Терморегулятор своими руками для погреба – Как организовать балконный погребок с помощью электронного терморегулятора или механического термостата?

Содержание

Терморегуляторы (термостаты) для погребов с датчиками температуры своими руками

Погреб – это помещение, главная задача которого поддерживать определенный микроклимат в любое время года. Основным показателем здесь является температура. Температурный режим позволяет сохранить овощи, фрукты и консервацию длительное время. Чтобы следить за показателями температуры, требуется постоянно включать или отключать отопительные приборы. Терморегуляторы для погреба позволяют корректировать температуру и все время поддерживать оптимальные настройки. Этот прибор напрямую связан с системой отопления.

Терморегулятор для отопления погреба

Терморегулятор для отопления погреба

Принцип работы простой: если в подвале становится слишком холодно, отопление работает, а по достижению оптимальных характеристик –выключается.

Устройство оборудуется датчиком температуры воздуха. Основным элементом этого прибора является термистор, или полупроводник. При колебаниях температуры сопротивление термистора меняется. За счет такого эффекта обеспечивается передача информации в терморегулятор. Датчик может быть встроен в устройство или располагаться отдельно, то есть являться выносным прибором.

Комплект оборудования, в состав которого входят нагревательные элементы и терморегулятор, получил название термостат. Для удобства датчик и отопительные приборы располагаются внутри погреба, а терморегулятор – вне помещения. Таким образом, можно регулировать температуру в подвале, не спускаясь вовнутрь.

В любом случае алгоритм работы всего оборудования для регулировки работы отопления выглядит следующим образом:

  • датчик анализирует показания в погребе;
  • полученные данные передаются в силовое реле;
  • работа системы отопления корректируется, исходя из полученных показаний.

Внимание! Датчики находятся под напряжением, так как являются частью цепи. Существуют тепловентиляторы с независимыми устройствами для снятия показаний температуры, но они используются в погребах очень редко.

Как лучше расположить оборудование

Для оптимальной работы термодатчик необходимо размещать на некотором удалении от отопительных приборов, но не очень далеко. Устройство располагают в непосредственной близости от продуктов, которые хранят в погребе. Оптимальная высота над уровнем пола – 3-5 см.

Довольно часто для обогрева подвальных помещений используют тэны. Если устанавливается один тэн, то датчик лучше монтировать по центру. Если погреб большой, и для его отопления требуется несколько тэнов, измерители монтируют по всему пространству.

Термостат с 5 тэнами

Термостат с 5 тэнами

При использовании тепловентиляторов теплый воздух равномерно распределяется по помещению. Поэтому датчик устанавливают рядом с тепловентилятором. Обычно все оборудование монтируют в нижней части стены.

Вопрос установки того или иного терморегулятора во многом зависит от назначения погреба и того, насколько правильно было проведено его строительство. Не всегда глубины подвала хватает для предохранения овощей даже при небольших морозах. В этом случае система отопления должна быть более массивная, следовательно, нужно брать более мощный терморегулятор.

Самая простая схема обогрева погреба основана на использовании ламп накаливания. В этом случае важно выполнить правильное подключение. Важно применять последовательно-параллельное подключение и более мощные лампы. Например, вместо одной лампы в 60 ВТ взять 2 по 95 Вт. При замыкании такой цепочки скачка напряжения не происходит, а, значит, надежность всего термостата повышается.

Внимание! Использование любого электрического оборудования в погребе с повышенной влажностью опасно для жизни. Попадание влаги в приборы приводит к короткому замыканию и выходу из строя всей системы.

В местности, где грунтовые воды расположены у поверхности земли, важно хорошо продумать вопросы герметизации. Если, несмотря на все ваши старания, помещение иногда подтапливается, имеет смысл использовать не электрическое, а водяное отопление. Тем более что терморегуляторы применяют в любых системах. Но нельзя забывать о том, что установка таких коммуникаций предполагает солидный объем работ.

Самодельный терморегулятор

При желании, простой терморегулятор для погреба своими руками собирают на основе:

  • стабилитрона – полупроводникового диода, который пропускает ток в одну сторону;
  • термического резистора, сопротивление которого уменьшается при повышении температуры;
  • переменного резистора, выполняющего роль ручного регулятора температур;
  • питания в 12 В.

Если температура растет, сопротивление R4 падает, напряжение уменьшается, и после критического значения стабилитрон разрывает цепь, отопление отключается.

Схема самодельного терморегулятора

Схема самодельного терморегулятора

Что необходимо учесть при выборе терморегулятора

В погребе должна постоянно поддерживаться невысокая температура, поэтому выбирать терморегуляторы с широким диапазоном температур нецелесообразно. Оптимальный диапазон – от 00 до +100С.

Требуется обратить внимание на гистерезис – разницу между заданными показателями и температурой, при которой отопление будет включаться или выключаться. У более простых приборов она составляет 10С, сложное оборудование срабатывает при гистерезисе в 0,1 или 0,20С.

Не меньшее значение имеет точность, с которой может быть установлена и поддерживаться температура. Здесь средние показатели составляют 0,50С.

Следует учесть уровень употребляемой мощности. Для обустройства домашнего погреба подходят терморегуляторы с напряжением от 190 до 250 В.

Чем больше устойчивость оборудования к мощностным перегрузкам, тем выше его износостойкость при работе в комплексе с вентиляторами, лампами накаливания и другими нелинейными нагревателями.

Дополнительно терморегулятор комплектуется:

  • светодиодом, который будет загораться при включении отопления или при разрыве проводов;
  • прибором для измерения влажности – гигрометром;
  • управлением с помощью сенсора.

Важно! Все работы по установке проводят при отключенном электричестве. Если речь идет о сложном оборудовании, монтаж осуществляется только специалистами.

Чтобы проверить работоспособность терморегулятора, можно поместить датчик в морозильник, температура которого будет ниже нуля. Следует подождать 5 минут и включить оборудование в сеть. Должен загореться значок «Нагрев». Теперь нужно вытащить датчик и подержать его в руках, значок погаснет. Во время выполнения проверки используют дополнительную нагрузку для имитирования отопительного элемента, например, лампочку накаливания. Без лампы прибор работать не будет.

Видео

Оцените статью:

Как организовать балконный погребок с помощью электронного терморегулятора или механического термостата?

Всего городов: 405

Выбрать

    • Абакан • Республика Хакасия
    • Агинское • Забайкальский край
    • Адыгейск • Адыгея республика
    • Азов • Ростовская область
    • Ак-Довурак • Тыва республика
    • Аксай • Ростовская область
    • Алдан • Республика Саха (Якутия)
    • Алейск • Алтайский край
    • Александров • Владимирская область
    • Алтайское • Алтайский край
    • Альметьевск • Республика Татарстан
    • Анапа • Краснодарский край
    • Ангарск • Иркутская область
    • Анжеро-Судженск • Кемеровская область
    • Апатиты • Мурманская область
    • Апшеронск • Краснодарский край
    • Арзамас • Нижегородская область
    • Армавир • Краснодарский край
    • Арсеньев • Приморский край
    • Артем • Приморский край
    • Архангельск • Архангельская область
    • Астрахань • Астраханская область
    • Ахтубинск • Астраханская область
    • Ачинск • Красноярский край
    • Баксан • Кабардино-Балкарская республика
    • Балаково • Саратовская область
    • Балашиха • Московская область
    • Балашов • Саратовская область
    • Барабинск • Новосибирская область
    • Барнаул • Алтайский край
    • Барыш • Ульяновская область
    • Батайск • Ростовская область
    • Бахчисарай • Крым республика
    • Белая Калитва • Ростовская область
    • Белгород • Белгородская область
    • Белово • Кемеровская область
    • Белогорск • Амурская область
    • Белокуриха • Алтайский край
    • Белорецк • Республика Башкортостан
    • Белореченск • Краснодарский край
    • Бердск • Новосибирская область
    • Березники • Пермский край
    • Беслан • Северная Осетия - Алания республика
    • Бийск • Алтайский край
    • Бикин • Хабаровский край
    • Билибино • Чукотский АО
    • Биробиджан • Еврейская автономная область
    • Благовещенск • Амурская область
    • Благодарный • Ставропольский край
    • Большой камень • Приморский край
    • Бор • Нижегородская область
    • Борзя • Забайкальский край
    • Борисоглебск • Воронежская область
    • Боровичи • Новгородская область
    • Братск • Иркутская область
    • Брянск • Брянская область
    • Бугульма • Татарстан республика
    • Буденновск • Ставропольский край
    • Бузулук • Оренбургская область
    • Буй • Костромская область
    • Буйнакск • Республика Дагестан
    • Великие Луки • Псковская область
    • Великий Новгород • Новгородская область
    • Великий Устюг • Вологодская область
    • Вельск • Архангельская область
    • Верхняя Пышма • Свердловская область
    • Вичуга • Ивановская область
    • Владивосток • Приморский край
    • Владикавказ • Республика Северная Осетия (Алания)
    • Владимир • Владимирская область
    • Волгоград • Волгоградская область
    • Волгодонск • Ростовская область
    • Волжск • Республика Марий Эл
    • Волжский • Волгоградская область
    • Вологда • Вологодская область
    • Вольск • Саратовская область
    • Воркута • Республика Коми
    • Воронеж • Воронежская область
    • Воскресенск • Московская область
    • Воткинск • Республика Удмуртия
    • Всеволожск • Ленинградская область
    • Выборг • Ленинградская область
    • Вышний Волочек • Тверская область
    • Вяземский • Хабаровский край
    • Вязьма • Смоленская область
    • Вятские Поляны • Кировская область
    • Гатчина • Ленинградская область
    • Геленджик • Краснодарский край
    • Георгиевск • Ставропольский край
    • Глазов • Республика Удмуртия
    • Горно-Алтайск • Республика Алтай
    • Грозный • Республика Чечня
    • Грязи • Липецкая область
    • Губкин • Белгородская область
    • Гуково • Ростовская область
    • Гусиноозерск • Республика Бурятия
    • Дальнереченск • Приморский край
    • Дербент • Республика Дагестан
    • Джанкой • Крым республика
    • Дзержинск • Нижегородская область
    • Димитровград • Ульяновская область
    • Долгопрудный • Московская область
    • Домодедово • Московская область
    • Донецк • Ростовская область
    • Донской • Тульская область
    • Дятьково • Брянская область
    • Евпатория • Крым
    • Ейск • Краснодарский край
    • Екатеринбург • Свердловская область
    • Елабуга • Республика Татарстан
    • Елец • Липецкая область
    • Елизово • Камчатский край
    • Ессентуки • Ставропольский край
    • Железногорск • Красноярский край
    • Железногорск • Курская область
    • Жигулевск • Самарская область
    • Жуковский • Московская область
    • Забайкальск • Забайкальский край
    • Заречный • Пензенская область
    • Заринск • Алтайский край
    • Зеленодольск • Татарстан республика
    • Зеленокумск • Ставропольский край
    • Зима • Иркутская область
    • Златоуст • Челябинская область
    • Знаменск • Астраханская область
    • Иваново • Ивановская область
    • Ижевск • Республика Удмуртия
    • Изобильный • Ставропольский край
    • Инза • Ульяновская область
    • Иркутск • Иркутская область
    • Исилькуль • Омская область
    • Искитим • Новосибирская область
    • Ишим • Тюменская область
    • Йошкар-Ола • Республика Марий Эл
    • Казань • Республика Татарстан
    • Калуга • Калужская область
    • Каменск-Уральский • Свердловская область
    • Каменск-Шахтинский • Ростовская область
    • Камень-на-Оби • Алтайский край
    • Камышин • Волгоградская область
    • Канаш • Чувашская республикаублика - Чувашия
    • Канск • Красноярский край
    • Карабулак • Ингушетия республика
    • Карасук • Новосибирская область
    • Карачаевск • Карачаево-Черкесская республика
    • Касимов • Рязанская область
    • Каспийск • Республика Дагестан
    • Кемерово • Кемеровская область
    • Керчь • Крым
    • Кинешма • Ивановская область
    • Кириши • Ленинградская область
    • Киров • Кировская область
    • Кирово-Чепецк • Кировская область
    • Киселевск • Кемеровская область
    • Кисловодск • Ставропольский край
    • Клин • Московская область
    • Клинцы • Брянская область
    • Ковров • Владимирская область
    • Ковылкино • Мордовия республика
    • Когалым • Ханты-Мансийский автономный округ
    • Козьмодемьянск • Марий Эл республика
    • Коломна • Московская область
    • Комсомольск-на-Амуре • Хабаровский край
    • Кондопога • Республика Карелия

Как организовать балконный погребок с помощью электронного терморегулятора или механического термостата?

Всего городов: 405

Выбрать

    • Абакан • Республика Хакасия
    • Агинское • Забайкальский край
    • Адыгейск • Адыгея республика
    • Азов • Ростовская область
    • Ак-Довурак • Тыва республика
    • Аксай • Ростовская область
    • Алдан • Республика Саха (Якутия)
    • Алейск • Алтайский край
    • Александров • Владимирская область
    • Алтайское • Алтайский край
    • Альметьевск • Республика Татарстан
    • Анапа • Краснодарский край
    • Ангарск • Иркутская область
    • Анжеро-Судженск • Кемеровская область
    • Апатиты • Мурманская область
    • Апшеронск • Краснодарский край
    • Арзамас • Нижегородская область
    • Армавир • Краснодарский край
    • Арсеньев • Приморский край
    • Артем • Приморский край
    • Архангельск • Архангельская область
    • Астрахань • Астраханская область
    • Ахтубинск • Астраханская область
    • Ачинск • Красноярский край
    • Баксан • Кабардино-Балкарская республика
    • Балаково • Саратовская область
    • Балашиха • Московская область
    • Балашов • Саратовская область
    • Барабинск • Новосибирская область
    • Барнаул • Алтайский край
    • Барыш • Ульяновская область
    • Батайск • Ростовская область
    • Бахчисарай • Крым республика
    • Белая Калитва • Ростовская область
    • Белгород • Белгородская область
    • Белово • Кемеровская область
    • Белогорск • Амурская область
    • Белокуриха • Алтайский край
    • Белорецк • Республика Башкортостан
    • Белореченск • Краснодарский край
    • Бердск • Новосибирская область
    • Березники • Пермский край
    • Беслан • Северная Осетия - Алания республика
    • Бийск • Алтайский край
    • Бикин • Хабаровский край
    • Билибино • Чукотский АО
    • Биробиджан • Еврейская автономная область
    • Благовещенск • Амурская область
    • Благодарный • Ставропольский край
    • Большой камень • Приморский край
    • Бор • Нижегородская область
    • Борзя • Забайкальский край
    • Борисоглебск • Воронежская область
    • Боровичи • Новгородская область
    • Братск • Иркутская область
    • Брянск • Брянская область
    • Бугульма • Татарстан республика
    • Буденновск • Ставропольский край
    • Бузулук • Оренбургская область
    • Буй • Костромская область
    • Буйнакск • Республика Дагестан
    • Великие Луки • Псковская область
    • Великий Новгород • Новгородская область
    • Великий Устюг • Вологодская область
    • Вельск • Архангельская область
    • Верхняя Пышма • Свердловская область
    • Вичуга • Ивановская область
    • Владивосток • Приморский край
    • Владикавказ • Республика Северная Осетия (Алания)
    • Владимир • Владимирская область
    • Волгоград • Волгоградская область
    • Волгодонск • Ростовская область
    • Волжск • Республика Марий Эл
    • Волжский • Волгоградская область
    • Вологда • Вологодская область
    • Вольск • Саратовская область
    • Воркута • Республика Коми
    • Воронеж • Воронежская область
    • Воскресенск • Московская область
    • Воткинск • Республика Удмуртия
    • Всеволожск • Ленинградская область
    • Выборг • Ленинградская область
    • Вышний Волочек • Тверская область
    • Вяземский • Хабаровский край
    • Вязьма • Смоленская область
    • Вятские Поляны • Кировская область
    • Гатчина • Ленинградская область
    • Геленджик • Краснодарский край
    • Георгиевск • Ставропольский край
    • Глазов • Республика Удмуртия
    • Горно-Алтайск • Республика Алтай
    • Грозный • Республика Чечня
    • Грязи • Липецкая область
    • Губкин • Белгородская область
    • Гуково • Ростовская область
    • Гусиноозерск • Республика Бурятия
    • Дальнереченск • Приморский край
    • Дербент • Республика Дагестан
    • Джанкой • Крым республика
    • Дзержинск • Нижегородская область
    • Димитровград • Ульяновская область
    • Долгопрудный • Московская область
    • Домодедово • Московская область
    • Донецк • Ростовская область
    • Донской • Тульская область
    • Дятьково • Брянская область
    • Евпатория • Крым
    • Ейск • Краснодарский край
    • Екатеринбург • Свердловская область
    • Елабуга • Республика Татарстан
    • Елец • Липецкая область
    • Елизово • Камчатский край
    • Ессентуки • Ставропольский край
    • Железногорск • Красноярский край
    • Железногорск • Курская область
    • Жигулевск • Самарская область
    • Жуковский • Московская область
    • Забайкальск • Забайкальский край
    • Заречный • Пензенская область
    • Заринск • Алтайский край
    • Зеленодольск • Татарстан республика
    • Зеленокумск • Ставропольский край
    • Зима • Иркутская область
    • Златоуст • Челябинская область
    • Знаменск • Астраханская область
    • Иваново • Ивановская область
    • Ижевск • Республика Удмуртия
    • Изобильный • Ставропольский край
    • Инза • Ульяновская область
    • Иркутск • Иркутская область
    • Исилькуль • Омская область
    • Искитим • Новосибирская область
    • Ишим • Тюменская область
    • Йошкар-Ола • Республика Марий Эл
    • Казань • Республика Татарстан
    • Калуга • Калужская область
    • Каменск-Уральский • Свердловская область
    • Каменск-Шахтинский • Ростовская область
    • Камень-на-Оби • Алтайский край
    • Камышин • Волгоградская область
    • Канаш • Чувашская республикаублика - Чувашия
    • Канск • Красноярский край
    • Карабулак • Ингушетия республика
    • Карасук • Новосибирская область
    • Карачаевск • Карачаево-Черкесская республика
    • Касимов • Рязанская область
    • Каспийск • Республика Дагестан
    • Кемерово • Кемеровская область
    • Керчь • Крым
    • Кинешма • Ивановская область
    • Кириши • Ленинградская область
    • Киров • Кировская область
    • Кирово-Чепецк • Кировская область
    • Киселевск • Кемеровская область
    • Кисловодск • Ставропольский край
    • Клин • Московская область
    • Клинцы • Брянская область
    • Ковров • Владимирская область
    • Ковылкино • Мордовия республика
    • Когалым • Ханты-Мансийский автономный округ
    • Козьмодемьянск • Марий Эл республика
    • Коломна • Московская область
    • Комсомольск-на-Амуре • Хабаровский край
    • Кондопога • Республика Карелия

электронные схемы, тонкости, принцип действия термостата

Соблюдение температурного режима является очень важным технологическим условием не только на производстве, но и в повседневной жизни. Имея столь большое значение, этот параметр должен чем-то регулироваться и контролироваться. Производят огромное количество таких приборов, имеющих множество особенностей и параметров. Но сделать терморегулятор своими руками порой куда выгоднее, нежели покупать готовый заводской аналог.

ТерморегуляторСоздайте терморегулятор своими руками

Общее понятие о температурных регуляторах

Приборы, фиксирующие и одновременно регулирующие заданное температурное значение, в большей степени встречаются на производстве. Но и в быту они также нашли своё место. Для поддержания необходимого микроклимата в доме часто используются терморегуляторы для воды. Своими руками делают такие аппараты для сушки овощей или отопления инкубатора. Где угодно может найти своё место подобная система.

В данном видео узнаем что из себя представляет регулятор температуры:


В действительности большинство терморегуляторов являются лишь частью общей схемы, которая состоит из таких составляющих:

  1. Датчик температуры, выполняющий замер и фиксацию, а также передачу к регулятору полученной информации. Происходит это за счёт преобразования тепловой энергии в электрические сигналы, распознаваемые прибором. В роли датчика может выступать термометр сопротивления или термопара, которые в своей конструкции имеют металл, реагирующий на изменение температуры и под её воздействием меняющий своё сопротивление.
  2. Аналитический блок – это и есть сам регулятор. Он принимает электронные сигналы и реагирует в зависимости от своих функций, после чего передаёт сигнал на исполнительное устройство.
  3. Исполнительный механизм – некое механическое или электронное устройство, которое при получении сигнала с блока ведёт себя определённым образом. К примеру, при достижении заданной температуры клапан перекроет подачу теплоносителя. И напротив, как только показания станут ниже заданных, аналитический блок даст команду на открытие клапана.

Это три основные части системы поддержания заданных температурных параметров. Хотя, помимо них, в схеме могут участвовать и другие части наподобие промежуточного реле. Но они исполняют лишь дополнительную функцию.

Принцип работы

Принцип, по которому работают все регуляторы, – это снятие физической величины (температуры), передача данных на схему блока управления, решающего, что нужно сделать в конкретном случае.

Если делать термореле, то наиболее простой вариант будет иметь механическую схему управления. Здесь с помощью резистора устанавливается определённый порог, при достижении которого будет дан сигнал на исполнительный механизм.

Чтобы получить дополнительную функциональность и возможность работы с более широким диапазоном температур, придётся встраивать контроллер. Это же поможет увеличить срок эксплуатации прибора.

На данном видео вы можете посмотреть как самостоятельно изготовить терморегулятор для электрического отопления:

Самодельный регулятор температуры

Схем для того, чтобы сделать терморегулятор самому, в действительности очень много. Всё зависит от сферы, в которой будет применяться такое изделие. Конечно, создать нечто слишком сложное и многофункциональное крайне трудно. А вот термостат, который сможет использоваться для обогревания аквариума или сушки овощей на зиму, вполне можно создать, имея минимум знаний.

Простейшая схема

Самая простая схема термореле своими руками имеет безтрансформаторный блок питания, который состоит из диодного моста с параллельно подключённым стабилитроном, стабилизирующим напряжение в пределах 14 вольт, и гасящего конденсатора. Сюда же можно при желании добавить и стабилизатор на 12 вольт.

РегуляторСоздание терморегулятора не требует особых усилий и денежных вложений

В основе всей схемы будет использован стабилитрон TL431, который управляется делителем, состоящим из резистора на 47 кОм, сопротивления на 10 кОм и терморезистора, выполняющего роль датчика температуры, на 10 кОм. Его сопротивление понижается с повышением температуры. Резистор и сопротивление лучше подбирать, чтобы добиться наилучшей точности срабатывания.

Сам же процесс выглядит следующим образом: когда на контакте управления микросхемой образуется напряжение больше 2,5 вольт, то она произведёт открытие, что включит реле, подавая нагрузку на исполнительный механизм.

Как изготовить терморегулятор для инкубатора своими руками, вы можете увидеть на представленном видео:

И напротив, когда напряжение станет ниже, то микросхема закроется и реле отключится.

Чтобы избежать дребезжания контактов реле, необходимо его выбирать с минимальным током удержания. И параллельно вводам нужно припаять конденсатор 470×25 В.

При использовании терморезистора NTC и микросхемы, уже бывавших в деле, предварительно стоит проверить их работоспособность и точность.

Таким образом, получается простейший прибор, регулирующий температуру. Но при правильно подобранных составляющих он превосходно работает в широком спектре применения.

Прибор для помещения

Такие терморегуляторы с датчиком температуры воздуха своими руками оптимально подходят для поддержания заданных параметров микроклимата в помещениях и ёмкостях. Он полностью способен автоматизировать процесс и управлять любым излучателем тепла начиная с горячей воды и заканчивая тэнами. При этом термовыключатель имеет отличные эксплуатационные данные. А датчик может быть как встроенным, так и выносным.

Здесь в качестве термодатчика выступает терморезистор, обозначенный на схеме R1. В делитель напряжения входят R1, R2, R3 и R6, сигнал с которого поступает на четвёртый контакт микросхемы операционного усилителя. На пятый контакт DA1 подаётся сигнал с делителя R3, R4, R7 и R8.

Сопротивления резисторов необходимо подбирать таким образом, чтобы при минимально низкой температуре замеряемой среды, когда сопротивление терморезистора максимальное, компаратор положительно насыщался.

Напряжение на выходе компаратора составляет 11,5 вольт. В это время транзистор VT1 находится в открытом положении, а реле K1 включает исполнительный или промежуточный механизм, в результате чего начинается нагрев. Температура окружающей среды в результате этого повышается, что понижает сопротивление датчика. На входе 4 микросхемы начинает повышаться напряжение и в результате превосходит напряжение на контакте 5. Вследствие этого компаратор входит в фазу отрицательного насыщения. На десятом выходе микросхемы напряжение становится приблизительно 0,7 Вольт, что является логическим нулём. В результате транзистор VT1 закрывается, а реле отключается и выключает исполнительный механизм.

На микросхеме LM 311

Такой термоконтроллер своими руками предназначен для работы с тэнами и способен поддерживать заданные параметры температуры в пределах 20-100 градусов. Это наиболее безопасный и надёжный вариант, так как в его работе применяется гальваническая развязка термодатчика и регулирующих цепей, а это полностью исключает возможность поражения электротоком.

Как и большинство подобных схем, в её основу берется мост постоянного тока, в одно плечо которого подключают компаратор, а в другое – термодатчик. Компаратор следит за рассогласованием цепи и реагирует на состояние моста, когда тот переходит точку баланса. Одновременно он же старается уравновесить мост с помощью терморезистора, изменяя его температуру. А термостабилизация может возникнуть лишь при определённом значении.

Резистором R6 задают точку, при которой должен образоваться баланс. И в зависимости от температуры среды терморезистор R8 может в этот баланс входить, что и позволяет регулировать температуру.

На видео вы можете увидеть разбор простой схемы терморегулятора:


Если заданная R6 температура ниже необходимой, то на R8 сопротивление слишком большое, что понижает ток на компараторе. Это вызовет протекание тока и открывание семистора VS1, который включит нагревательный элемент. Об этом будет сигнализировать светодиод.

По мере того как температура будет повышаться, сопротивление R8 станет снижаться. Мост будет стремиться к точке баланса. На компараторе потенциал инверсного входа плавно снижается, а на прямом – повышается. В какой-то момент ситуация меняется, и процесс происходит в обратную сторону. Таким образом, термоконтроллер своими руками будет включать или выключать исполнительный механизм в зависимости от сопротивления R8.

Если в наличии нет LM311, то её можно заменить отечественной микросхемой КР554СА301. Получается простой терморегулятор своими руками с минимальными затратами, высокой точностью и надёжностью работы.

Необходимые материалы и инструменты

Сама по себе сборка любой схемы электрорегулятора температуры не занимает много времени и сил. Но чтобы сделать термостат, необходимы минимальные знания в электронике, набор деталей согласно схеме и инструмент:

  1. Импульсный паяльник. Можно использовать и обычный, но с тонким жалом.
  2. Припой и флюс.
  3. Печатная плата.
  4. Кислота, чтобы вытравить дорожки.

Достоинства и недостатки

Даже простой терморегулятор своими руками имеет массу достоинств и положительных моментов. Говорить же о заводских многофункциональных устройствах и вовсе не приходится.

Регуляторы температуры позволяют:

  1. Поддерживать комфортную температуру.
  2. Экономить энергоресурсы.
  3. Не привлекать к процессу человека.
  4. Соблюдать технологический процесс, повышая качество.

Из недостатков можно назвать высокую стоимость заводских моделей. Конечно, самодельных приборов это не касается. А вот производственные, которые требуются при работе с жидкими, газообразными, щелочными и другими подобными средами, имеют высокую стоимость. Особенно если прибор должен иметь множество функций и возможностей.

Терморегулятор своими руками

Подробности
Категория: Электроника в быту

Терморегулятор в быту применяется в самых разных устройствах, начиная от холодильника и заканчивая утюгами и паяльниками. Наверно, нет такого радиолюбителя, который обошел бы стороной подобную схему. Чаще всего в качестве датчика или сенсора температуры в различных любительских конструкциях используются терморезисторы, транзисторы или диоды. Работа таких терморегуляторов достаточно проста, алгоритм работы примитивный, и как следствие простая электрическая схема.

Поддержание заданной температуры производится включением – выключением нагревательного элемента (ТЭН): как только температура достигнет заданной величины, срабатывает сравнивающее устройство (компаратор) и ТЭН отключается. Такой принцип регулирования реализован во всех простых регуляторах. Казалось бы, все просто и понятно, но это лишь до того, пока не дошло до практических опытов.

Самым сложным и трудоемким процессом в изготовлении «простых» терморегуляторов является настройка на требуемую температуру. Для определения характерных точек температурной шкалы предлагается сначала погружать датчик в сосуд с тающим льдом (это ноль градусов Цельсия), а затем в кипяток (100 градусов).

После этой «калибровки» методом проб и ошибок при помощи градусника и вольтметра производится настойка необходимой температуры срабатывания. После таких опытов результат оказывается не самым лучшим.

Сейчас различными фирмами выпускается множество температурных сенсоров уже откалиброванных в процессе производства. В основном это датчики, рассчитанные на работу с микроконтроллерами. Информация на выходе этих датчиков цифровая, передается по однопроводному двунаправленному интерфейсу 1-wire, что позволяет создавать целые сети на базе подобных устройств. Другими словами очень просто создать многоточечный термометр, контролировать температуру, например, в помещении и за окном, и даже не в одной комнате.

На фоне такого изобилия интеллектуальных цифровых сенсоров неплохо выглядит скромный прибор LM335 и его разновидности 235, 135. Первая цифра в маркировке говорит о назначении прибора: 1 соответствует военной приемке, 2 индустриальное применение, а тройка говорит об использовании компонента в бытовых приборах.

Кстати, такая же стройная система обозначений свойственна многим импортным деталям, например операционным усилителям, компараторам и многим другим. Отечественным аналогом таких обозначений была маркировка транзисторов, например, 2Т и КТ. Первые предназначались для военных, а вторые для широкого применения. Но пора вернуться к уже знакомому нам LM335.

Внешне этот сенсор похож на маломощный транзистор в пластмассовом корпусе ТО - 92, но внутри него находится 16 транзисторов. Также этот датчик может быть и в корпусе SO – 8, но различий между ними нет никаких. Внешний вид датчика показан на рисунке 1.

Рисунок 1. Внешний вид датчика LM335

По принципу действия датчик LM335 представляет собой стабилитрон, у которого напряжение стабилизации зависит от температуры. При повышении температуры на один градус Кельвина напряжение стабилизации увеличивается на 10 милливольт. Типовая схема включения показана на рисунке 2.

Рисунок 2. Типовая схема включения датчика LM335

При взгляде на этот рисунок сразу можно спросить, какое же сопротивление резистора R1 и, какое напряжение питания при такой схеме включения. Ответ содержится в технической документации, где сказано, что нормальная работа изделия гарантируется в диапазоне токов 0,45…5,00 миллиампер. Следует заметить, что предел в 5 мА превышать не следует, поскольку датчик будет перегреваться и измерять собственную температуру.

Что будет показывать датчик LM335

Согласно документации (Data Sheet) датчик проградуирован по абсолютной шкале Кельвина. Если предположить, что температура внутри помещения -273,15°C, а это абсолютный ноль по Кельвину, то рассматриваемый датчик должен показать нулевое напряжение. При увеличении температуры на каждый градус выходное напряжение стабилитрона будет возрастать на целых 10мВ или на 0,010В.

Чтобы перевести температуру из привычной всем шкалы Цельсия в шкалу Кельвина достаточно просто прибавить 273,15. Ну, про 0,15 всегда и все забывают, поэтому просто 273, и получается, что 0°C это 0+273 = 273°K.

В учебниках физики нормальной температурой считается 25°C, а по Кельвину получается 25+273 = 298, а точнее 298,15. Именно эта точка упоминается в даташите, как единственная точка калибровки сенсора. Таким образом, при температуре 25°C на выходе датчика должно быть 298,15 * 0,010 = 2,9815В.

Рабочий диапазон датчика находится в пределах -40…100°C и во всем диапазоне характеристика датчика очень линейна, что позволяет легко рассчитать показания датчика при любой температуре: сначала надо пересчитать температуру по Цельсию в градусы Кельвина. Затем полученную температуру умножить на 0,010В. Последний ноль в этом числе говорит о том, что напряжение в Вольтах указано с точностью до 1мВ.

Все эти рассуждения и расчеты должны навести на мысль, что при изготовлении терморегулятора не придется ничего градуировать, макая сенсор в кипяток и в тающий лед. Достаточно просто рассчитать напряжение на выходе LM335, после чего останется только выставить это напряжение в качестве задающего на входе сравнивающего устройства (компаратора).

Еще один повод для использования LM335 в своей конструкции это небольшая цена. В интернет магазине его можно купить по цене около 1 доллара. Наверно, доставка обойдется дороже. После всех этих теоретических рассуждений можно перейти к разработке электрической схемы терморегулятора. В данном случае для погреба.

Принципиальная схема терморегулятора для погреба

Чтобы сконструировать терморегулятор для погреба на базе аналогового термодатчика LM335 не надо изобретать ничего нового. Достаточно обратиться к технической документации (Data Sheet) на этот компонент. Даташит содержит все способы применения датчика, в том числе и собственно терморегулятор.

Но эту схему можно рассматривать как функциональную, по которой можно изучить принцип работы. Практически придется дополнить ее выходным устройством, позволяющим включать нагреватель заданной мощности и, естественно, блоком питания и, возможно, индикаторами работы. Об этих узлах будет рассказано несколько позже, а пока посмотрим, что же предлагает фирменная документация, она же даташит. Схема, как она есть, показана на рисунке 3.

Рисунок 3. Схема подключения датчика LM335

Как работает компаратор

Основой предлагаемой схемы является компаратор LM311, он же 211 или 111. Как и все компараторы, 311-й имеет два входа и выход. Один из входов (2) является прямым и обозначен знаком +. Другой вход - инверсный (3) обозначен знаком «минус». Выходом компаратора является вывод 7.

Логика работы компаратора достаточно проста. Когда напряжение на прямом входе (2) больше, чем на инверсном (3), на выходе компаратора устанавливается высокий уровень. Транзистор открывается и подключает нагрузку. На рисунке 1 это сразу нагреватель, но ведь это функциональная схема. К прямому входу подключен потенциометр, задающий порог срабатывания компаратора, т.е. уставку температуры.

Когда напряжение на инверсном входе больше, чем на прямом, на выходе компаратора установится низкий уровень. К инверсному входу подключен термодатчик LM335, поэтому при повышении температуры (нагреватель уже включен) будет повышаться напряжение на инверсном входе.

Когда напряжение датчика достигнет порога срабатывания, установленного потенциометром, компаратор переключится в низкий уровень, транзистор закроется и отключит нагреватель. Далее весь цикл повторится.

Осталось совсем ничего, - на базе рассмотренной функциональной схемы разработать практическую схему, по возможности простую и доступную для повторения начинающими радиолюбителями. Возможный вариант практической схемы показан на рисунке 4.

Рисунок 4.

Несколько пояснений к принципиальной схеме

Нетрудно видеть, что базовая схема немного изменилась. Прежде всего, вместо нагревателя транзистор будет включать реле, а что будет включать реле об этом чуть позже. Еще появился электролитический конденсатор C1, назначение которого сглаживание пульсаций напряжения на стабилитроне 4568. Но расскажем о назначении деталей чуть подробней.

Питание термодатчика и делителя напряжения уставки температуры R2, R3, R4 стабилизировано параметрическим стабилизатором R1, 1N4568, C1 с напряжением стабилизации 6,4В. Даже если питание всего устройства будет производиться от стабилизированного источника, дополнительный стабилизатор не помешает.

Такое решение позволяет питать все устройство от источника, напряжение которого можно выбрать в зависимости от напряжения катушки реле, имеющегося в наличии. Скорее всего, это будет 12 или 24В. Источник питания может быть даже нестабилизированным, просто диодный мост с конденсатором. Но лучше все-таки не поскупиться и поставить в блок питания интегральный стабилизатор 7812, который обеспечит еще и защиту от КЗ.

Если уж разговор зашел про реле, что можно в данном случае применить? Прежде всего, это современные малогабаритные реле, наподобие тех, что применяются в стиральных машинах. Внешний вид реле показан на рисунке 5.

Рисунок 5. Малогобаритное реле

При всей миниатюрности такие реле могут коммутировать ток до 10А, что позволяет коммутировать нагрузку до 2КВт. Это если на все 10А, но так делать не надо. Самое большее, что можно включить таким реле это нагреватель мощностью не более 1КВт, ведь должен же быть хоть какой-то «запас прочности»!

Совсем хорошо, если реле своими контактами будет включать магнитный пускатель серии ПМЕ, а уж он пусть включает нагреватель. Это один из самых надежных вариантов включения нагрузки. Возможная реализация такого варианта показана на рисунке 6.

Рисунок 6.

Электропитание терморегулятора

Блок питания устройства нестабилизированный, а поскольку сам терморегулятор (одна микросхема и один транзистор) практически никакой мощности не потребляет, то в качестве источника питания вполне подойдет любой сетевой адаптер китайского производства.

Если сделать блок питания, как показано на схеме, то вполне подойдет небольшой силовой трансформатор от кассетного магнитофона калькулятора или чего-то другого. Главное, чтобы напряжение на вторичной обмотке было не свыше 12..14В. При меньшем напряжении не будет срабатывать реле, а при большем оно просто может сгореть.

Если выходное напряжения трансформатора находится в пределах 17…19В, то тут без стабилизатора не обойтись. Это не должно пугать, ведь современные интегральные стабилизаторы имеют всего 3 вывода, запаять их не так и сложно.

Включение нагрузки

Открытый транзистор VT1 включает реле K1, которое своим контактом K1.1 включает магнитный пускатель K2. Контакты магнитного пускателя K2.1 и K2.2 подключают к сети нагреватель. Следует отметить, что нагреватель включается сразу двумя контактами. Такое решение гарантирует, что при отключенном пускателе на нагрузке не останется фаза, если, конечно все исправно.

Поскольку погреб помещение влажное, иногда очень сырое, в плане электробезопасности очень опасное, то подключение всего устройства лучше всего осуществить с применением УЗО по всем требованиям к современной проводке.

Каким должен быть нагреватель

Схем терморегуляторов для погреба опубликовано немало. Когда-то их печатал журнал «Моделист-коструктор» и другие печатные издания, а теперь все это изобилие перекочевало в интернет. В этих статьях даются рекомендации, каким же должен быть нагреватель.

Кто-то предлагает обычные стоваттные лампы накаливания, трубчатые нагреватели марки ТЭН, масляные радиаторы (можно даже с неисправным биметаллическим регулятором). Также предлагается использовать бытовые обогреватели с встроенным вентилятором. Главное, чтобы не было прямого доступа к токоведущим частям. Поэтому старые электроплитки с открытой спиралью и самодельные нагреватели типа «козёл» применять ни в коем случае нельзя.

Сначала проверьте монтаж

Если устройство собрано без ошибок из исправных деталей, то особой наладки не требуется. Но в любом случае перед первым включением обязательно проверить качество монтажа: нет ли непропаек или наоборот замкнутых дорожек на печатной плате. И проделывать эти действия надо не забывать, просто взять себе за правило. Особенно это относится к конструкциям, подключаемым к электрической сети.

Настройка терморегулятора

Если первое включение конструкции произошло без дыма и взрывов, то единственное, что надо сделать, это выставить опорное напряжение на прямом входе компаратора (вывод 2), согласно желаемой температуре. Для этого необходимо произвести несколько расчетов.

Предположим, что температура в погребе должна поддерживаться на уровне +2 градуса по Цельсию. Тогда сначала переводим ее в градусы Кельвина, затем полученный результат умножаем на 0,010В в результате получается опорное напряжение, оно же уставка температуры.

(273,15 + 2) * 0,010 = 2,7515(В)

Если предполагается, что терморегулятор должен поддерживать температуру, например, +4 градуса, то получится следующий результат: (273,15 + 4) * 0,010 = 2,7715(В)

автор Борис Аладышкин

Добавить комментарий

Терморегулятор для погреба своими руками

Опубликовал admin | Дата 5 сентября, 2011

     Здравствуйте дорогие читатели. В этой заметке я хочу предложить вам изготовить прибор по поддержанию установленной температуры в погребе, в подвале или подполье, где хранятся продукты.

Его можно установить и в специальном термоконтейнере для хранения продуктов на балконе или лоджии. Он так же может работать с обогревателями помещений.  Основой схемы является контроллер PIC16F628A . Для лучшего восприятия информации, по крайней мере это я так думаю, применены два индикатора.

     На левом отображается реальная температура, на правом — установленная. В качестве индикаторов применены светодиодные индикаторы красного свечения с общим катодом. Так как количества портов у контроллера для управления индикатора не хватает, пришлось применить ещё одну микросхему К555ИД10, которую можно заменить на К555ИД6, КМ555ИД10, КМ555ИД6.

В качестве датчика температуры применен датчик DS18B20. Ключ включения и отключения нагрузки можно собрать по данной схеме или взять схемы из рубрики «Автомат откачки воды для дренажного колодца». А можно вот и по этой собрать.

     Яркость индикаторов можно регулировать с помощью добавочных резисторов R7 по R13. Если изделие будет стоять в затемнённом месте, то эти резисторы можно поставить по 470 ом. Чем больше номинал этих резисторов, тем меньше общий потребляемый ток. Значит меньше плата за электроэнергию. Все детали, указанные на схеме, кроме силового ключа, размещены на печатной плате. Эту плату я первый раз попробовал сделать по лазерно-утюжной технологии. Этот способ давно уже используется радиолюбителями, правда для этого кроме утюга нужен лазерный принтер, который недавно я и приобрел. Описаний данного способа в инете полно, только я грею рисунок утюгом через фторопластовую пленку толщиной в 0,1мм.
     Эта пленка позволяет более равномерно давить на рисунок проводников и препятствует перегреву фольги, а это важно, так как перегрев может стать причиной последующего отслоения медных дорожек при пайке деталей. Я не помню, где надыбал  эту пленку, но по-моему из какого-то высоковольтного конденсатора с фторопластовой изоляцией. Схема начерчена при помощи sPlan6 , печать — SLayout-5rus. Эти программы можно скачать из рубрики «Программы».  Какие обогреватели лучше использовать, вы можете прочитать в заметке «Обогреватели для продуктов».  До свидания.  Удачи всем.   К.В.Ю.

Скачать “termostat-dlya-podvala” termostat-dlya-podvala.rar – Загружено 134 раза – 23 KB

Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".

Просмотров:15 486


Как организовать балконный погребок с помощью электронного терморегулятора или механического термостата?

Всего городов: 405

Выбрать

    • Абакан • Республика Хакасия
    • Агинское • Забайкальский край
    • Адыгейск • Адыгея республика
    • Азов • Ростовская область
    • Ак-Довурак • Тыва республика
    • Аксай • Ростовская область
    • Алдан • Республика Саха (Якутия)
    • Алейск • Алтайский край
    • Александров • Владимирская область
    • Алтайское • Алтайский край
    • Альметьевск • Республика Татарстан
    • Анапа • Краснодарский край
    • Ангарск • Иркутская область
    • Анжеро-Судженск • Кемеровская область
    • Апатиты • Мурманская область
    • Апшеронск • Краснодарский край
    • Арзамас • Нижегородская область
    • Армавир • Краснодарский край
    • Арсеньев • Приморский край
    • Артем • Приморский край
    • Архангельск • Архангельская область
    • Астрахань • Астраханская область
    • Ахтубинск • Астраханская область
    • Ачинск • Красноярский край
    • Баксан • Кабардино-Балкарская республика
    • Балаково • Саратовская область
    • Балашиха • Московская область
    • Балашов • Саратовская область
    • Барабинск • Новосибирская область
    • Барнаул • Алтайский край
    • Барыш • Ульяновская область
    • Батайск • Ростовская область
    • Бахчисарай • Крым республика
    • Белая Калитва • Ростовская область
    • Белгород • Белгородская область
    • Белово • Кемеровская область
    • Белогорск • Амурская область
    • Белокуриха • Алтайский край
    • Белорецк • Республика Башкортостан
    • Белореченск • Краснодарский край
    • Бердск • Новосибирская область
    • Березники • Пермский край
    • Беслан • Северная Осетия - Алания республика
    • Бийск • Алтайский край
    • Бикин • Хабаровский край
    • Билибино • Чукотский АО
    • Биробиджан • Еврейская автономная область
    • Благовещенск • Амурская область
    • Благодарный • Ставропольский край
    • Большой камень • Приморский край
    • Бор • Нижегородская область
    • Борзя • Забайкальский край
    • Борисоглебск • Воронежская область
    • Боровичи • Новгородская область
    • Братск • Иркутская область
    • Брянск • Брянская область
    • Бугульма • Татарстан республика
    • Буденновск • Ставропольский край
    • Бузулук • Оренбургская область
    • Буй • Костромская область
    • Буйнакск • Республика Дагестан
    • Великие Луки • Псковская область
    • Великий Новгород • Новгородская область
    • Великий Устюг • Вологодская область
    • Вельск • Архангельская область
    • Верхняя Пышма • Свердловская область
    • Вичуга • Ивановская область
    • Владивосток • Приморский край
    • Владикавказ • Республика Северная Осетия (Алания)
    • Владимир • Владимирская область
    • Волгоград • Волгоградская область
    • Волгодонск • Ростовская область
    • Волжск • Республика Марий Эл
    • Волжский • Волгоградская область
    • Вологда • Вологодская область
    • Вольск • Саратовская область
    • Воркута • Республика Коми
    • Воронеж • Воронежская область
    • Воскресенск • Московская область
    • Воткинск • Республика Удмуртия
    • Всеволожск • Ленинградская область
    • Выборг • Ленинградская область
    • Вышний Волочек • Тверская область
    • Вяземский • Хабаровский край
    • Вязьма • Смоленская область
    • Вятские Поляны • Кировская область
    • Гатчина • Ленинградская область
    • Геленджик • Краснодарский край
    • Георгиевск • Ставропольский край
    • Глазов • Республика Удмуртия
    • Горно-Алтайск • Республика Алтай
    • Грозный • Республика Чечня
    • Грязи • Липецкая область
    • Губкин • Белгородская область
    • Гуково • Ростовская область
    • Гусиноозерск • Республика Бурятия
    • Дальнереченск • Приморский край
    • Дербент • Республика Дагестан
    • Джанкой • Крым республика
    • Дзержинск • Нижегородская область
    • Димитровград • Ульяновская область
    • Долгопрудный • Московская область
    • Домодедово • Московская область
    • Донецк • Ростовская область
    • Донской • Тульская область
    • Дятьково • Брянская область
    • Евпатория • Крым
    • Ейск • Краснодарский край
    • Екатеринбург • Свердловская область
    • Елабуга • Республика Татарстан
    • Елец • Липецкая область
    • Елизово • Камчатский край
    • Ессентуки • Ставропольский край
    • Железногорск • Красноярский край
    • Железногорск • Курская область
    • Жигулевск • Самарская область
    • Жуковский • Московская область
    • Забайкальск • Забайкальский край
    • Заречный • Пензенская область
    • Заринск • Алтайский край
    • Зеленодольск • Татарстан республика
    • Зеленокумск • Ставропольский край
    • Зима • Иркутская область
    • Златоуст • Челябинская область
    • Знаменск • Астраханская область
    • Иваново • Ивановская область
    • Ижевск • Республика Удмуртия
    • Изобильный • Ставропольский край
    • Инза • Ульяновская область
    • Иркутск • Иркутская область
    • Исилькуль • Омская область
    • Искитим • Новосибирская область
    • Ишим • Тюменская область
    • Йошкар-Ола • Республика Марий Эл
    • Казань • Республика Татарстан
    • Калуга • Калужская область
    • Каменск-Уральский • Свердловская область
    • Каменск-Шахтинский • Ростовская область
    • Камень-на-Оби • Алтайский край
    • Камышин • Волгоградская область
    • Канаш • Чувашская республикаублика - Чувашия
    • Канск • Красноярский край
    • Карабулак • Ингушетия республика
    • Карасук • Новосибирская область
    • Карачаевск • Карачаево-Черкесская республика
    • Касимов • Рязанская область
    • Каспийск • Республика Дагестан
    • Кемерово • Кемеровская область
    • Керчь • Крым
    • Кинешма • Ивановская область
    • Кириши • Ленинградская область
    • Киров • Кировская область
    • Кирово-Чепецк • Кировская область
    • Киселевск • Кемеровская область
    • Кисловодск • Ставропольский край
    • Клин • Московская область
    • Клинцы • Брянская область
    • Ковров • Владимирская область
    • Ковылкино • Мордовия республика
    • Когалым • Ханты-Мансийский автономный округ
    • Козьмодемьянск • Марий Эл республика
    • Коломна • Московская область
    • Комсомольск-на-Амуре • Хабаровский край
    • Кондопога • Республика Карелия

About Author


admin

Отправить ответ

avatar
  Подписаться  
Уведомление о