отдельных промышленных объектов с напряжением от 220 до 440 вольт.
    • Коммерческие и жилые линии электропередач: ответвляются от местных линий электропередачи до частных предприятий и домов с напряжением от 120 до 240 вольт.

    Какое напряжение в жилых линиях электропередач?

    Напряжение на линиях электропередач в жилых домах составляет от 120 до 240 вольт, но домовладельцы не должны думать, что эта величина безопасна. Низковольтный шок может быть опаснее высокого напряжения из-за воздействия на сердце. Вот почему родители используют комплекты для защиты детей, которые перекрывают розетки.

    Ребенка, который воткнет игрушку в электрическую розетку, можно убить. Когда дело доходит до опасности, сила тока - мера того, сколько тока проходит через тело - более важна, чем напряжение.

    Что такое стеклянные предметы на линиях электропередач?

    Все токи притягиваются к поверхности Земли. Если будет такая возможность, они выберут самый быстрый и легкий путь туда. Электричество может прыгать на несколько футов, чтобы выполнить эту задачу, поэтому потребовались меры предосторожности, чтобы электричество в линиях электропередачи не сходило с их пути.

    Стеклянные, керамические или пластиковые колпачки, обнаруженные на некоторых опорах электроснабжения, не позволяют потоку электричества - или информации при обсуждении линий связи - покидать провод и следовать за опорой в землю. Компании впервые начали производить эти колпачки, называемые изоляторами, в 1880-х годах, чтобы позволить электричеству перемещаться на большие расстояния. Они необходимы сегодня, чтобы поддерживать работу сервиса.

    Это не то же самое, что яркие шары или другие приспособления, висящие на длинных высоких проводах электросети.Эти маркеры или маркерные шары служат предупреждением для низколетящих самолетов.

    Изолированы ли жилые линии электропередач?

    Хотя большинство опор электросети имеют изоляторы, большинство линий электропередач не изолированы. Даже в жилых районах. Жители часто предполагают, что линии электропередач изолированы, чтобы защитить людей от ударов в случае обрыва линии и падения на землю. Удивительно, но менее 10 процентов линий электропередач в жилых домах изолированы, так почему же люди имеют это заблуждение?

    Они часто принимают водонепроницаемое покрытие на внешней стороне электрических линий за изоляцию, но оно используется для защиты оголенных проводов внутри, а не для защиты людей.Когда устанавливается изоляция, происходят две вещи:

    1. Она изнашивается под воздействием элементов, поэтому на нее нельзя полагаться, чтобы обезопасить людей.
    2. Он утяжеляет линию, вызывая большее провисание и требуя более высоких точек подключения на опорах электросети для соблюдения требований к дорожному просвету.

    Недостатки перевешивают преимущества изоляционных линий, поэтому многие компании отказываются от расходов. Ситуация меняется в регионах, где возрастает риск возникновения лесных пожаров.

    Вызывают ли линии электропередач лесные пожары?

    По данным Калифорнийской комиссии по коммунальным предприятиям, около 10 процентов лесных пожаров возникают из-за линий электропередач. Это происходит, когда:

    • Ветер сдувает ветки деревьев в линии электропередач.
    • Линии ломаются под давлением и падают на сухие участки.
    • Столбы ломают и соединяют провода под напряжением с травой и деревьями.

    Это одна из причин, по которой коммунальные предприятия, муниципалитеты и собственники вырубают деревья вокруг линий электропередач.

    Некоторые лесные пожары бесконтрольно бушевали на десятках тысяч акров земли, убивая людей и вызывая массовые разрушения. Из-за этого такие компании, как Pacific Gas & Electric и Southern California Edison, выплатили сотни миллионов долларов в качестве компенсации за ущерб и, наконец, начали вкладывать больше средств в предотвращение пожаров.

    К сожалению, размещение всех существующих линий под землей было бы слишком дорогостоящим и разрушительным. Однако размещение под землей является более безопасным вариантом для будущих разработок с точки зрения безопасности и в качестве компонента благоустройства сообщества.В конце концов, стандартная высота линий электропередачи могла быть отрицательной величиной.

    Означают ли птицы или белки на проводе, что это безопасно?

    Нет. Люди, не знакомые с принципами работы электричества, могут ошибиться, полагая, что линии изолированы и, следовательно, к ним безопасно прикасаться, когда птицы или белки безопасно садятся на провода. Другие думают, что ломаная линия мертва, если она не искрится на земле. Таким образом, линии электропередач вводят в заблуждение. Они могут казаться совершенно безопасными, но к ним смертельно опасно приближаться.

    Причина, по которой птицы и другие мелкие животные могут сидеть на линии электропередачи и не пораниться, сводится к лени. Течения идут самым быстрым и легким путем туда, куда они направляются. Потребовалось бы ненужное время, чтобы электричество покинуло провод, прошло через белку и вернулось в линию.

    К сожалению, иногда, когда белка или птица пробираются от провода к столбу или другому проводу, возникает дуга. Вместо того, чтобы оставаться в проводе, он проходит через животное к столбу, а затем на землю.То же самое может произойти, когда люди или филиалы подходят слишком близко.

    Безопасно ли прикасаться к опоре электросети?

    Люди регулярно прикрепляют листовки, ленты и другие предметы к столбам, но безопасно ли это делать? Нет. По мнению экспертов, паразитное напряжение может просочиться вниз по опоре электросети или по ближайшим деревьям в землю, окружающую опору. Вот почему возможно поражение электрическим током вне зависимости от того, коснется ли кто-нибудь токоведущий провод.

    Кроме того, некоторые опоры электросети представляют другие опасности.Столбы электросети, помеченные X сбоку, подлежат замене. И это не всегда вопрос возраста. Они могли знать о проблемах, которые подвергали вас повышенному риску.

    То же самое и с маленькими зелеными коробками для транзисторов, которые иногда устанавливают в жилых районах. Домовладельцам следует избегать озеленения ящиков и не позволять детям залезать на них во время игры.

    Кто отвечает за линии электропередач к вашему дому?

    При обрыве или падении линий электропередач, которые вызывают пожар или другой инцидент, энергокомпания несет ответственность.А как насчет других проблем? В некоторых случаях домовладельцы несут ответственность за линии электропередач, идущие к их собственности. Их размер зависит от типа установленного оборудования и коммунальной компании.

    Подземное электрическое обслуживание: В целом, подземное электрическое обслуживание обеспечивает наименьшую ответственность для домовладельцев, но его установка намного дороже, чем обычная линия электропередачи или наземное обслуживание. В конце концов, собственнику недвижимости остается только заботиться о содержании измерительной базы и кабелепровода клиента внутри конструкции или прикрепления к ней.

    В подземных установках электрическая компания несет ответственность за:

    • Счетчик.
    • Трансформатор.
    • Кабель внутри кабелепровода.
    • Кабелепровод PPL.

    Они оплатят счет за любой ремонт или регулировку, необходимые для этих частей.

    Надземное обслуживание: В традиционных электрических системах больше частей, за которые домовладельцы несут большую ответственность. Это одна из причин, по которой переход на подземный транспорт обходится так дорого.В то время как коммунальная компания покрывает транзистор, счетчик и линию обслуживания от опоры электросети до дома, домовладелец несет ответственность за:

    • Сервисный якорь.
    • Кабель служебный входной.
    • Основание счетчика.
    • Блок сервисных предохранителей.

    Собственники должны защищать оборудование на своей собственности. Любой необходимый ремонт и любые повреждения, вызванные этими компонентами, являются ответственностью владельца.

    Стандартная высота линий электропередачи полностью зависит от города и штата, в котором они находятся, а также от типов линий электропередачи на опоре.Несмотря на рекомендуемые минимальные уровни дорожного просвета, начиная с 12 футов, отраслевые стандарты теперь склоняются к 35 футов или выше.

    Кто отвечает за низковисячие линии электропередач?

    Электроэнергетическая компания, которой принадлежат линии электропередач, отвечает за низко висящие линии электропередач. От них требуется проводить надлежащие проверки и техническое обслуживание своей инфраструктуры, чтобы убедиться, что линии электропередач не свисают так низко, чтобы создавать угрозу общественной безопасности, и, если они это делают, чтобы линии электропередач были подняты обратно на безопасную и надлежащую высоту.

    Что такое низковисящие линии электропередачи?

    Поскольку коммунальная компания несет ответственность за низко висящие линии электропередач, как они определяют, находятся ли они на требуемой высоте? То, чтобы считаться «низким», будет зависеть от нескольких факторов. Во-первых, свешиваются ли они ниже к земле, чем это разрешено директивами по зазору, опубликованными Национальным кодексом электробезопасности (NESC), или директивами, установленными самой компанией? Во-вторых, оправдывали ли обстоятельства то, что линии электропередач поддерживались на большей высоте?

    Из-за изначально опасных свойств, которыми обладают электричество и электрическая энергия, NESC публикует правила очистки, в которых указывается, на какой высоте должны поддерживаться линии электропередач над землей.Требования к свободному пространству или высоте зависят от того, подвешена ли линия электропередачи над проезжей частью, зданиями, железными дорогами, водоемами, пешеходными дорожками и сельскохозяйственными полями или рядом с ними.

    Тем не менее, законы многих штатов предусматривают, что соответствие рекомендациям NESC не является убедительным доказательством того, что линии электропередач были подвешены на надлежащей безопасной высоте. Вместо этого суды в этих штатах будут следить за тем, пришел ли разумный человек в электроэнергетической отрасли к выводу, что в данных обстоятельствах для защиты общественной безопасности была необходима высота зазора, отличная от требуемой NESC.

    Какова мера того, является ли линия электропередачи низко висящей?

    Определение того, свисает ли линия электропередачи слишком низко - на основе рекомендаций NESC и / или того, что требуется в силу обстоятельств - производится путем измерения расстояния между землей и самой низкой точкой «провисания» кривой линия электропередачи.

    Величина имеющегося прогиба зависит от натяжения линии электропередачи (которую также называют «проводником») между полюсами электросети, между которыми она проходит.Чем меньше напряжение в линии электропередачи, тем больше будет прогиб, и наоборот. Поскольку коммунальные предприятия несут ответственность за низко висящие линии электропередач, у них есть технические таблицы, в которых даются формулы того, сколько прогиба и натяжения должен иметь данный пролет линий электропередачи между полюсами, чтобы они не ломались или не свешивались слишком низко и, таким образом, подвергали опасности общественные.

    Что вызывает низкое свисание линий электропередач?

    Есть несколько факторов, которые могут привести к тому, что линии электропередач будут висеть ниже, чем они должны, и, таким образом, поставить под угрозу безопасность населения.

    Когда линии электропередач, включая опоры и опорные системы, не устанавливаются, не проверяются, не обслуживаются и / или не ремонтируются коммунальной компанией должным образом, изоляторы и / или оборудование опор выйдут из строя, что приведет к слишком низкому свисанию или падению линий электропередач. полностью.

    «Электрическая нагрузка» линии электропередачи может в конечном итоге привести к тому, что линия электропередач зависнет слишком низко. Это происходит, когда электричество, протекающее по линии электропередачи, выходит из строя - из-за неисправности и неправильного подключения к изолятору - и увеличивает электрическую нагрузку на оборудование.

    Повышенные «тепловые нагрузки» из-за циклов замораживания / оттаивания или утечки электрического тока могут привести к разрушительным деформациям в линиях электропередач, в результате чего они будут свисать или провисать слишком низко или в конечном итоге опускаться.

    «Механические нагрузки», представляющие собой нагрузки различного типа, размещаемые на конструкциях линий электропередач, также могут влиять на способ подвешивания проводов. К механическим нагрузкам относятся сила тяжести, ветра, льда, снега и загрязняющих веществ, которые могут оказывать давление на провода, столбы, изоляторы или оборудование на верхушках столба, вызывая увеличенное провисание, которое вы видите.

    Что такое «поплавки» и опасны ли они для работников связи и лесорубов?

    Когда линии электропередачи проходят частично вниз (ниже вершины полюса, где они и должны быть), их называют «плавающими». Это означает, что они больше не подключены к изолятору должным образом, а просто свисают.

    «Плавучие» линии электропередач особенно опасны для работников связи, которые работают на полпути вверх по опоре, и для лесорубов, которые часто работают из ковшей или поднимаясь на различные высоты вблизи линий электропередач.Это люди, которые больше всего подвержены воздействию плавающих проводов, которые не спускаются до земли.

    За что отвечает энергокомпания в отношении низковисящих линий электропередачи?

    В каждом штате действуют свои законы об ответственности за низко висящие линии электропередач. Это включает обязанности, которые коммунальное предприятие несет перед гражданами по защите их от поражения электрическим током и поражением электрическим током, в том числе его ответственность за предотвращение и / или устранение опасностей, создаваемых провисающими линиями.

    Хороший репрезентативный пример мер безопасности, которые необходимо предпринять, когда коммунальная компания несет ответственность за низко висящие линии электропередач, был сформулирован Верховным судом Мичигана в деле Schultz v. Consumers Power Company , 443 Mich.445, 506 NW 2d 175 (1993):

    • Коммунальные предприятия, отвечающие за низко висящие линии электропередач , «обязаны в разумных пределах проверять и ремонтировать провода и другие инструменты, чтобы обнаруживать и устранять опасности и дефекты.»
    • Коммунальные предприятия, отвечающие за низко висящие линии электропередач« должны проявлять разумную осторожность для защиты населения от опасности ».
    • Коммунальные предприятия, отвечающие за низко висящие линии электропередач, должны регулярно обслуживать оборудование. - «Электроэнергетические компании должны проявлять обычную осторожность, чтобы гарантировать, что оборудование находится в достаточно безопасном состоянии»
    • Коммунальные предприятия, отвечающие за низко висящие линии электропередач, обязаны проверять и ремонтировать - «Хотя мы не следуем правилу абсолютной ответственности, обязанности ответчика по проверке и ремонту включают больше, чем просто устранение дефектных условий, фактически вызванных его внимание.»
    • Коммунальные предприятия, отвечающие за низко висящие линии электропередач, должны знать, что соответствие отраслевым стандартам не является окончательным в вопросе халатности. -« Соблюдение NESC или отраслевого стандарта не является абсолютной защитой от иска халатности. Хотя это может быть доказательством должной осторожности, соответствие отраслевым стандартам не является решающим в вопросе халатности, когда разумное лицо, работающее в отрасли, при данных обстоятельствах примет дополнительные меры предосторожности.. . . Таким образом, аргумент, основанный на отраслевых стандартах, касается вопроса о том, нарушил ли ответчик свою обязанность проявлять обычную осторожность, а не о том, существовала ли такая обязанность. Если истец сможет убедить присяжных, что разумно осмотрительная компания предприняла бы дополнительные меры, помимо тех, которые требуются отраслевыми стандартами, то присяжные, несомненно, вправе установить, что ответчик нарушил свои обязанности, независимо от правил отрасли ».

    Кому звонить по поводу низковисящих линий электропередачи?

    Так как электроэнергетическая компания отвечает за низко висящие линии электропередач, позвоните в компанию, которая поставляет электричество в район, где расположены провисающие линии, и сообщите им о состоянии.Каждый раз, когда у вас есть проблемы с безопасностью из-за провисания или перегиба строп, лучше всего обратиться в коммунальное предприятие или позвонить по телефону 9-1-1.

    При звонке или письме в коммунальную компанию, которая отвечает за низковисящие линии электропередач, записывайте каждый телефонный контакт и сохраняйте копии всех письменных сообщений. К сожалению, эти контакты и записи удобно «теряются», довольно часто в судебных тяжбах с крупными коммунальными предприятиями, связанными с поражением электрическим током, поэтому я также советую людям присылать свои сообщения заказным письмом.

    Поражение электрическим током из-за низко висящих линий электропередач. У меня есть чемодан?

    Когда кого-то ударило током из-за низко висящих линий электропередач, семья или имение могут иметь дело со смертью в результате противоправных действий в связи с компенсацией боли и страданий и другим экономическим ущербом коммунальному предприятию. Если жертвой поражения электрическим током был работник коммунального предприятия, против его или ее работодателя может быть возбуждено уголовное дело по делу Worker’s Comp.

    Нужна помощь опытного юриста по борьбе с электрическим током?

    Коммунальная компания отвечает за низко висящие линии электропередач, поэтому, если вы или кто-то, кого вы любите, стали жертвой серьезной травмы или смерти, вызванной электричеством или провисшей линией, вы можете позвонить и поговорить с Джеффом Фельдманом, возможно, самым лучшим в стране. опытный адвокат по поражению электрическим током.Джефф участвовал в судебных процессах против низковисящих линий электропередач и против коммунальных предприятий в штатах по всей стране. Вы можете позвонить по бесплатному телефону (800) 548-0043 для получения бесплатной консультации.

    Теги: кто отвечает за низко висящие линии электропередачи

    Полевое руководство по линиям электропередачи

    Электросеть - сложный зверь, независимо от того, где вы живете. Электростанции должны посылать энергию всем своим клиентам с постоянной частотой и напряжением (независимо от потребности в любой момент времени), а для этого им нужен широкий спектр оборудования.От трансформаторов и регуляторов напряжения до сетевых реакторов и конденсаторов, прерывателей и предохранителей, а также полупроводниковых и специализированных механических реле - в энергосистемах можно найти почти все отрасли техники. Конечно, мы не должны упускать из виду самую очевидную часть сетки: провода, которые фактически образуют саму сетку.

    Разница между линиями передачи и линиями распределения

    Обычно сеть состоит из двух типов линий электропередач, которые можно разделить в зависимости от их функции.Одна группа состоит из более мелких линий с низким напряжением (в большинстве случаев до 30 кВ), которые обеспечивают электроэнергией дома и предприятия. Они известны как распределительные линии и могут быть закопаны под землей в новых кварталах или нанизаны на более мелкие столбы высотой около 40 футов. Количество энергонесущих проводов на них - три или меньше (на цепь некоторые распределительные полюса несут более одной трехфазной цепи), и они, как правило, также удерживают на себе другое оборудование, такое как трансформаторы, предохранители, переключатели и т. Д. даже телефонные и кабельные линии.

    Простой эскиз линии передачи с тремя фазами на цепь и одним заземляющим проводом вверху. Это иллюстрирует зону и оборудование, которые защищены от ударов молнии заземляющим проводом, который предназначен только для передачи энергии в случае неисправности, такой как удар молнии.

    Другой стороной этого деления являются гораздо более крупные линии высокого напряжения, известные как линии передачи. Их легко отличить от распределительных по их большему размеру, но есть несколько других индикаторов, указывающих на то, что вы смотрите на линию передачи, а не на линию распределения.Линии передачи всегда строятся с помощью наборов из трех проводов с дополнительным небольшим проводом или двумя наверху конструкции, чтобы служить в качестве молниезащиты. В то время как типичное бытовое обслуживание может включать только одну фазу, сама электрическая сеть представляет собой трехфазную систему, а линии передачи тщательно сбалансированы, так что равное количество тока течет по каждой из трех фаз.

    На передающих сооружениях также нет оборудования, которое подключается к линиям электропередач.Линия распределения может иметь предохранители, трансформаторы, регуляторы напряжения, конденсаторы, устройства повторного включения или любое количество других устройств, подключенных к самим линиям электропередачи. Линии передачи почти никогда не будут иметь ничего, прикрепленного к самим проводникам, хотя иногда к конструкциям прикрепляется несвязанное оборудование, например вышки сотовой связи.

    Работа с невероятными уровнями напряжения

    Повышающий трансформатор

    Генератор
    [Источник изображения: Electrotechnik] Отчасти причина такой относительной простоты линий передачи заключается в том, что их единственная цель - соединить электрические подстанции с другими подстанциями и обеспечить транспортировку электроэнергии.Каждая традиционная электростанция имеет как минимум одну подстанцию ​​со специализированными трансформаторами, называемыми повышающими генераторами (GSU). Оттуда мощность перетекает на другие подстанции, которые могут либо еще больше повысить напряжение для передачи на большие расстояния, либо понизить напряжение для распределения по домам и предприятиям. Однако на заводе электричество вырабатывается при низком напряжении (порядка 10 кВ) и передается через GSU для повышения напряжения. Для заданного количества энергии более высокое напряжение будет понижать ток, что уменьшает количество тока в проводах, уменьшает количество тепла, выделяемого проводами, и уменьшает количество резистивных потерь.

    Здесь напряжения начинают немного выходить из-под контроля. Если вы заметили, до сих пор я называл 10 кВ «низким напряжением» и 30 кВ «более низким напряжением», с каждым из которых большинство инженеров и любителей не могут безопасно обращаться с ними. В любом другом мире это считалось бы чрезвычайно высоким напряжением. Однако для линий передачи, которые обрабатывают большую мощность, напряжения могут достигать 500 кВ и по-прежнему передавать ток в тысячи ампер. Это необходимо для передачи энергии от атомной электростанции мощностью 4 гигаватта, например, на десятки или сотни миль в населенный пункт.Однако, чтобы заставить всю эту мощность перемещаться, не вызывая серьезных проблем, требуется специальное оборудование.

    Передаточные башни

    Работая снизу вверх, первым элементом оборудования является мачта или мачта, к которым будут прикреплены цепи. Они могут быть от 50 до 100 футов в высоту и более (самый высокий в мире - более 1200 футов в Китае), и в результате такой увеличенной высоты производство может стать дорогостоящим. С точки зрения стоимости, имеет смысл сбалансировать прочность конструкций с общим количеством самих конструкций.Такой экономичный подход, как правило, приводит к появлению опор, которые могут быть расположены на расстоянии одной восьмой мили или меньше друг от друга для цепей на нижнем конце шкалы напряжения, 60-200 кВ, и на расстоянии четверти мили для цепей с более высоким напряжением, таких как линии 500 кВ. Поддержать четверть мили стальной проволоки тоже непросто, особенно если трасса делает поворот, пересекает горы или другие препятствия.

    Чтобы получить необходимую прочность, некоторые линии электропередачи строятся на решетчатых башнях.Это, вероятно, наиболее часто используемая структура для прокладки линий электропередачи через ландшафт, поскольку их строительство относительно дешево, и их можно легко спроектировать для различной высоты и прочности в зависимости от ситуации. Они также могут быть собраны на конечном месте, что позволяет легко доставить эти конструкции в труднодоступные места, такие как изолированные горные долины или малонаселенные пустыни. Однако есть и недостатки. Решетчатые башни не являются самой прочной из имеющихся конструкций в некоторых ситуациях, имеют большую площадь основания, которая обычно не может быть адаптирована для городских условий, а сталь может быть очень плохим выбором в некоторых ситуациях, особенно в прибрежных районах с соляными брызгами или болотистыми местами. участки с повышенной влажностью.

    Бетонная опора передачи

    Для компенсации недостатков решетчатых башен доступны другие конструкции. Когда прочность является приоритетом, популярным выбором являются опоры из бетона и предварительно напряженной стальной арматуры. Бетонные столбы обладают превосходными характеристиками в районах, подверженных ураганам (и удивительно изгибаются), занимают меньше места, чем решетчатые башни такой же высоты, и их легче установить. Обратной стороной является то, что они, как правило, более дорогие и должны быть построены с использованием специального оборудования, а затем доставлены на площадку целиком.Стальные опоры также могут изготавливаться с такими же эксплуатационными характеристиками, как у бетона, а некоторые даже изготавливаются из специального сплава, называемого атмосферостойкой сталью (иногда называемой кортеновской сталью, торговое название), которая образует защитный слой ржавчины только на поверхности полюс, защищающий стальную конструкцию под ним. Еще одно преимущество стали состоит в том, что легче изготавливать конструкции с более чем одним полюсом (поддерживающие провода через какую-либо траверсу) для самых крупных линий электропередачи.

    Изоляторы высокого напряжения

    К башням прикреплены провода, но для предотвращения массивных и немедленных повреждений провода должны быть прикреплены к башням с изолятором. Однако при таких напряжениях простой кусок стекла или пластика не сможет разрезать его, поскольку сам воздух станет ионизированным и образует путь к земле для прохождения электричества. Необходимы специальные изоляторы, способные выдержать огромное электрическое давление, оказываемое на них.До появления современной полимерной промышленности длинные цепочки стеклянных «колокольчиков» нанизывались вместе и прикреплялись к башне. Эти изоляторы были тяжелыми, дорогими, хрупкими и требовали времени для сборки в полевых условиях. Сейчас существуют более совершенные формы изоляторов, которые, как правило, представляют собой цельный кусок пластиково-резинового полимера, которые достаточно прочные, чтобы выдерживать сами электрические силы, не говоря уже о чрезвычайном весе и напряжении линий электропередач, и достаточно длинные, чтобы предотвратить повреждение. воздух вокруг них от ионизации полного электрического пути к башне.Фактически, часто можно сделать относительно точную оценку напряжения в линии, исходя из длины изоляторов.

    Очень прочные провода

    Пример линии передачи ACSR (алюминиевый кабель, армированный сталью). Центральные пряди стальные, с алюминиевыми внешними прядями. Изображение ClarkMills CC BY-SA 3.0

    Как вы можете себе представить, логистика протяжки реальных проводов на сотни миль на пролетах длиной до четверти мили может стать немного интересной.

    Предел прочности на растяжение большинства хороших и / или экономичных проводников обычно не подходит для этой задачи, поэтому были найдены некоторые интересные решения, позволяющие снизить затраты и резистивные потери без растягивания проводов до их предела разрыва.У стали нет проблем с удовлетворением этих требований, но по сравнению с другими металлами, такими как алюминий или медь, сталь не очень эффективный проводник. Чтобы получить больше от проводов, некоторые из них построены с многожильным стальным сердечником, который затем обернут внешними слоями алюминия для улучшения его проводящей способности. Интересной особенностью переменного тока является то, что ток имеет тенденцию проходить по внешней поверхности проводника, а не равномерно по всей проволоке, что означает, что проволока из смешанных металлов может получить всю прочность стали при почти всей проводимости твердый алюминий.

    Конечно, разные линии передачи будут иметь разную толщину в зависимости от силы тока, протекающего по линиям. Одним из основных факторов, учитываемых при проектировании этих линий, является то, насколько они будут «провисать» под большой нагрузкой, поскольку чем больше ток они несут, тем больше они будут нагреваться и расширяться, и тем ближе провод будет подходить к земле. В некоторых ситуациях из-за перегрузки линий электропередачи они настолько сильно прогибались от жары, что они могли повредить деревья или другие предметы в полосе отвода электропередач и вызвать массовые отключения электроэнергии.

    Типичная линия передачи с жгутом проводов, по три провода на фазу. Фото: Kreuzschnabel / Wikimedia Commons, лицензия: Cc-by-sa-3.0

    Более толстые провода меньше нагреваются при заданной величине тока, увеличивая пропускную способность цепи. Одним из решений увеличения эффективной толщины проводника является «связка» нескольких проводников на расстоянии нескольких дюймов друг от друга, что позволяет увеличить ток при меньших затратах, чем проводник, размер которого просто вдвое больше.

    Новые способы передачи электроэнергии

    Есть несколько заметных исключений из общего обзора линий передачи, представленного здесь. Во-первых, не все ЛЭП крепятся к опорам или опорам. Некоторые из них закопаны под землей, хотя стоимость специализированных изолированных проводов на порядки дороже, чем надземное строительство, и поэтому их устанавливают только в местах с экстремальными потребностями, например, в городских районах, под реками или каналами или в любом месте, где это непомерно дорого. строить конструкции.Из-за проблем с поведением переменного тока также почти невозможно построить линию длиной более 40 миль, что приводит к большим конструктивным ограничениям для этих типов цепей.

    Пересечение двух цепей HVDC в Северной Дакоте. Изображение Wtshymanski CC BY-SA 3.0

    Вторая неисправность линий передачи - это высоковольтные цепи постоянного тока (HVDC). Из-за высокой стоимости преобразования переменного тока в постоянный и обратно эти линии строятся только тогда, когда необходимо подавать электроэнергию на большие расстояния.Линии постоянного тока бывают не наборами из трех проводов, а наборами из двух. Они также невосприимчивы к потерям при зарядке, которые поражают линии электропередачи переменного тока, что позволяет также строить подземные цепи на большие расстояния.

    Препятствия на пути к совершенствованию современного искусства

    Заглядывая в будущее, трудно сказать, насколько более современной может стать электросеть, поскольку основные принципы очень просты: три фазы на цепь и структуры, достаточно большие, чтобы не допустить их провисания во что-то, что может вызвать неисправность.Об интеллектуальной сети много говорят, но решение большинства проблем с энергосистемой часто заключается в простом строительстве большего количества цепей по мере роста спроса на электроэнергию. Это сложная проблема, с которой приходится справляться, особенно с возрастом самой электросети, и в какой-то момент это просто превращается в числовую игру о том, сколько ватт можно переместить с места на место.

    Проект ЛЭП

    Массовая передача = линии высокого напряжения

    Большинство основных линий электропередачи в США.S. являются линиями переменного тока напряжением 230 кВ или 500 кВ. В некоторых случаях используются линии 115 кВ. Более низкие напряжения гораздо менее эффективны для транспортировки электричества на сотни или тысячи миль туда, где это необходимо, без потери значительного количества энергии.

    По соображениям безопасности, чем выше напряжение, тем большее расстояние требуется между проводниками и другими объектами, такими как деревья, здания или земля. Хотя это в значительной степени зависит от окружающей местности и уровня напряжения в линии передачи, в целом воздушные линии передачи высокого напряжения обычно находятся на высоте не менее 30 футов от земли.

    Башенные разновидности

    Для высоковольтных линий обычно существует два варианта опор для опор воздушных линий электропередачи - решетчатые стальные и стальные трубчатые опоры.

    Решетчатые стальные башни более распространены и распространены, и они бывают нескольких знакомых форм и размеров. Они могут поддерживаться четырьмя бетонными опорами или комбинацией бетонных опор и направляющих тросов. Количество проводников, проходящих между каждой опорой, зависит от того, является ли линия передачи одинарной (три провода) или двухцепной (шесть проводов).

    Трубчатые стальные башни относительно новые; они состоят из единственной стальной опоры, прикрепленной к земле. Они могут быть более привлекательными визуально, чем их аналоги из решетчатой ​​стали, хотя исторически они были более дорогостоящими в строительстве и могли приводить к увеличению затрат и требований на техническое обслуживание.

    Требования к допускам

    Требования к зазору касаются нескольких вопросов, в первую очередь, высоты проводов от земли и других постоянных конструкций, расстояния, которое должно быть между двумя опорами в одной линии электропередачи (или расстояния между опорами от двух или более отдельных линий электропередачи, построенных в пределах единого коридора электропередачи), а также близость линий электропередачи к дорогам и автомагистралям.Эти требования устанавливаются федеральным правительством, правительством штата и (иногда) местными органами власти, и конкретные требования зависят от того, где именно будут располагаться линия и башни.

    Стандарты надежности

    Стандарты надежности тесно связаны с требованиями к допуску. Короче говоря, это означает обеспечение того, чтобы свет оставался включенным в случае обрушения башни или другого серьезного отказа на линии.

    Подземный

    Можно закопать линии электропередачи под землей вместо того, чтобы строить воздушную систему, соединенную серией стальных опор, но существуют компромиссы и требования для общественной безопасности и окружающей среды.Помимо увеличения стоимости подземных линий электропередачи (в 10–30 раз превышающей стоимость строительства воздушных линий в зависимости от напряжения), основными проблемами являются тепло и воздействие на окружающую среду.

    Когда энергия высокого напряжения течет через проводник, сопротивление в проводнике генерирует отходящее тепло (или потери при передаче). Чем выше переданная энергия, тем больше тепла выделяется. В воздушных линиях электропередачи воздух, окружающий линии, действует как изолятор и поглощает отходящее тепло.В подземных линиях электропередачи должны использоваться другие среды для отвода этого тепла, что на сегодняшний день ограничивает прокладку линий электропередачи под землей до напряжений менее 500 кВ, за исключением очень коротких расстояний.

    Еще одно соображение, касающееся подземных линий, - это возмущение грунта, вызванное туннелями, через которые проходит линия передачи. Вместо ударов по земле только у основания башни, строительство подземных линий электропередачи требует обширных земляных работ и может нарушить среду обитания или водные ресурсы.Кроме того, доступ к подземной линии электропередачи, необходимой для обслуживания и ремонта, требует строительства «хранилищ». Эти своды, как правило, представляют собой конструкции размером 20 x 30 футов (примерно размером со среднюю жилую комнату), которые должны быть закопаны в землю через каждые 750-1000 футов, где проводники соединены вместе. Воздействие подземных линий электропередачи на окружающую среду и земельные ресурсы может значительно превосходить воздействие наземных линий электропередачи, и это факторы, которые учитываются в процессе планирования.

    Безопасное расстояние от линий электропередачи

    Автор: Кевин Уотсон MSc - Обновлено: 19 декабря 2020 г. | *Обсуждать

    Воздушные линии электропередачи переносят очень опасное количество электроэнергии. Но наша потребность в этой силе такова, что линии являются общей чертой наших городских и сельских пейзажей. Поэтому важно проявлять большую осторожность при работе вблизи линий электропередач. Линии убивают в среднем двух человек ежегодно. Многие другие получают серьезные травмы.

    Высота
    Силовые кабели, проложенные между опорами и опорами, должны находиться на определенном минимальном расстоянии от земли.Эти расстояния варьируются в зависимости от напряжения, передаваемого по линиям. Линии напряжением до 33 кВ должны находиться на высоте не менее 5,2 м от земли. Линии напряжением до 132 кВ должны находиться на высоте 6,7 м и более от земли. Линии напряжением до 400 кВ должны иметь минимальную габаритную высоту 7 м.
    Машины
    Эти высоты могут показаться разумными. Но работодатели и работники должны рассматривать их в контексте мобильной техники.

    Машина, которая поднимает тяжелые предметы, например, может иметь руку, легко превышающую 5.2 мес. А лестница, выступающая из верха грузовика, могла достигать 7 м и выше.

    Проводники
    Но аварии с воздушными линиями электропередач происходят не только тогда, когда оборудование контактирует с кабелями. Рыбаки забили их удочкой; рабочие, перемещающие длинные куски металла, коснулись линий; а некоторые люди направили струи жидкости на кабели.

    Во всех этих и многих других случаях на воздушной линии электропередачи разряжалось электричество. Это вызвало смерть или очень сильное потрясение.

    Близость
    Другая причина беспокойства - близость к воздушной линии электропередачи. Не всегда нужно прикасаться к линии, чтобы получить шок. Иногда близкий контакт генерирует потенциально смертельный электрический заряд.
    Самоуспокоенность
    Эти опасности могут показаться очевидными. Многие могут спросить: зачем подходить к воздушной линии электропередачи с чем-то, что может ее коснуться?

    К сожалению, некоторые работники успокаиваются. Они так привыкли видеть линии электропередач, что забывают о них.Кроме того, некоторые линии нелегко заметить. Они параллельны таким объектам, как вершины живых изгородей и леса.

    Оценка рисков
    Любой работодатель, работники которого могут контактировать с воздушными линиями электропередач, должен провести оценку рисков. При этом следует учитывать риски, которые линии представляют для персонала; меры, снижающие или устраняющие риски; и те действия, которые могут обеспечить полную безопасность.

    Есть ряд ключевых проблем. Первый - по возможности избегать воздушных линий электропередач.Но если это нецелесообразно, лучше всего убедиться, что никакие машины и оборудование не могут добраться до них.

    Чтобы сделать это эффективно, проверьте высоту линий электропередач и размер оборудования. Также проверьте вертикальный вылет экскаваторов и погрузочно-разгрузочного оборудования. Кроме того, обучите персонал работе с воздушными линиями электропередачи. Не делайте предположения, что все знают, насколько опасны линии.

    Также контролируйте использование жидкостей вблизи линий электропередач. Вода или навозная жижа могут вызвать выброс электрического тока из линий.Затем он может попасть в тело человека, работающего с жидкостным насосом.

    Прежде всего, разумно планировать заранее. Воздушные линии электропередач - это предотвратимая причина смерти и травм.

    Вам также может понравиться ...

    Поделитесь своей историей, присоединитесь к обсуждению или обратитесь за советом ..

    Какое безопасное рабочее расстояние от воздушных линий электропередач? а также подъемные мероприятия?

    REJI - 19 декабря 20 в 6:02

    Могу ли я работать под ЛЭП в ночную смену с расстояния примерно 15 м?

    Ахмед - 7 октября 20 в 1:58

    Я хотел бы знать о расстоянии между ВЛ, я имею в виду расстояние по горизонтали между собой

    Modaress - 12 мая-20 в 18:06

    На нижней дороге Сороки Eastdown Shoreham Sevenoaks Kent общественность / не частная дорога, электрический кабель навис над дорогой примерно на высоте 13 футов.6 дюймов / 14 футов в течение очень долгого времени второстепенная дорога, но ярлык SAT NAV M25 через деревни северной части Дауна. Грузовые автомобили были вынуждены выезжать с полосы движения так, чтобы органы соблюдения нормативных требований, бывший водитель грузового автомобиля, Д.К. Куинлан

    Rustic - 13 сен 19 в 21:29

    Привет, я езжу на грейферном грузовике грузоподъемностью 32 тонны, какое минимальное расстояние я могу работать рядом с линиями электропередач, спасибо

    Allan - 25 февраля 19 в 21:02

    Пожалуйста, сообщите, безопасно ли прокладывать линии электропередач, пересекающие футбольное поле.

    Pylon - 24 января 19 в 9:45

    Заголовок:

    MissMsMrsMrDrRev'dProf.Прочее

    (не показано)

    Подтвердить:

    Wisconsin Electric Cooperative Association

    Безопасность - это работа номер один! В дополнение к обучению в рамках Программы профессионального обучения и безопасности WECA для работников электрических кооперативов и объявлений по общественной безопасности, наши члены также активно участвуют в программах безопасности и информационно-пропагандистской работе.

    Безопасность - ответственность каждого

    • Безопасность фермы.
      • Используйте корректировщик при работе с крупной техникой вблизи линий.
      • Всегда держите оборудование на расстоянии не менее 10 футов от линий и во всех направлениях.
      • Посмотрите вверх и соблюдайте осторожность при перемещении любого оборудования, такого как удлинение шнеков или подъем платформы зерновозов вокруг линий электропередач.
      • Проверьте высоту сельскохозяйственного оборудования, чтобы определить зазор.
      • Всегда устанавливайте удлинители на минимальное значение при перемещении грузов, чтобы предотвратить контакт с воздушными линиями. Перед перемещением зерновые шнеки всегда следует располагать горизонтально.
      • Никогда не пытайтесь убрать линию электропередачи с дороги или поднять ее для свободного доступа.
      • Если линия электропередачи провисает или имеет низкий уровень, обратитесь в местное энергоснабжение.
      • Если оборудование все же соприкасается с линией электропередачи, не покидайте кабину. Немедленно позвоните в службу 911, предупредите других, чтобы они держались подальше, и дождитесь, пока сервисная бригада отключит электричество.
      • Единственная причина для выхода оборудования, которое контактировало с воздушными линиями, - это если оборудование горит, что бывает редко. Однако в этом случае спрыгивайте с оборудования, поставив ноги вместе, не касаясь земли и оборудования одновременно.

    About Author


    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *